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Injective Coloring



Graph Coloring

• A vertex k-coloring of a graph G = (V, E) is a function f : V → {1, 2, . . . , k} and this
vertex k-coloring is called a proper k-coloring if for every edge uv ∈ E,
f(u) ̸= f(v).

• The chromatic number χ(G) of G is the minimum value of k for which G admits a
proper k-coloring.
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Figure: A Graph with Proper 3-Coloring
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Injective Coloring

• An injective k-coloring of a graph G is a k-coloring of G such that no two vertices
having a common neighbor receive the same color. In other words, for any two
vertices u,w ∈ N(v), f(u) ̸= f(w) for all v ∈ V.

• The injective chromatic number χi(G) of a graph G is the minimum value of k for
which G admits an injective k-coloring.
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Figure: A Graph with Injective 3-Coloring
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Known Results



• The concept of injective coloring was introduced by Hahn et al. in 2002.
• Hahn et al. 1 showed that∆(G) ≤ χi(G) ≤ ∆(G)(∆(G)− 1) + 1, where∆(G) is the

maximum degree of G and gave characterization achieving bound.
• Hell et al. 2 proved that DECIDE INJECTIVE COLOrING PrOBLEM is NP-complete for

chordal graphs by showing the NP-completeness for split graphs.
• They provided a polynomial time algorithm for the injective chromatic number of

power chordal graphs.
• Panda et al. 3 showed that the injective chromatic number of proper interval

graphs, threshold graphs, and K1,3-free split graphs can be determined in linear
time and the NP-completeness for the K1,t-free split graphs, t ≥ 4.

1 G. Hahn, J. Kratochvil, J. Siran and D. Sotteau. On the injective chromatic number of graphs. Discrete
mathematics, 256(1-2):179–192. 2002

2P. Hell, A. Raspaud, and J. Stacho. On injective coloring of chordal graphs. In Latin American
Symposium on Theoretical Informatics, Springer, pages 520-530, 2008

3 B. S. Panda, Priyamvada. Injective coloring of some subclasses of bipartite graphs and chordal
graphs Discrete Applied Mathematics, 291:68-87, 2021.
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Interval Graphs



Interval Graphs

• A graph G is an interval graph if it is the intersection graph of a familyF of
intervals in a linearly ordered set such as the real line.

• An interval ordering of G is an ordering of vertices σ = (v1, v2, . . . , vn) of V with
the property that if for i ≤ j ≤ k, vivk ∈ E then vjvk ∈ E.

• The following characterization of interval graphs is a key in many algorithms for
interval graphs.

Theorem
4 A graph G is an interval graph if and only if G admits an interval ordering.

4G. Ramalingam and C. P. Rangan. A unified approach to domination problems on interval graphs.
Information Processing Letters, 27(5):271-274, 1988.

6/23



An Interval Graph
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Figure: An Interval Graph with its interval representation and interval ordering
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Our Contribution



Injective Coloring of Interval Graphs

Theorem
If G is an interval graph, then∆(G) ≤ χi(G) ≤ ∆(G) + 1.

Notation:
• σ = (v1, v2, . . . , vn): an interval ordering.
• SMax = {vr1 , vr2 , ..., vrk}: the set of all maximum degree vertices.
• vli = min(N[vri ]) denote the minimum neighbor of vri with respect to σ.
• vfi = max(N[vri ]) denote the maximum neighbor of vri with respect to σ.
• VPendant = {vp1 , vp2 , . . . , vpa} be the set of all pendant vertices in G such that for

all j = 1, 2, . . . ,a, vpj ∈ N[vri ] for some vri ∈ S.
• VLpendant = {vq1 , vq2 , . . . , vqb} be the set of all vertices which are not pendant in
G but pendant in G[N[vri ]] for some vri ∈ S.
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Lower Bound

χi(G) ≥ ∆(G)
• vri ∈ S is a maximum degree vertex, each neighbor of vri requires∆(G) distinct

colors.
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Figure: An Interval Graph with χi(G) = ∆(G)
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Upper Bound

χi(G) ≤ ∆(G) + 1
• Consider the ordering of the vertices σ−1 = (vn, . . . , v2, v1).
• f is an injective coloring of G obtained by greedy injective coloring algorithm on

σ−1.
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Figure: An Interval Graph with χi(G) = ∆(G) + 1
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Theorem

• Consider a vertex vi in G such that f(vi) = k where k is the maximum index.
• Let vi1 , vi2 , . . . , vik−1

, where i1 < i2 < . . . < ik−1 with respect to σ be the k vertices
such that {f(vi1), f(vi2), . . . , f(vik−1

)} = {1, 2, . . . , k− 1}, which are forbidden for
the vertex vi.

• Case 1. d(vi) ≥ k− 1
Now, k ≤ d(vi) + 1 ≤ ∆(G) + 1. Therefore, χi(G) ≤ ∆(G) + 1 in this case.

• Case 2. d(vi) < k− 1
Now we have to find one vertex vj such that d(vj) ≥ k− 1.

• Consider a vertex vj = max(N[vi1 ] ∩ N[vi]) with respect to σ.
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Illustration

b b b b b b b b b b

v1 v2 v4v3 v10

151 234 123

bbbb

v11 v12 v13 v14

1235 1

vi vi1 vi2 vi3 vj

Figure: An Illustration of an Interval Graph with a vertex vi with d(vi) < k− 1 and vj
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Theorem

• Subcase 1. i < i1 < i2 < . . . < ik−1 ≤ j
• Subcase 2. i < i1 < i2 < . . . < ir ≤ j < ir+1 < ir+2 < . . . < ik−1

• is < j
We have, i < is < j and vivs ∈ E, by interval ordering visvj ∈ E.

• j < it
We have, vit has a two length path with vi and let vi, vt, vit be a two length path
between the vertices vi and vit . Then t < j < it and vtvit ∈ E, by interval ordering,
vjvit ∈ E.
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Injective Coloring of Interval Graphs

• An L-vertex, R-vertex and LR-vertex is a vertex vri ∈ S that has exactly one
neighbor vli in VLpendent, one neighbor vfi in VLpendent, and two neighbors vli and vfi
in VLpendent and no neighbor in VPendant respectively.

TYPE-1 and TYPE-2 interval graph

G is said to be a TYPE-1 interval graph if it satisfies either of the following conditions:
C1: There exists a vertex vri ∈ S such that it has no pendant neighbors in VPendant or
VLpendsnt.
C2: There exist (α+ 2)-vertices, α ≥ 0 an R-vertex vri ∈ S, α number of LR-vertices
vrj1 , vrj2 , . . . , vrjα ∈ S and an L-vertex vrp ∈ S such that
vfi = vlj1 , vfj1 = vlj2 , . . . vfjα−1

= vljα and vfjα = vlp .
Otherwise, G is called a Type-2 interval graph.
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Injective Coloring of Interval Graphs

This is the complete characterization of the interval graphs achieving the injective
chromatic number∆(G) and∆(G) + 1.

Theorem
If G is a TYPE-1 interval graph, then χi(G) = ∆(G) + 1.

Theorem
If G is a TYPE-2 interval graph, then χi(G) = ∆(G).
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Consequence

• Note that an optimal injective coloring of an interval graph can be obtained in
O(nm) time using the optimal injective coloring algorithm of the power chordal
graph 5 as the class of interval graphs is a subclass of power chordal graphs.

• However, we proposed an O(n+m) time algorithm to compute an optimal
injective coloring of an interval graph.

• Further, we characterize the interval graphs for which χi(G) = ∆(G) and
χi(G) = ∆(G) + 1.

5 G. Hahn, J. Kratochvil, J. Siran and D. Sotteau. On the injective chromatic number of graphs. Discrete
mathematics, 256(1-2):179–192. 2002.
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Note

• Injective coloring originated from the complexity theory of random access
machines and it has application in the theory of error-correcting codes.

• A graph is an interval graph if and only if its maximal cliques can be ordered.
such that each vertex that belongs to two of these cliques also belongs to all
cliques between them in the ordering.

• We denote by Gk the k-th power of G, i.e., the graph obtained from G by making
adjacent any two vertices in distance at most k in G.We call a graph G a power
chordal graph if all powers of G are chordal.

• The injective chromatic number of a power chordal grph can be determined in
polynomial (O(mn)) time.

• Coloring is also solvable for power chordal graphs in linear time.
• A graph G is power chordal if and only if any k-sun of G, k ≥ 4, is suspended.

Hence strongly chordal graphs are trivially power chordal graphs. Therefore
interval graphs are also power chordal graphs. 21/23



Note

• If a graph G contains no n-sun, then Gk is a power chordal graph. Then G can be
a tree, block graph, proper interval graph, interval graph, and strongly chordal
graph.
G is a power chordal graph, then G can contain a k-sun, but Gk do not contain a
k-sun. A graph that contains a k-sun can be power chordal, but the k-sun itself
is not.

• A graph G = (V, E) of order n is an intersection graph if there exists a f bijection
f : V → F , where F is a family of n sets such that uv ∈ E if and only if
f(u) ∩ f(v) ̸= ∅.

• GREEDY INJECTIVE COLORING ALGORITHM: Given an ordering α = (v1, v2, ..., vn) of
vertices of G = (V, E), the greedy injective coloring algorithm assigns each
vertex vi the first available color that is not used by any vertex vj, j < i that has a
common neighbor with vi. The colors which are assigned to a vertex vj, j < i that
has a common neighbor with vi are said to be forbidden for vi. 22/23



Note

• Subcase 1. i < i1 < i2 < . . . < ik−1 ≤ j
Since vivj ∈ E(G) and i < i1 < i2 < . . . < ik−2 < ik−1 ≤ j, by interval ordering
vtvj ∈ E(G) for all t = i, i1, i2, . . . , ik−2.
Therefore, d(vj) ≥ k− 1. Hence, the claim is proved.

• Subcase 2. i < i1 < i2 < . . . < ir ≤ j < ir+1 < ir+2 < . . . < ik−1 Since vivj ∈ E(G)
and i < i1 < i2 < . . . < ir ≤ j, by interval ordering vtvj ∈ E(G) for all
t = i, i1, i2, . . . , ir−1. Observe that each vis ∈ {vir+1 , vir+2 , . . . , vik−1

} has a two
length path with vi and let vi, vs, vis be a two length path between the vertices vi
and vis . Note that, j > s since vj = max(N[vi1 ]). Since vsvis ∈ E(G) and s < j < is,
by interval ordering vjvis ∈ E(G). Therefore, vjvis ∈ E(G) for all
vis ∈ {vir+1 , vir+2 , . . . , vik−1

}. Hence, d(vj) ≥ r+ (k− r− 1) = (k− 1). Therefore,
d(vj) ≥ (k− 1). Hence, the claim is proved.
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