Introduction 00000 Literature Review

Problem Statement

References 0

Cycles in 3-connected Planar Graphs

CHITRAK DAS

PRE-CONFERENCE

CALDAM 2024

Department of Computer Science(RKMVERI)

February 12, 2024

Introduction	Literature Review	Problem Statement	References
•0000	O	O	O

1 Introduction

Introduction •0000	Literature Review O	Problem Statement O	References O
Introduction			

- ▲ Let H ⊂ G; then G/H denotes the graph with V(G/H) = V(G-H) ∪ h and E(G/H)=E(G-H) ∪ [hy: y ∈ V(G-H) and yy' ∈ V(H)] We say that G/H is obtained from G by contracting H to the vertex h.
- A block of a graph G is a maximal 2-connected subgraph of G.
- A cycle is a facial cycle if it bounds a face of the graph.
- Open, Closed Disc
- ▲ Let H be a subgraph of a graph G: An H-bridge of G is a subgraph of G which either (1) is induced by an edge of E(G) E(H) with both incident vertices in H or (2) is induced by the edges in a component of G from H and the edges of G from H to that component.For any H-bridge B of G; the attachments of B (on H) are the vertices in V(B) ∩ V(H).

Introduction-2

- A circuit graph is a pair (G,C), where G is a 2-connected plane graph and C is a facial cycle of G; such that, for any 2-cut S of G; every component of G-S contains a vertex of C.
- An annulus graph is a triple (G,C₁,C₂) where G is a 2-connected plane graph and C₁ and C₂ are facial cycles of G; such that, for any 2-cut S of G; every component of G S contains a vertex of C₁ ∪ C₂.

Problem Statement

Introduction-Example

◄ First, we define a sequence of 3-connected plane graphs T_k as follows.Let T_1 be a plane graph isomorphic to K_4 . Further, let $V(T_1)=[w, x_0, x_1, x_2]$ and let $x_0x_1x_2x_0$ be the outer cycle of T_1 . Suppose that T_k is defined for some $k \ge 1$. Let T_{k+1} be the graph obtained from T_k as follows: In each inner face of T_k ; add a new vertex and join the new vertex to the vertices of T_k incident with that face. Graphs T_1 and T_2 are shown in Fig.1.

Introduction-Example

- ◀ The above construction, for any k≥1, T_k is a 3-connected plane graph with outer cycle $x_0x_1x_2x_0$ with circ(T_k) < $\frac{7}{2}n^{log_32}$
- ✓ Let α_k be the length of the longest x1-x2 path in T_k and β_k be the length of a longest x1-x2 path in $T_k x_0$. By the construction of T_k , for i,j ∈[0,1,2] and i≠j, the length of a longest $x_i x_j$ path in T_k is α_k and the length of a longest $x_i x_j$ path in $T_k ([x_0, x_1, x_2] [x_i, x_j])$ is β_k .
- ◄ For i ∈ [0,1,2],let Dⁱ denote the open disc in the plane bounded by the triangle in T_{k+1} induced by [w, x₀, x₁, x₂] [x_i]. Let Vⁱ denote the set of vertices in T_{k+1} contained in Dⁱ, and let Tⁱ be the plane subgraph of T_{k+1} induced by Vⁱ ∪([w,x₀, x₁, x₂] [x_i]).
- Proposition : $\alpha_k = 3 * 2^{k-1}$ and $\beta_k = 2^k$

Literature Review

Problem Statement

Introduction-Important Theorems

- Let (G,C) be a circuit graph, and let x,y ∈ V(C).We say that (G,xCy) is a strong circuit graph if, for any 2-cut S of G, S ∩ V(yCx-[x,y])≠ φ
- Let R⁺ denote the set of non-negative real numbers, and w:V(G) ⇒ R⁺.For H⊂G,we write w(H) = Σ_{v(H)}w(v).Define w(φ) = 0.
- **Theorem:** Let (G,xCy) be a strong circuit graph,and let w:V(G) ⇒ R⁺. Then G contains an x-y path P such that Σ_{v∈(P-y)}[w(v)]^{log₃2} ≥ [w(G - y)]^{log₃2}
- Corollary:- If (G,C) is a circuit graph and e ∈ E(C). Then G contains a cycle T through e such that $|E(T)| ≥ |v(G)|^{log_3 2}$
- Corollary:- Let G be a 3-connected planar graph, and let e∈E(G). Then G contains a cycle C through e such that |E(C)| ≥ |V(G)|^{log₃2}

Literature Review

- In 1963, Moon and Moser implicitly made the following conjecture by giving 3-connected planar graphs with circ(G) ≤ 9|V(G)|^{log₃2} [1].
- In 2002, Chen and Yu proved that a 3-connected planar graph on n vertices contains a cycle of length at least Ω(n^{log₃2}) [2].
- In 1931 Whitney proved that every 4-connected triangulation of the plane contains a hamiltonian cycle.[3]
- In 1956 Tutte proved that every 4-connected planar graph contains a hamiltonian cycle.[4]

Introduction	Literature Review	Problem Statement	References
00000	O		O
Problem St	tatement		

- How many edge-disjoint cycles of length $\Omega(n^{log_32})$ can be guaranteed in a 3-connected planar graph.

Introduction 00000	Literature Review 0	Problem Statement O	References ●
References			

- Simple paths on polyhedra., J. W. Moon, L. Moser, 1963[1]
- Long Cycles in 3-Connected Planar graph Guantao Chen, Xingxing Yu,2002[2]
- H. Whitney, A theorem on graphs, Ann of math[3]
- T. Tutte, A Theorem on planar graph[4]