Two interesting transit functions from I_G

Lekshmi Kamal K S

University of Kerala, India

YRF-CALDAM-2024

February 12, 2024

Transit function

Definition

A transit function on a nonempty finite set V is a function $R: V \times V \to 2^V$ satisfying the three transit axioms

- (t1) $u \in R(u, v)$, for all $u, v \in V$,
- (t2) R(u, v) = R(v, u), for all $u, v \in V$,
- (t3) $R(u, u) = \{u\}$, for all $u \in V$.
- If V is the vertex set of a graph G and R a transit function on V, then R is called a transit function on G.
- The underlying graph G_R of R is the graph (V, E), $uv \in E$ $(u \neq v)$ if and only if $R(u, v) = \{u, v\}$.

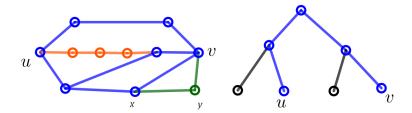
Problem

Characterize transit function R solely in terms of first order transit axioms on R. This problem becomes relevant as soon as the transit function is defined in terms of the structure σ , for instance, in the case of path functions.

Transit function on graph

Interval function

$$I_G(u,v) = \{w \in V : w \text{ lies on some shortest } u,v \text{ - path in } G\} = \{w \in V : d(u,w) + d(w,v) = d(u,v)\}.$$



Characterization of interval function *I*

Theorem (H.M.Mulder, L.Nebeský, 2009)

Let $R: V \times V \longrightarrow 2^V$ be a function on V with the underlying graph G_R . Then $R = I_{G_R}$ if and only if R satisfying the axioms (t1), (t2),

- (b2) $x \in R(u, v)$ and $y \in R(u, x) \implies y \in R(u, v)$,
- (b3) $x \in R(u, v)$ and $y \in R(u, x) \implies x \in R(y, v)$,
- (b4) $x \in R(u, v) \implies R(u, x) \cap R(x, v) = \{x\}$
- (s1) $R(u, \bar{u}) = \{u, \bar{u}\}, R(v, \bar{v}) = \{v, \bar{v}\}, u \in R(\bar{u}, \bar{v}) \text{ and } \bar{u}, \bar{v} \in R(u, v), \text{ then } v \in R(\bar{u}, \bar{v}).$
- (s2) $R(u, \bar{u}) = \{u, \bar{u}\}, R(v, \bar{v}) = \{v, \bar{v}\}, \bar{u} \in R(u, v), v \notin R(\bar{u}, \bar{v}), \bar{v} \notin R(u, v), \text{ then } \bar{u} \in R(u, \bar{v}).$
- (b1) $x \in R(u, v), x \neq v \implies v \notin R(u, x), \forall u, v \in V.$

Transit functions derived from I

Cycle Function (C)

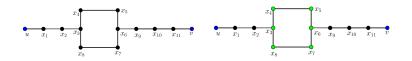
```
C(u, v) = \{u, v\} \cup \{w : w \in I(x, y) \text{ where } x, y \in I(u, v) 
and I(x, y) is a cycle (which is clearly isometric)\{u, v\} = \{u, v\}, if I(u, v) does not contain any cycle.
```

- Stress Function (S)
 - Let $u, v, x \in V$. The stress of the vertex x depending on a pair of vertex (u, v), denoted as $s_{uv}(x)$ and is defined as the number of distinct shortest paths from u to v which passes through x.
 - The stress function $S: V \times V \rightarrow 2^V$ is defined as

$$S(u, v) = \{x : x \in I(u, v) \text{ and } s_{uv}(x) \text{ is maximum } \}$$

= $\{x : x \text{ lies in every shortest } u - v \text{ path } \}$

Properties of C and S

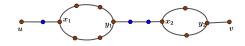


$$C(u,v) = \{u, v, x_3, x_4, x_5, x_6, x_7, x_8\}$$

$$S(u,v) = \{u, v, x_1, x_2, x_3, x_6, x_9, x_{10}, x_{11}\}$$

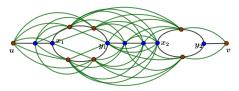
- $C(u, v) \subseteq I(u, v) \& S(u, v) \subseteq I(u, v)$
- $C(u,v) \cup S(u,v) = I(u,v)$
- Both S and C satisfies axioms (b1), (b2) and (b4).
- $G_C \not\simeq G$, $G_S \not\simeq G$

$G_C \not\simeq G$, $G_S \not\simeq G$

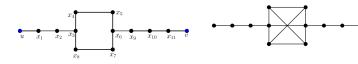


G:

 G_C :



• C(u, v) contain only red colored vertices in both



Contrasting properties of C and S

Lemma

- $C(u, v) = \{u, v\}$ if and only if G is a geodetic graph.
- C(u, v) = I(u, v) if and only if G is a thick graph.

Lemma

- $S(u, v) = \{u, v\}$ if and only if G is a thick graph.
- S(u, v) = I(u, v) if and only if G is a geodetic graph.

Cycle Function Possess an FO characterization

(th):
$$x \in R(u, v), x \neq u, v \Rightarrow R(u, x) \cup R(x, v) \subseteq R(u, v), \forall u, v, x \in V$$
.

Theorem

Let R be a transit function on V. Then R satisfies axioms (b3), (s1), (s2) and (th) if and only if $R = C_{G_R}$ and G_R is a thick graph.

Stress Function *S*

(s3)
$$x \in R(u, v)$$
 if and only if $R(u, x) \cup R(x, v) = R(u, v)$

Lemma

- Let G be a connected graph. Then the stress function of G satisfies the axioms (s3).
- Let G be a graph with interval function I and stress function S. Then $x \in S(u, v)$ if and only if $I(u, x) \cup I(x, v) = I(u, v)$.

PROBLEM:

- Is it possible to characterize *S* using a set of first-order axioms defined on *R*?
- Identify the properties satisfied by C but not S and vice-versa.

THANK YOU...