Heterochromatic Geometric Transversals of Convex sets

Soumi Nandi

Joint work with Sutanoya Chakraborty (Indian Statistical Institute), Arijit Ghosh (Indian Statistical Institute)

February 12, 2024

Definitions

- \mathcal{F} is a family of sets in \mathbb{R}^d
- \mathcal{T} is a family of geometric objects in \mathbb{R}^d

Transversal

 \mathcal{T} is said to be a transversal of \mathcal{F} if for every $F \in \mathcal{F}$, $\exists T \in \mathcal{T}$ such that

 $T \cap F \neq \emptyset$.

February 12, 2024

• We say \mathcal{T} pierces \mathcal{F} .

Definitions

- \mathcal{F} is a family of sets in \mathbb{R}^d
- \mathcal{T} is a family of geometric objects in \mathbb{R}^d

Transversal

 \mathcal{T} is said to be a transversal of \mathcal{F} if for every $F \in \mathcal{F}$, $\exists T \in \mathcal{T}$ such that

 $T\cap F\neq \emptyset.$

• We say \mathcal{T} pierces \mathcal{F} .

(p, q)-property

 \mathcal{F} is said to satisfy (p, q)-property with respect to \mathcal{T} if for every $\{F_1, F_2, \ldots, F_p\} \subset \mathcal{F}$, $\exists \{F_{i_j} \mid i_j \in [p], \forall j \in [q]\}$ and $\exists T \in \mathcal{T}$ such that

$$T \cap F_{i_j} \neq \emptyset, \ \forall j \in [q].$$

3

イロト イヨト イヨト イヨト

(p, q)-theorem[Alon-Kleitman, 1992]

For any three natural numbers $p \ge q \ge d + 1$, $\exists c = c(p, q, d)$ such that if \mathcal{F} is a collection of compact convex sets satisfying the (p, q)-property with respect to points in \mathbb{R}^d then there exists a point transversal for \mathcal{F} of size at most c.

(p, q)-theorem[Alon-Kleitman, 1992]

For any three natural numbers $p \ge q \ge d + 1$, $\exists c = c(p, q, d)$ such that if \mathcal{F} is a collection of compact convex sets satisfying the (p, q)-property with respect to points in \mathbb{R}^d then there exists a point transversal for \mathcal{F} of size at most c.

(p, q)-theorem for hyperplane transversal[Alon-Kalai, 1995]

For any three natural numbers $p \ge q \ge d + 1$, $\exists c' = c'(p, q, d)$ such that if \mathcal{F} is a collection of compact convex sets in \mathbb{R}^d satisfying the (p, q)-property with respect to hyperplanes then there exists a hyperplane transversal for \mathcal{F} of size at most c'.

• k-flats: k-dimensional affine space

$(\aleph_0, k+2)$ -theorem [Keller-Perles, 2022]

Let $d \in \mathbb{N}$, $k \in \mathbb{Z}$ with $0 \le k \le d - 1$. Suppose \mathcal{F} is an infinite family of *nicely shaped* convex sets, satisfying $(\aleph_0, k + 2)$ -property with respect to k-flats, then the whole family \mathcal{F} has a finite size k-transversal.

A sequence {B_n}_{n∈ℕ} of convex sets in ℝ^d is said to be k-dependent if there exists a k-flat K and k + 2 distinct integers i₁,..., i_{k+2} such that for all j ∈ [k + 2], K ∩ B_{ij} ≠ Ø.

- A sequence {B_n}_{n∈ℕ} of convex sets in ℝ^d is said to be k-dependent if there exists a k-flat K and k + 2 distinct integers i₁,..., i_{k+2} such that for all j ∈ [k + 2], K ∩ B_{ij} ≠ Ø.
- If a sequence {B_n}_{n∈ℕ} of convex sets is said to be k-independent if it is not k-dependent.

- A sequence {B_n}_{n∈ℕ} of convex sets in ℝ^d is said to be k-dependent if there exists a k-flat K and k + 2 distinct integers i₁,..., i_{k+2} such that for all j ∈ [k + 2], K ∩ B_{ij} ≠ Ø.
- If a sequence {B_n}_{n∈ℕ} of convex sets is said to be k-independent if it is not k-dependent.
- For each $n \in \mathbb{N}$, \mathcal{F}_n is a family of compact convex sets in \mathbb{R}^d .
- An infinite sequence {B_n}_{n∈ℕ} is said to be a heterochromatic sequence of {F_n}_{n∈ℕ} if there exists a strictly increasing sequence of natural numbers {i_n}_{n∈ℕ} such that ∀n ∈ ℕ, B_n ∈ F_{i_n}.

- A sequence {B_n}_{n∈ℕ} of convex sets in ℝ^d is said to be k-dependent if there exists a k-flat K and k + 2 distinct integers i₁,..., i_{k+2} such that for all j ∈ [k + 2], K ∩ B_{ij} ≠ Ø.
- If a sequence {B_n}_{n∈ℕ} of convex sets is said to be k-independent if it is not k-dependent.
- For each $n \in \mathbb{N}$, \mathcal{F}_n is a family of compact convex sets in \mathbb{R}^d .
- An infinite sequence {B_n}_{n∈ℕ} is said to be a heterochromatic sequence of {F_n}_{n∈ℕ} if there exists a strictly increasing sequence of natural numbers {i_n}_{n∈ℕ} such that ∀n ∈ ℕ, B_n ∈ F_{i_n}.
- {*F_n*}_{n∈ℕ} is said to satisfy heterochromatic (ℵ₀, *k* + 2)-property if every heterochromatic sequence from {*F_n*}_{n∈ℕ} is *k*-dependent.

- For each $n \in \mathbb{N}$, \mathcal{F}_n is a family of *nicely shaped* closed convex sets in \mathbb{R}^d .
- $k \in \mathbb{Z}$ with $0 \le k \le d-1$

Heterochromatic $(\aleph_0, k + 2)$ -theorem [Chakraborty-Ghosh-N, 2023]

If $\{\mathcal{F}_n\}_{n \in \mathbb{N}}$ satisfies the heterochromatic $(\aleph_0, k+2)$ -property, then all but finitely many \mathcal{F}_n 's can be pierced by finitely many *k*-flats.

• Can we establish the same result for general compact convex sets in \mathbb{R}^d , without any assumption of having nice shape?

Colorful (p, q)-theorem [Bárány-Fodor-Montejano-Oliveros-Pór, 2014]

For any $p, q, d \in \mathbb{N}$ with $p \ge q \ge d + 1$, $\exists M = M(p, q, d)$ such that the following holds: if $\mathcal{F}_1, \ldots, \mathcal{F}_p$ be finite families of convex sets in \mathbb{R}^d satisfying colorful (p, q)-property with respect to points then there exists at least q - d indices $i \in \{1, \ldots, p\}$ such that \mathcal{F}_i has a point transversal of size at most M.

Open problem 2

Can we prove a Colorful (p, q)-theorem for hyperplane transversals?

Colorful (p, q)-theorem [Bárány-Fodor-Montejano-Oliveros-Pór, 2014]

For any $p, q, d \in \mathbb{N}$ with $p \ge q \ge d + 1$, $\exists M = M(p, q, d)$ such that the following holds: if $\mathcal{F}_1, \ldots, \mathcal{F}_p$ be finite families of convex sets in \mathbb{R}^d satisfying colorful (p, q)-property with respect to points then there exists at least q - d indices $i \in \{1, \ldots, p\}$ such that \mathcal{F}_i has a point transversal of size at most M.

Open problem 2

Can we prove a Colorful (p, q)-theorem for hyperplane transversals?

Thank You