TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF GRAPH

Iztok Peterin

FEECS, University of Maribor and IMFM Ljubljana

CALDAM 2024, February 2024 Joint work with M. Anholcer, D. Božović, S. Cichacz, D. Gözüpek, B. Pawlik and D. Mesarič Štesl

Literature

- M. Anholcer, S. Cichacz, I. Peterin, On b-acyclic chromatic number of a graph, Comput. Appl. Math. 42 (2023) \#21 (20p).
- M. Anholcer, S. Cichacz, I. Peterin, On acyclic b-chromatic number of cubic graphs, in preparation.
- D. Božović, I. Peterin, D. Mesarič Štesl, On star b-chromatic number of a graph, in preparation.
- D. Gözüpek, I. Peterin, Grundy packing chromatic number of a graph, in preparation.
- B. Pawlik, I. Peterin, On Grundy acyclic chromatic number of a graph, in preparation.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.
- For every $i \in\{1, \ldots, k\}$ is the set $V_{i}=\{v \in V(G): c(v)=i\}$ the i th color class of vertex k-coloring c.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.
- For every $i \in\{1, \ldots, k\}$ is the set $V_{i}=\{v \in V(G): c(v)=i\}$ the i th color class of vertex k-coloring c.
- Clearly is $\left\{V_{1}, \ldots, V_{k}\right\}$ a partition of $V(G)$ into independent sets of vertices.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.
- For every $i \in\{1, \ldots, k\}$ is the set $V_{i}=\{v \in V(G): c(v)=i\}$ the i th color class of vertex k-coloring c.
- Clearly is $\left\{V_{1}, \ldots, V_{k}\right\}$ a partition of $V(G)$ into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.
- For every $i \in\{1, \ldots, k\}$ is the set $V_{i}=\{v \in V(G): c(v)=i\}$ the i th color class of vertex k-coloring c.
- Clearly is $\left\{V_{1}, \ldots, V_{k}\right\}$ a partition of $V(G)$ into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.
- A vertex $v \in V_{i}$ is called a b-vertex (of color i) if there are all colors in $N_{G}[v]$.

Chromatic number

Definition

- Let G be a graph. A map $c: V(G) \rightarrow\{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $u v \in E(G)$.
- For every $i \in\{1, \ldots, k\}$ is the set $V_{i}=\{v \in V(G): c(v)=i\}$ the i th color class of vertex k-coloring c.
- Clearly is $\left\{V_{1}, \ldots, V_{k}\right\}$ a partition of $V(G)$ into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.
- A vertex $v \in V_{i}$ is called a b-vertex (of color i) if there are all colors in $N_{G}[v]$.

Fact

Well known lower bound is $\chi(G) \geq \omega(G)$, where $\omega(G)$ is the clique number of G.

Heuristic approach

- It is difficult to compute $\chi(G)$.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.
- The Grundy number $\Gamma(G)$ of a graph G represents the worst case scenario for the greedy algorithm

Heuristic approach

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.
- The Grundy number $\Gamma(G)$ of a graph G represents the worst case scenario for the greedy algorithm
- and the b-chromatic number $\chi_{b}(G)$ of G in the case of recoloring algorithm.

Greedy algorithm

- Order vertices of G in an arbitrary order.

Greedy algorithm

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.

Greedy algorithm

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.

Greedy algorithm

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.
- The maximum number of colors obtained by this algorithm is called the Grundy number $\Gamma(G)$ of G.

Greedy algorithm

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.
- The maximum number of colors obtained by this algorithm is called the Grundy number $\Gamma(G)$ of G.
- One can find about 100 papers on this topic.

An example on trees

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_{k} by possible exchange of colors, such that V_{k} is without a b-vertex.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_{k} by possible exchange of colors, such that V_{k} is without a b-vertex.
- For every vertex v of color k there exists a color $i_{v} \in\{1, \ldots, k-1\}$ such that

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is a $(k-1)$-coloring.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_{k} by possible exchange of colors, such that V_{k} is without a b-vertex.
- For every vertex v of color k there exists a color $i_{v} \in\{1, \ldots, k-1\}$ such that

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is a ($k-1$)-coloring.

- Repeat this procedure until every color class has a b-vertex.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_{k} by possible exchange of colors, such that V_{k} is without a b-vertex.
- For every vertex v of color k there exists a color $i_{v} \in\{1, \ldots, k-1\}$ such that

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is a ($k-1$)-coloring.

- Repeat this procedure until every color class has a b-vertex.
- We call this procedure a reducing algorithm.

Algorithmic approach to reduce colors

- Let c be any k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_{k} by possible exchange of colors, such that V_{k} is without a b-vertex.
- For every vertex v of color k there exists a color $i_{v} \in\{1, \ldots, k-1\}$ such that

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is a ($k-1$)-coloring.

- Repeat this procedure until every color class has a b-vertex.
- We call this procedure a reducing algorithm.

Relation Q

We say that coloring c^{\prime} is in relation Q with coloring c, that is $c^{\prime} Q c$.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \bar{Q} is the \mathbf{b}-chromatic number of a graph G denoted by $\chi_{b}(G)$.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \bar{Q} is the \mathbf{b}-chromatic number of a graph G denoted by $\chi_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \bar{Q} is $\chi(G)$.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \bar{Q} is the b-chromatic number of a graph G denoted by $\chi_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \bar{Q} is $\chi(G)$.
- Hence $\chi_{b}(G)$ is a kind of a dual of $\chi(G)$.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \bar{Q} is the b-chromatic number of a graph G denoted by $\chi_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \bar{Q} is $\chi(G)$.
- Hence $\chi_{b}(G)$ is a kind of a dual of $\chi(G)$.
- b-chromatic number could alternatively be called the upper chromatic number, similar as domination and upper domination number.

Original definition by Irving and Manlove (1999)

- Let \bar{Q} be a transitive closure of relation Q.
- Relation \bar{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \bar{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \bar{Q} is the \mathbf{b}-chromatic number of a graph G denoted by $\chi_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \bar{Q} is $\chi(G)$.
- Hence $\chi_{b}(G)$ is a kind of a dual of $\chi(G)$.
- b-chromatic number could alternatively be called the upper chromatic number, similar as domination and upper domination number.

Theorem

The b-chromatic number of a graph G, denoted $\chi_{b}(G)$, is the largest integer k such that G admits a proper k-coloring in which every color class contains at least one b-vertex.

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered $v_{1}, v_{2}, \ldots, v_{n}$ so that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Then the m-degree, $m(G)$, of G is defined by

$$
m(G)=\max \left\{i: d\left(v_{i}\right) \geq i-1\right\}
$$

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered $v_{1}, v_{2}, \ldots, v_{n}$ so that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Then the m-degree, $m(G)$, of G is defined by

$$
m(G)=\max \left\{i: d\left(v_{i}\right) \geq i-1\right\}
$$

If G is an r-regular graph, then $m(G)=r+1$:

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered $v_{1}, v_{2}, \ldots, v_{n}$ so that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Then the m-degree, $m(G)$, of G is defined by

$$
m(G)=\max \left\{i: d\left(v_{i}\right) \geq i-1\right\}
$$

If G is an r-regular graph, then $m(G)=r+1$:

$$
\begin{array}{lllll}
1 & 2 & 3 & \cdots & n
\end{array}
$$

degree $\begin{array}{llllll} & r & r & r & \ldots & r\end{array}$

Trivial bounds

- Every b-vertex must have big enough degree, at least $\chi_{b}(G)-1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered $v_{1}, v_{2}, \ldots, v_{n}$ so that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. Then the m-degree, $m(G)$, of G is defined by

$$
m(G)=\max \left\{i: d\left(v_{i}\right) \geq i-1\right\}
$$

If G is an r-regular graph, then $m(G)=r+1$:
123 ...
n
degree $\begin{array}{lllll}r & r & r & \ldots & r\end{array}$

Trivial bounds

$$
\chi(G) \leq \chi_{b}(G) \leq m(G)
$$

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
- acyclic coloring (both approaches),

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
- acyclic coloring (both approaches),
- star coloring (reducing algorithm approach)

How to proceed by special colorings

- A coloring is special if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
- acyclic coloring (both approaches),
- star coloring (reducing algorithm approach) and
- packing coloring (greedy approach).

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.
- An acyclic chromatic number $A(G)$ of a graph G is the minimum number of colors in an acyclic coloring of G.

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.
- An acyclic chromatic number $A(G)$ of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any acyclic k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.
- An acyclic chromatic number $A(G)$ of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any acyclic k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : & c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is an acyclic $(k-1)$-coloring.

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.
- An acyclic chromatic number $A(G)$ of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any acyclic k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : & c(v) \neq k \\
i_{v} & : & c(v)=k
\end{array}\right.
$$

is an acyclic $(k-1)$-coloring.

- We call this procedure a acyclic reducing algorithm.

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G\left[V_{i} \cup V_{j}\right]$ is without cycles for every $i, j \in[k]$.
- An acyclic chromatic number $A(G)$ of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any acyclic k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : \quad c(v) \neq k \\
i_{v} & : \quad c(v)=k
\end{array}\right.
$$

is an acyclic $(k-1)$-coloring.

- We call this procedure a acyclic reducing algorithm.

Relation Q_{a}

We say that coloring c^{\prime} is in relation Q_{a} with coloring c, that is $c^{\prime} Q_{a} c$.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_{a}}$ has some minimal elements.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_{a}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_{a}}$ is the acyclic b-chromatic number of a graph G denoted by $A_{b}(G)$.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_{a}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_{a}}$ is the acyclic b-chromatic number of a graph G denoted by $A_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering $\overline{Q_{a}}$ is $A(G)$.

Acyclic b-chromatic number

- Let $\overline{Q_{a}}$ be a transitive closure of relation Q_{a}.
- Relation $\overline{Q_{a}}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_{a}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_{a}}$ is the acyclic b-chromatic number of a graph G denoted by $A_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering $\overline{Q_{a}}$ is $A(G)$.
- Hence $A_{b}(G)$ is a kind of a dual of $A(G)$.

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is a weak acyclic b-vertex if it satisfies

$$
\begin{equation*}
\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{\ell} \cup V_{j} \cup\{v\}\right] \text { contains a cycle }\right) \tag{1}
\end{equation*}
$$

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is a weak acyclic b-vertex if it satisfies

$$
\begin{equation*}
\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{\ell} \cup V_{j} \cup\{v\}\right] \text { contains a cycle }\right) \tag{1}
\end{equation*}
$$

- A b-vertex v is also a weak acyclic b-vertex, since $[k]-C N_{c}[v]=\emptyset$.

Acyclic b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is a weak acyclic b-vertex if it satisfies

$$
\begin{equation*}
\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{\ell} \cup V_{j} \cup\{v\}\right] \text { contains a cycle }\right) \tag{1}
\end{equation*}
$$

- A b-vertex v is also a weak acyclic b-vertex, since $[k]-C N_{c}[v]=\emptyset$.
- There are weak acyclic b-vertices that are not b-vertices:

Example

Slika: Graph G_{2} with $\Delta\left(G_{2}\right)=5<8=A_{b}\left(G_{2}\right)$.

Weak acyclic b-vertices are not enough!

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

- Color 3 (and symmertic also color 2) has no weak acyclic b-vertex.

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

- Color 3 (and symmertic also color 2) has no weak acyclic b-vertex.
- Vertices of V_{3} cannot be acyclic recolored!

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

- Color 3 has no weak acyclic b-vertex.

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

- Color 3 has no weak acyclic b-vertex.
- All vertices from V_{3} can be acyclic recolored if the left lower vertex is colored with 2 .

Weak acyclic b-vertices are not enough!

- Observe the following simple example:

- Color 3 has no weak acyclic b-vertex.
- All vertices from V_{3} can be acyclic recolored if the left lower vertex is colored with 2 .
- All vertices from V_{3} cannot be acyclic recolored if the left lower vertex is colored with 4.

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6 .

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6 .
- Hence, C is of even length.

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6 .
- Hence, C is of even length.
- Cycle C is colored with exactly three colors say k, beside i and j.

Problematic cycles for color i

Properties of problematic cycles are:

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6 .
- Hence, C is of even length.
- Cycle C is colored with exactly three colors say k, beside i and j.
- Every vertex of color i can be recolored only with color k for the coloring to remain acyclic.

Critical cycle systems

Slika: Cycles C and C^{\prime} form a critical cycle system $\operatorname{CCS}(1)$.

Acyclic b-vertex

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is an acyclic b-vertex if it satisfies
$\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{j, \ell} \cup\{v\}\right]\right.$ contains a cycle \vee there exists a $\operatorname{CCS}(\ell)$ of G that contains v and is not recolorable).

Acyclic b-vertex

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is an acyclic b-vertex if it satisfies
$\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{j, \ell} \cup\{v\}\right]\right.$ contains a cycle \vee there exists a $\operatorname{CCS}(\ell)$ of G that contains v and is not recolorable).

Theorem

An acyclic k-coloring c is a minimal element of \prec_{a} if and only if every color class $V_{i}, i \in[k]$, contains an acyclic b -vertex.

Acyclic b-vertex

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow[k]$. A vertex $v \in V_{i}, i \in[k]$, is an acyclic b-vertex if it satisfies
$\forall \ell \in[k]-C N_{c}[v], \exists j \in C N_{c}(v):\left(G\left[V_{j, \ell} \cup\{v\}\right]\right.$ contains a cycle \vee there exists a $\operatorname{CCS}(\ell)$ of G that contains v and is not recolorable).

Theorem

An acyclic k-coloring c is a minimal element of \prec_{a} if and only if every color class $V_{i}, i \in[k]$, contains an acyclic b-vertex.

Corollary

The acyclic b-chromatic number $A_{b}(G)$ of a graph G is the largest integer k, such that there exists an acyclic k-coloring, where every color class $V_{i}, i \in[k]$, contains an acyclic b-vertex.

Some additional results

Corollary

For every positive integers n, k, ℓ, where $k \geq 3$ and $\ell \geq 5$, we have

- $A_{b}\left(\bar{K}_{n}\right)=1$.
- $A_{b}\left(P_{\ell}\right)=3$.
- $A_{b}\left(C_{k}\right)=3$.

Some additional results

Corollary

For every positive integers n, k, ℓ, where $k \geq 3$ and $\ell \geq 5$, we have

- $A_{b}\left(\bar{K}_{n}\right)=1$.
- $A_{b}\left(P_{\ell}\right)=3$.
- $A_{b}\left(C_{k}\right)=3$.

Corollary

Let T be a tree. If T is a pivoted tree, then $A_{b}(T)=m(T)-1$ and otherwise, if T is not pivoted, then $A_{b}(T)=m(T)$.

Some additional results

Corollary

For every positive integers n, k, ℓ, where $k \geq 3$ and $\ell \geq 5$, we have

- $A_{b}\left(\bar{K}_{n}\right)=1$.
- $A_{b}\left(P_{\ell}\right)=3$.
- $A_{b}\left(C_{k}\right)=3$.

Corollary

Let T be a tree. If T is a pivoted tree, then $A_{b}(T)=m(T)-1$ and otherwise, if T is not pivoted, then $A_{b}(T)=m(T)$.

Corollary

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(A_{b}\left(G_{n}\right)-A\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b -vertex and for the missing colors there exists problematic cycles that contain that vertex.

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b -vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- In both cases this means some neighbors of v into which vertex cannot be recolored, or

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.
- Therefore we consider a weak partition $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ of $N_{G}(v)$ into $k+1$ disjoint sets such that $\left|A_{0}^{P}\right| \geq 0$ and $\left|A_{i}^{P}\right| \geq 2$ for $i \in[k]$.

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.
- Therefore we consider a weak partition $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ of $N_{G}(v)$ into $k+1$ disjoint sets such that $\left|A_{0}^{P}\right| \geq 0$ and $\left|A_{i}^{P}\right| \geq 2$ for $i \in[k]$.
- The vertices of A_{0}^{P} are colored with distinct colors and all the vertices of $A_{j}^{P}, j \in[k]$, with the same clor that is different than already used colors.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.
- Let $\operatorname{elp}_{G}(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets $A_{i}^{P}, i \in[k]$.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.
- Let $\operatorname{elp}_{G}(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets $A_{i}^{P}, i \in[k]$.
- In the worst case one cannot recolor v to exactly $\left(\left|A_{0}^{P}\right|+k+\operatorname{elp}_{G}(v, P)\right)$ colors different than $c(v)$.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.
- Let $\operatorname{elp}_{G}(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets $A_{i}^{P}, i \in[k]$.
- In the worst case one cannot recolor v to exactly $\left(\left|A_{0}^{P}\right|+k+\operatorname{elp}_{G}(v, P)\right)$ colors different than $c(v)$.
- $\left(\left|A_{0}^{P}\right|+k\right)$ colors are blocked by the neighbors.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.
- Let $\operatorname{elp}_{G}(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets $A_{i}^{P}, i \in[k]$.
- In the worst case one cannot recolor v to exactly $\left(\left|A_{0}^{P}\right|+k+\operatorname{elp}_{G}(v, P)\right)$ colors different than $c(v)$.
- $\left(\left|A_{0}^{P}\right|+k\right)$ colors are blocked by the neighbors.
- At most $\operatorname{elp}_{G}(v, P)$ by the alternately colored bi-chromatic internal-vertex disjoint paths or problematic cycles that could appear in the coloring.

Counting paths

- Let $P=\left\{A_{0}^{P}, A_{1}^{P}, \ldots, A_{k}^{P}\right\}$ be a weak partition of $N_{G}(v)$.
- Let $\operatorname{elp}_{G}(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets $A_{i}^{P}, i \in[k]$.
- In the worst case one cannot recolor v to exactly $\left(\left|A_{0}^{P}\right|+k+\operatorname{elp}_{G}(v, P)\right)$ colors different than $c(v)$.
- $\left(\left|A_{0}^{P}\right|+k\right)$ colors are blocked by the neighbors.
- At most $\operatorname{elp}_{G}(v, P)$ by the alternately colored bi-chromatic internal-vertex disjoint paths or problematic cycles that could appear in the coloring.
- This motivates the definition of the acyclic degree of v as

$$
d_{G}^{a}(v)=\max _{P \in \mathcal{P}(v)}\left\{\left(\left|A_{0}^{P}\right|+(|P|-1)+\operatorname{elp}_{G}(v, P)\right)\right\}
$$

where $\mathcal{P}(v)$ is the family of all the weak partitions P of $N_{G}(v)$ defined as above.

An example

Slika: Graph G with the optimal weak partition
$A_{0}^{P}=\left\{u, z_{1}^{1}, y_{1}^{2}\right\}, A_{1}^{P}=\left\{x_{1}^{1}, x_{2}^{1}\right\}$, implying $\left|A_{0}^{P}\right|=3,|P|-1=1$, $\operatorname{elp}_{G}(v, P)=3$ and $d_{G}^{a}\left(y_{1}^{1}\right)=7$.

An upper bound

- This gives an analogy to the relation between degree $d_{G}(v)$ and $\chi_{b}(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_{b}(G)$ to be large.

An upper bound

- This gives an analogy to the relation between degree $d_{G}(v)$ and $\chi_{b}(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_{b}(G)$ to be large.
- We order the vertices $v_{1}, \ldots, v_{n_{G}}$ of G by non-increasing acyclic degree.

An upper bound

- This gives an analogy to the relation between degree $d_{G}(v)$ and $\chi_{b}(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_{b}(G)$ to be large.
- We order the vertices $v_{1}, \ldots, v_{n_{G}}$ of G by non-increasing acyclic degree.
- The value of $m_{a}(G)$ is then the maximum position i in this order such that $d_{G}^{a}\left(v_{i}\right) \geq i-1$,

An upper bound

- This gives an analogy to the relation between degree $d_{G}(v)$ and $\chi_{b}(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_{b}(G)$ to be large.
- We order the vertices $v_{1}, \ldots, v_{n_{G}}$ of G by non-increasing acyclic degree.
- The value of $m_{a}(G)$ is then the maximum position i in this order such that $d_{G}^{a}\left(v_{i}\right) \geq i-1$, that is

$$
m_{a}(G)=\max \left\{i: i-1 \leq d_{G}^{a}\left(v_{i}\right)\right\}
$$

An upper bound

- This gives an analogy to the relation between degree $d_{G}(v)$ and $\chi_{b}(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_{b}(G)$ to be large.
- We order the vertices $v_{1}, \ldots, v_{n_{G}}$ of G by non-increasing acyclic degree.
- The value of $m_{a}(G)$ is then the maximum position i in this order such that $d_{G}^{a}\left(v_{i}\right) \geq i-1$, that is

$$
m_{a}(G)=\max \left\{i: i-1 \leq d_{G}^{a}\left(v_{i}\right)\right\} .
$$

Theorem

For any graph G we have $A_{b}(G) \leq m_{a}(G)$.

An upper bound

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(A_{b}\left(G_{n}\right)-\Delta\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

An upper bound depending on maximum degree

Theorem
For any graph G with $\Delta(G) \geq 2$ we have $A_{b}(G) \leq \frac{1}{2}(\Delta(G))^{2}+1$.

An upper bound depending on maximum degree

Theorem

For any graph G with $\Delta(G) \geq 2$ we have $A_{b}(G) \leq \frac{1}{2}(\Delta(G))^{2}+1$.

Corollary
For any cubic graph G with we have $A_{b}(G) \leq 5$.

An upper bound depending on maximum degree

Theorem

For any graph G with $\Delta(G) \geq 2$ we have $A_{b}(G) \leq \frac{1}{2}(\Delta(G))^{2}+1$.

Corollary

For any cubic graph G with we have $A_{b}(G) \leq 5$.

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $A_{b}\left(G_{n}\right)=m_{a}\left(G_{n}\right)=\frac{1}{2}\left(\Delta\left(G_{n}\right)\right)^{2}+1$.

A construction

Slika: Graphs $H_{2, i}$ and $H_{3, i}$.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $A_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $A_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $A_{b}\left(W_{k}\right)=4$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $A_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $A_{b}\left(W_{k}\right)=4$;
- $A_{b}\left(F_{k}\right)=4$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $A_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $A_{b}\left(W_{k}\right)=4$;
- $A_{b}\left(F_{k}\right)=4$;
- $A_{b}\left(K_{n} \vee \bar{K}_{m}\right)=n+1$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
A_{b}(G \vee H)=\max \left\{A_{b}(G)+n_{H}, A_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $A_{b}(G \vee H)=A_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $A_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $A_{b}\left(W_{k}\right)=4$;
- $A_{b}\left(F_{k}\right)=4$;
- $A_{b}\left(K_{n} \vee \bar{K}_{m}\right)=n+1$;
- $A_{b}\left(P_{k} \vee P_{\ell}\right)=A_{b}\left(P_{k} \vee C_{\ell}\right)=A_{b}\left(C_{k} \vee C_{\ell}\right)=3+\max \{k, \ell\}$.

Relation between $\chi_{b}(G)$ and $A_{b}(G)$

Theorem

There exists a graph G where $A_{b}(G)$ is arbitrarily smaller that $\chi_{b}(G)$.

Slika: Graph G for which $5=A_{b}(G)<\chi_{b}(G)=6$.

Second example

Slika: Graph G for which $10=A_{b}(G)<\chi_{b}(G)=12$.

General result

General result

Theorem

For every cubic graph G we have $A(G) \leq 4$.

General result

Theorem

For every cubic graph G we have $A(G) \leq 4$.

Theorem

For every cubic graph G but prism $K_{2} \square K_{3}$ we have $A_{b}(G) \geq 4$. Moreover, $A_{b}\left(K_{2} \square K_{3}\right)=3$.

Other exceptions from Jakovac and Klavžar

Slika: Graphs prism $K_{2} \square K_{3}, K_{3,3}$ and G_{1} and their acyclic b-colorings.

Proof

Slika: Corrected b-colorings of Jakovac and Klavžar: first graph of the second line of Figure 14 and first, fourth and fifth graph from Figure 15; now acyclic.

How many cubic graphs with $A_{b}(G)=4$ exists?

H_{3}

How many cubic graphs with $A_{b}(G)=4$ exists?

H_{3}

- A tree T is called cubic if every inner vertex of T is of degree three.

How many cubic graphs with $A_{b}(G)=4$ exists?

H_{3}

- A tree T is called cubic if every inner vertex of T is of degree three.
- The smallest cubic tree is K_{2} that is without inner vertices and next is $K_{1,3}$ with one inner vertex.

How many cubic graphs with $A_{b}(G)=4$ exists?

H_{3}

- A tree T is called cubic if every inner vertex of T is of degree three.
- The smallest cubic tree is K_{2} that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph $C(T)$ as follows.

How many cubic graphs with $A_{b}(G)=4$ exists?

- A tree T is called cubic if every inner vertex of T is of degree three.
- The smallest cubic tree is K_{2} that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph $C(T)$ as follows.
- First we replace every inner vertex v with its neighbors x, y, z by a triangle $a b c$, where edges $a x, b y$ and $c z$ are added between triangle and $N_{T}(v)$.

How many cubic graphs with $A_{b}(G)=4$ exists?

H_{3}

- A tree T is called cubic if every inner vertex of T is of degree three.
- The smallest cubic tree is K_{2} that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph $C(T)$ as follows.
- First we replace every inner vertex v with its neighbors x, y, z by a triangle $a b c$, where edges $a x, b y$ and $c z$ are added between triangle and $N_{T}(v)$.
- Add a copy of H_{3} for every leaf ℓ and amalgamate ℓ with w from the copy of H_{3} for ℓ.

A construction

Slika: Construction of graph $C(T)$ from a cubic tree $T \cong K_{1,3}$.

A construction

Slika: Construction of graph $C(T)$ from a cubic tree $T \cong K_{1,3}$.

Theorem

If T is a cubic tree, then $A_{b}(C(T))=4$.

A construction

Slika: Construction of graph $C(T)$ from a cubic tree $T \cong K_{1,3}$.

Theorem

If T is a cubic tree, then $A_{b}(C(T))=4$.

Corollary

The number of cubic graphs G with $A_{b}(G)<m_{a}(G)=5$ is not finite.

Critical cycle system in cubic graph 1

Critical cycle system in cubic graph 2

Generalized Petersen graphs

- The generalized Petersen graphs $G(n, k)$, where $1 \leq k<n / 2$, are the graphs on $2 n$ vertices $\left\{x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\}$

Generalized Petersen graphs

- The generalized Petersen graphs $G(n, k)$, where $1 \leq k<n / 2$, are the graphs on $2 n$ vertices $\left\{x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\}$
- The edge set consists of the polygon $\left\{x_{i} x_{i+1}: 0 \leq i \leq n-1\right\}$, the star polygon $\left\{y_{i} y_{i+k}: 0 \leq i \leq n-1\right\}$ and the spokes $\left\{x_{i} y_{i}: 0 \leq i \leq n-1\right\}$, where the sums are taken modulo n.

Generalized Petersen graphs

- The generalized Petersen graphs $G(n, k)$, where $1 \leq k<n / 2$, are the graphs on $2 n$ vertices $\left\{x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\}$
- The edge set consists of the polygon $\left\{x_{i} x_{i+1}: 0 \leq i \leq n-1\right\}$, the star polygon $\left\{y_{i} y_{i+k}: 0 \leq i \leq n-1\right\}$ and the spokes $\left\{x_{i} y_{i}: 0 \leq i \leq n-1\right\}$, where the sums are taken modulo n.

Two results

Theorem

If $k \geq 3$ and $n \geq 5\left(2 k+(-1)^{k}\right)$, then $A_{b}(G(n, k))=5$.

Two results

Theorem

If $k \geq 3$ and $n \geq 5\left(2 k+(-1)^{k}\right)$, then $A_{b}(G(n, k))=5$.

Theorem

$A_{b}(G(3,0))=4$ and $A_{b}(G(n, 0))=4$ for $n \geq 4$.

Proof idea for even k

Proof idea for odd k

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.
- Between rims we add edges $v_{0}^{1} v_{0}^{2}, v_{2}^{1} v_{2}^{2}, v_{4}^{1} v_{4}^{2}, \ldots$ that are called spokes of type 0

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.
- Between rims we add edges $v_{0}^{1} v_{0}^{2}, v_{2}^{1} v_{2}^{2}, v_{4}^{1} v_{4}^{2}, \ldots$ that are called spokes of type 0
- and edges $v_{1}^{1} v_{j+1}^{2}, v_{3}^{1} v_{3+j}^{2}, v_{5}^{1} v_{5+j}^{2}, \ldots$ that are called spokes of type 1.

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.
- Between rims we add edges $v_{0}^{1} v_{0}^{2}, v_{2}^{1} v_{2}^{2}, v_{4}^{1} v_{4}^{2}, \ldots$ that are called spokes of type 0
- and edges $v_{1}^{1} v_{j+1}^{2}, v_{3}^{1} v_{3+j}^{2}, v_{5}^{1} v_{5+j}^{2}, \ldots$ that are called spokes of type 1.
- $(0, j)$-prism is a cubic graph and is isomorphic to an $(0,-j)$-prism.

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.
- Between rims we add edges $v_{0}^{1} v_{0}^{2}, v_{2}^{1} v_{2}^{2}, v_{4}^{1} v_{4}^{2}, \ldots$ that are called spokes of type 0
- and edges $v_{1}^{1} v_{j+1}^{2}, v_{3}^{1} v_{3+j}^{2}, v_{5}^{1} v_{5+j}^{2}, \ldots$ that are called spokes of type 1.
- $(0, j)$-prism is a cubic graph and is isomorphic to an $(0,-j)$-prism.
- Therefore we can assume that $0 \leq j \leq \frac{n}{2}$.

Acycling coloring of $(0, j)$-prism

- The $(0, j)$-prism of order $2 n$ for an even j is the graph with two vertex disjoint cycles $R_{n}^{i}=v_{0}^{i}, \ldots, v_{n-1}^{i}$ for $i \in\{1,2\}$ of length n called rims.
- Between rims we add edges $v_{0}^{1} v_{0}^{2}, v_{2}^{1} v_{2}^{2}, v_{4}^{1} v_{4}^{2}, \ldots$ that are called spokes of type 0
- and edges $v_{1}^{1} v_{j+1}^{2}, v_{3}^{1} v_{3+j}^{2}, v_{5}^{1} v_{5+j}^{2}, \ldots$ that are called spokes of type 1.
- $(0, j)$-prism is a cubic graph and is isomorphic to an $(0,-j)$-prism.
- Therefore we can assume that $0 \leq j \leq \frac{n}{2}$.

Theorem

If $j>0$ and $n \geq 5(j+2)$, then $A_{b}\left(\operatorname{Pr}_{n}(0, j)\right)=5$.

Proof idea

Honycomb lattice

Honycomb lattice

Theorem

Let G be a benzenoid graph. Assume there are five internal vertices v_{j}, $j \in[5]$ in G, such that for each $1 \leq i<j \leq 5$ we have $d\left(v_{i}, v_{j}\right) \geq 4$. If every spanning tree of the distance graph $D_{G}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right)$ contains at least one edge weighted with 5 , then $A_{b}(G)=5$.

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G :

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G :
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G :
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G :
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.
- The number of colors represents an upper bound for $A(G)$.

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G :
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.
- The number of colors represents an upper bound for $A(G)$.
- Acyclic Grundy chromatic number $\Gamma_{a}(G)$ of G is the maximum number of colors obtained by the mentioned procedure.

Corona of graphs

Proposition

For graphs G and H we have

$$
\Gamma_{a}(G \odot H)=\Gamma_{a}(G)+\Gamma_{a}(H)
$$

and

$$
\Gamma(G \odot H)=\Gamma(G)+\Gamma(H)
$$

Corona of graphs

Proposition

For graphs G and H we have

$$
\Gamma_{a}(G \odot H)=\Gamma_{a}(G)+\Gamma_{a}(H)
$$

and

$$
\Gamma(G \odot H)=\Gamma(G)+\Gamma(H)
$$

Theorem

For every natural number k there exists a graph G such that

$$
\Gamma_{a}(G)-\Gamma(G)=k
$$

000000000

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

000000000

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

Corollary

For every positive integers m, n we have

- $\Gamma_{a}\left(K_{1, n}\right)=\Gamma_{a}\left(K_{1} \vee \overline{K_{n}}\right)=2$,

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

Corollary

For every positive integers m, n we have

- $\Gamma_{a}\left(K_{1, n}\right)=\Gamma_{a}\left(K_{1} \vee \overline{K_{n}}\right)=2$,
- $\Gamma_{a}\left(K_{m, n}\right)=\Gamma_{a}\left(\overline{K_{m}} \vee \overline{K_{n}}\right)=\max \{m+1, n+1\}$,

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

Corollary

For every positive integers m, n we have

- $\Gamma_{a}\left(K_{1, n}\right)=\Gamma_{a}\left(K_{1} \vee \overline{K_{n}}\right)=2$,
- $\Gamma_{a}\left(K_{m, n}\right)=\Gamma_{a}\left(\overline{K_{m}} \vee \overline{K_{n}}\right)=\max \{m+1, n+1\}$,
- $\Gamma_{a}\left(W_{n+1}\right)=\Gamma_{a}\left(K_{1} \vee C_{n}\right)=4$,

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

Corollary

For every positive integers m, n we have

- $\Gamma_{a}\left(K_{1, n}\right)=\Gamma_{a}\left(K_{1} \vee \overline{K_{n}}\right)=2$,
- $\Gamma_{a}\left(K_{m, n}\right)=\Gamma_{a}\left(\overline{K_{m}} \vee \overline{K_{n}}\right)=\max \{m+1, n+1\}$,
- $\Gamma_{a}\left(W_{n+1}\right)=\Gamma_{a}\left(K_{1} \vee C_{n}\right)=4$,
- $\Gamma_{a}\left(F_{n+1}\right)=\Gamma_{a}\left(K_{1} \vee P_{n}\right)=4$,

Join of graphs

Theorem

For graphs G and H we have

$$
\Gamma_{a}(G \vee H)=\max \left\{\Gamma_{a}(G)+|V(H)|, \Gamma_{a}(H)+|V(G)|\right\} .
$$

Corollary

For every positive integers m, n we have

- $\Gamma_{a}\left(K_{1, n}\right)=\Gamma_{a}\left(K_{1} \vee \overline{K_{n}}\right)=2$,
- $\Gamma_{a}\left(K_{m, n}\right)=\Gamma_{a}\left(\overline{K_{m}} \vee \overline{K_{n}}\right)=\max \{m+1, n+1\}$,
- $\Gamma_{a}\left(W_{n+1}\right)=\Gamma_{a}\left(K_{1} \vee C_{n}\right)=4$,
- $\Gamma_{a}\left(F_{n+1}\right)=\Gamma_{a}\left(K_{1} \vee P_{n}\right)=4$,
- $\Gamma_{a}\left(K_{m} \vee \bar{K}_{n}\right)=m+1$.

Upper bound

Theorem

For every positive integer Δ there exists a graph G such that $\Delta=\Delta(G)$ and

$$
\Gamma_{a}(G) \leqslant \begin{cases}\frac{3 \Delta^{2}+13}{8} & \text { if } \Delta \text { is odd, } \\ \frac{3 \Delta^{2}+2 \Delta+8}{8} & \text { if } \Delta \text { is even. }\end{cases}
$$

Upper bound

Theorem

For every positive integer Δ there exists a graph G such that $\Delta=\Delta(G)$ and

$$
\Gamma_{a}(G) \leqslant \begin{cases}\frac{3 \Delta^{2}+13}{8} & \text { if } \Delta \text { is odd, } \\ \frac{3 \Delta^{2}+2 \Delta+8}{8} & \text { if } \Delta \text { is even. }\end{cases}
$$

Table

$\Delta(G)$	1	2	3	4	5	6	7	8	9	10	11	12	13
$\Gamma_{a}(G)$	2	3	5	8	11	16	20	27	32	41	47	58	65

Odd maximum degree

Even maximum degree

$\Gamma(G)$ can be bigger than $\Gamma_{a}(G)$

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that

$$
\left(\Gamma\left(G_{k}\right)-\Gamma_{a}\left(G_{k}\right)\right) \rightarrow \infty
$$

as $k \rightarrow \infty$.

$\Gamma(G)$ can be bigger than $\Gamma_{a}(G)$

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that

$$
\left(\Gamma\left(G_{k}\right)-\Gamma_{a}\left(G_{k}\right)\right) \rightarrow \infty
$$

as $k \rightarrow \infty$.

Slika: Graph G such that $\Gamma(G) \geq \Gamma_{a}(G)$.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.
- For $t=1$ is a 1-packing X an independent set.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.
- For $t=1$ is a 1-packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \rightarrow\{1, \ldots, k\}$, such that if $c(u)=c(v)=i$ for $u \neq v$, then $d_{G}(u, v)>i$.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.
- For $t=1$ is a 1 -packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \rightarrow\{1, \ldots, k\}$, such that if $c(u)=c(v)=i$ for $u \neq v$, then $d_{G}(u, v)>i$.
- So, an i-th color class of a packing coloring represents i-packing of G.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.
- For $t=1$ is a 1 -packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \rightarrow\{1, \ldots, k\}$, such that if $c(u)=c(v)=i$ for $u \neq v$, then $d_{G}(u, v)>i$.
- So, an i-th color class of a packing coloring represents i-packing of G.
- The packing chromatic number $\chi_{p}(G)$ is the minimum integer k for which there exists a packing k-coloring of G.

Packing chromatic number

- A set $X \subseteq V(G)$ is a t-packing if any two different vertices from X are at distance more than t.
- For $t=1$ is a 1 -packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \rightarrow\{1, \ldots, k\}$, such that if $c(u)=c(v)=i$ for $u \neq v$, then $d_{G}(u, v)>i$.
- So, an i-th color class of a packing coloring represents i-packing of G.
- The packing chromatic number $\chi_{p}(G)$ is the minimum integer k for which there exists a packing k-coloring of G.
- We adopt a greedy algorithm to produce a packing chromatic number of G.

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1 s for every vertex.

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.
- While every vertex is not colored

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.
- While every vertex is not colored
- pick an uncolored vertex v;

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.
- While every vertex is not colored
- pick an uncolored vertex v;
- find first non-zero entry i in array for v and set $c(v)=i$;

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.
- While every vertex is not colored
- pick an uncolored vertex v;
- find first non-zero entry i in array for v and set $c(v)=i$;
- make i distance levels of a BFS algorithm from v and for every uncolored vertex u set $u_{i}=0$.

Heuristic algorithm for packing coloring

Algorithm

- Input: Graph G and every vertex with $|V(G)|$ dimensional array with 1s for every vertex.
- Output: Packing coloring c of G.
- While every vertex is not colored
- pick an uncolored vertex v;
- find first non-zero entry i in array for v and set $c(v)=i$;
- make i distance levels of a BFS algorithm from v and for every uncolored vertex u set $u_{i}=0$.

Theorem

Algorithem computes a packing coloring of a given graph G in $\mathcal{O}\left(m n^{2}\right)$ time, where $n=|V(G)|$ and $m=|E(G)|$.

An example

$$
(1,1,1,1,0,1,1)
$$

An example

An example

$$
\text { (} 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
$$

An example

$$
(0,0,1,1,1,1)
$$

An example

($0,0,1,1,1,1$)

An example

$$
(0,0,1,1,1,1)
$$

ene

An example

$$
(0,0,1,1,1,1)
$$

Packing Grundy chromatic number

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_{p}(G)$ and presents a heuristic algorithm for $\chi_{p}(G)$.

Packing Grundy chromatic number

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_{p}(G)$ and presents a heuristic algorithm for $\chi_{p}(G)$.
- Therefore we call a coloring obtained by Algorithm a packing greedy coloring of G.

Packing Grundy chromatic number

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_{p}(G)$ and presents a heuristic algorithm for $\chi_{p}(G)$.
- Therefore we call a coloring obtained by Algorithm a packing greedy coloring of G.
- Clearly, $\chi_{p}(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.

Packing Grundy chromatic number

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_{p}(G)$ and presents a heuristic algorithm for $\chi_{p}(G)$.
- Therefore we call a coloring obtained by Algorithm a packing greedy coloring of G.
- Clearly, $\chi_{p}(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.
- The maximum possible number of colors obtained by Algorithm is called the packing Grundy chromatic number of G denoted by $\Gamma_{p}(G)$.

Packing Grundy chromatic number

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_{p}(G)$ and presents a heuristic algorithm for $\chi_{p}(G)$.
- Therefore we call a coloring obtained by Algorithm a packing greedy coloring of G.
- Clearly, $\chi_{p}(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.
- The maximum possible number of colors obtained by Algorithm is called the packing Grundy chromatic number of G denoted by $\Gamma_{p}(G)$.
- Alternative description of $\Gamma_{p}(G)$ is just the maximum number of colors in a packing coloring, such that every vertex of color $i \geq 2$ has a vertex of color j at distance at most j for every $j \in\{1, \ldots, i-1\}$.

Polynomial transformation

- For a graph G we denote by G^{ℓ} a graph with $V\left(G^{\ell}\right)=\left\{v^{\ell}: v \in V(G)\right\}$ and $E\left(G^{\ell}\right)=\left\{u^{\ell} v^{\ell}: d_{G}(u, v) \leq \ell\right\}$.

Polynomial transformation

- For a graph G we denote by G^{ℓ} a graph with $V\left(G^{\ell}\right)=\left\{v^{\ell}: v \in V(G)\right\}$ and $E\left(G^{\ell}\right)=\left\{u^{\ell} v^{\ell}: d_{G}(u, v) \leq \ell\right\}$.
- Clearly, $G^{1} \cong G$ and if $k \geq \operatorname{diam}(G)$, then $G^{k} \cong K_{n}$ for $n=|V(G)|$.

Polynomial transformation

- For a graph G we denote by G^{ℓ} a graph with $V\left(G^{\ell}\right)=\left\{v^{\ell}: v \in V(G)\right\}$ and $E\left(G^{\ell}\right)=\left\{u^{\ell} v^{\ell}: d_{G}(u, v) \leq \ell\right\}$.
- Clearly, $G^{1} \cong G$ and if $k \geq \operatorname{diam}(G)$, then $G^{k} \cong K_{n}$ for $n=|V(G)|$.
- For a positive integer k we define graph $G(k)$ by $V(G(k))=\cup_{i=1}^{k} V\left(G^{i}\right)$ and $E(G(k))=\left\{v^{j} v^{i}: 1 \leq i<j \leq k\right\} \cup\left(\cup_{i=1}^{k} E\left(G^{i}\right)\right)$.

Polynomial transformation

- For a graph G we denote by G^{ℓ} a graph with $V\left(G^{\ell}\right)=\left\{v^{\ell}: v \in V(G)\right\}$ and $E\left(G^{\ell}\right)=\left\{u^{\ell} v^{\ell}: d_{G}(u, v) \leq \ell\right\}$.
- Clearly, $G^{1} \cong G$ and if $k \geq \operatorname{diam}(G)$, then $G^{k} \cong K_{n}$ for $n=|V(G)|$.
- For a positive integer k we define graph $G(k)$ by $V(G(k))=\cup_{i=1}^{k} V\left(G^{i}\right)$ and $E(G(k))=\left\{v^{j} v^{i}: 1 \leq i<j \leq k\right\} \cup\left(\cup_{i=1}^{k} E\left(G^{i}\right)\right)$.
- v^{1}, \ldots, v^{k} induces a clique Q_{v} in $G(k)$ and that every independent set of $G(k)$ contains at most one of them.

An example

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in $G(k)$.

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in $G(k)$.

Lemma

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in $G(k)$ where $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$.

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in $G(k)$.

Lemma

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in $G(k)$ where $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$.

- Every independent set A of $G(k)$ of cardinality $n=|V(G)|$ is a maximal independent set of $G(k)$ because Q_{v} are cliques for every $v \in V(G)$.

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in $G(k)$.

Lemma

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in $G(k)$ where $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$.

- Every independent set A of $G(k)$ of cardinality $n=|V(G)|$ is a maximal independent set of $G(k)$ because Q_{v} are cliques for every $v \in V(G)$.
- However, the condition of last lemma is not always fulfilled.

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in $G(k)$.

Lemma

Let G be a graph on n vertices and $k \in\{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in $G(k)$ where $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$.

- Every independent set A of $G(k)$ of cardinality $n=|V(G)|$ is a maximal independent set of $G(k)$ because Q_{v} are cliques for every $v \in V(G)$.
- However, the condition of last lemma is not always fulfilled.
- Therefore we introduce a dense maximization procedure or DMP for short of an independent set A of $G(k)$ of cardinality n.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- We exchange z^{ℓ} with z^{i} in A and keep the notation A.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- We exchange z^{ℓ} with z^{i} in A and keep the notation A.
- We do this until A^{i} is maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- We exchange z^{ℓ} with z^{i} in A and keep the notation A.
- We do this until A^{i} is maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- Next we continue with first $t>i$ where A^{t} is not a maximal independent set of $G^{i}-\cup_{j=1}^{t-1} A^{j}$ if it exists.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- We exchange z^{ℓ} with z^{i} in A and keep the notation A.
- We do this until A^{i} is maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- Next we continue with first $t>i$ where A^{t} is not a maximal independent set of $G^{i}-\cup_{j=1}^{t-1} A^{j}$ if it exists.
- $D M P(A)$ is biggest ℓ where $A \cap V\left(G^{\ell}\right) \neq \emptyset$ after any run of DMP.

Dense maximization procedure

- If $A^{i}=A \cap G^{i}$ is a maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$ for every $i \in\{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in\{1, \ldots, k-1\}$ such that A_{i} is not maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- There exists $z^{\ell} \in A$ for some $\ell>i$ such that $A_{i} \cup\left\{z^{i}\right\}$ is independent in $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- We exchange z^{ℓ} with z^{i} in A and keep the notation A.
- We do this until A^{i} is maximal independent set of $G^{i}-\cup_{j=1}^{i-1} A^{j}$.
- Next we continue with first $t>i$ where A^{t} is not a maximal independent set of $G^{i}-\cup_{j=1}^{t-1} A^{j}$ if it exists.
- $D M P(A)$ is biggest ℓ where $A \cap V\left(G^{\ell}\right) \neq \emptyset$ after any run of DMP.

Theorem

Let G be a graph with $n=|V(G)|$. If \mathcal{I} is a set of all independent sets of $G(k)$ of cardinality n for any possible integer $k \leq n$, then

$$
\Gamma_{p}(G)=\max _{A \in \mathcal{I}}\{D M P(A)\}
$$

Computational complexity of $\Gamma_{p}(G)$

Corollary

If G is a graph, then $\Gamma_{p}(G) \leq n-i(G)+1$ wher $i(G)$ denotes the lower independence number.

Computational complexity of $\Gamma_{p}(G)$

Corollary

If G is a graph, then $\Gamma_{p}(G) \leq n-i(G)+1$ wher $i(G)$ denotes the lower independence number.

PGC problem

PACKING GRUNDY COLORING PROBLEM
INSTANCE: A graph G on n vertices and an integer $1 \leq k \leq n$. QUESTION: Is $\Gamma_{p}(G) \leq k$?

Computational complexity of $\Gamma_{p}(G)$

Corollary

If G is a graph, then $\Gamma_{p}(G) \leq n-i(G)+1$ wher $i(G)$ denotes the lower independence number.

PGC problem

PACKING GRUNDY COLORING PROBLEM

INSTANCE: A graph G on n vertices and an integer $1 \leq k \leq n$. QUESTION: Is $\Gamma_{p}(G) \leq k$?

Theorem

PGC problem is NP-complete even when G is restricted to bipartite graphs, to line graphs, to circle graphs, to unit disk graphs, or to planar cubic graphs.

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_{p}(G)=n$ if and only if $\Delta(G)=n-1$.

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_{p}(G)=n$ if and only if $\Delta(G)=n-1$.

Lemma

If $i(G)=2$, then $\operatorname{rad}(G) \in\{2,3\}$ and $\operatorname{diam}(G) \in\{2,3,4,5\}$.

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_{p}(G)=n$ if and only if $\Delta(G)=n-1$.

Lemma

If $i(G)=2$, then $\operatorname{rad}(G) \in\{2,3\}$ and $\operatorname{diam}(G) \in\{2,3,4,5\}$.

Theorem

A connected graph G on n vertices has $\Gamma_{p}(G)=n-1$ if and only if all the following statements hold
(i) $i(G)=2$.
(ii) $\operatorname{diam}(G) \leq 4$.
(iii) If $\operatorname{rad}(G)=3$, then there exist an $i(G)$-set $\{x, y\}$ with $d(x, y)=3$ and $w \in N(x)$ such that $d(w, z) \leq 2$ for every vertex $z \in N(y)$.
(iv) If $\operatorname{rad}(G)=2$ and $\operatorname{diam}(G)=4$, then there exists an $i(G)$-set that avoids one central vertex and one additional non-diametrical vertex.

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;
- $\Gamma_{p}\left(K_{s, 1}\right)=s+1$;

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;
- $\Gamma_{p}\left(K_{s, 1}\right)=s+1$;
- $\Gamma_{p}\left(W_{n}\right)=\Gamma_{p}\left(C_{n-1} \vee K_{1}\right)=n$;

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;
- $\Gamma_{p}\left(K_{s, 1}\right)=s+1$;
- $\Gamma_{p}\left(W_{n}\right)=\Gamma_{p}\left(C_{n-1} \vee K_{1}\right)=n$;
- $\Gamma_{p}\left(F_{n}\right)=\Gamma_{p}\left(P_{n-1} \vee K_{1}\right)=n$;

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;
- $\Gamma_{p}\left(K_{s, 1}\right)=s+1$;
- $\Gamma_{p}\left(W_{n}\right)=\Gamma_{p}\left(C_{n-1} \vee K_{1}\right)=n$;
- $\Gamma_{p}\left(F_{n}\right)=\Gamma_{p}\left(P_{n-1} \vee K_{1}\right)=n$;
- $\Gamma_{p}\left(K_{s} \vee \bar{K}_{n}\right)=s+n$;

Graphs with $\operatorname{diam}(G)=2$

Corollary

If G is a graph with $\operatorname{diam}(G)=2$, then $\Gamma_{p}(G)=n-i(G)+1$.

Corollary

If G and H are graphs, then
$\Gamma_{p}(G \vee H)=|V(G)|+|V(H)|-\min \{i(G), i(H)\}+1$. In particular, for $s, t \geq 1, p, r \geq 4$ and $n \geq 2$,

- $\Gamma_{p}\left(K_{s, t}\right)=s+t-\min \{s, t\}+1$;
- $\Gamma_{p}\left(K_{s, 1}\right)=s+1$;
- $\Gamma_{p}\left(W_{n}\right)=\Gamma_{p}\left(C_{n-1} \vee K_{1}\right)=n$;
- $\Gamma_{p}\left(F_{n}\right)=\Gamma_{p}\left(P_{n-1} \vee K_{1}\right)=n$;
- $\Gamma_{p}\left(K_{s} \vee \bar{K}_{n}\right)=s+n$;
- $\Gamma_{p}\left(P_{p} \vee P_{r}\right)=\Gamma_{p}\left(P_{p} \vee C_{r}\right)=\Gamma_{p}\left(C_{p} \vee C_{r}\right)=p+r-\min \left\{\left\lceil\frac{p}{3}\right\rceil,\left\lceil\frac{r}{3}\right\rceil\right\}$.

Graphs with $\operatorname{diam}(G)=2$

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If $\operatorname{diam}(G)=3$, then $\Gamma_{p}(G)=|V(G)|-m(G)+2$ where
$m(G)=\min _{A \in \mathcal{I}}\{|A|+|Q|: Q$ is a maximal clique of min. cardinality of $D(G)-A\}$.

Graphs with $\operatorname{diam}(G)=2$

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If $\operatorname{diam}(G)=3$, then $\Gamma_{p}(G)=|V(G)|-m(G)+2$ where $m(G)=\min _{A \in \mathcal{I}}\{|A|+|Q|: Q$ is a maximal clique of min. cardinality of $D(G)-A\}$.

Corollary

Let G be a graph with $\operatorname{diam}(G)=3$. If there exists an $i(G)$-set A with a singleton K_{1} in $D(G)-A$, then $\Gamma_{p}(G)=n-i(G)+1$.

Graphs with $\operatorname{diam}(G)=2$

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If $\operatorname{diam}(G)=3$, then $\Gamma_{p}(G)=|V(G)|-m(G)+2$ where $m(G)=\min _{A \in \mathcal{I}}\{|A|+|Q|: Q$ is a maximal clique of min. cardinality of $D(G)-A\}$.

Corollary

Let G be a graph with $\operatorname{diam}(G)=3$. If there exists an $i(G)$-set A with a singleton K_{1} in $D(G)-A$, then $\Gamma_{p}(G)=n-i(G)+1$.

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If $\operatorname{diam}(G)=3$, then $\chi_{p}(G)=|V(G)|-m^{\prime}(G)+2$ where

$$
m^{\prime}(G)=\max _{A \in \mathcal{I}}\{|A|+\omega(D(G)-A)\}
$$

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Questions

- What about other (infinite) grids?

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Questions

- What about other (infinite) grids?
- What is with trees?

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_{p}(G)=\chi_{p}(G)$ holds. In particular, does this equality holds for all well covered graphs?

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_{p}(G)=\chi_{p}(G)$ holds. In particular, does this equality holds for all well covered graphs?
- Describe all diameter three graphs for which $\Gamma_{p}(G)=|V(G)|-i(G)+1$ holds. In particular, does any diametrical graph fulfill the equality and are beside diametrical graphs any other exceptions to the equality?

Further work

Theorem

For an integer $k \geq 29$ we have $\Gamma_{p}\left(P_{k}\right)=7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_{p}(G)=\chi_{p}(G)$ holds. In particular, does this equality holds for all well covered graphs?
- Describe all diameter three graphs for which $\Gamma_{p}(G)=|V(G)|-i(G)+1$ holds. In particular, does any diametrical graph fulfill the equality and are beside diametrical graphs any other exceptions to the equality?
- Describe all diameter three graphs for which where vertices of color one do not form an $i(G)$-set for all $\Gamma_{p}(G)$-colorings.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.
- A star chromatic number $S(G)$ of a graph G is the minimum number of colors in a star coloring of G.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.
- A star chromatic number $S(G)$ of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.
- A star chromatic number $S(G)$ of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : c(v) \neq k \\
i_{v} & : \quad c(v)=k
\end{array}\right.
$$

is a star $(k-1)$-coloring.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.
- A star chromatic number $S(G)$ of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : \quad c(v) \neq k \\
i_{v} & : \quad c(v)=k
\end{array}\right.
$$

is a star $(k-1)$-coloring.

- We call this procedure a star reducing algorithm.

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G\left[V_{i} \cup V_{j}\right]$ does not contain a cycle nor an induced P_{4} for every $i, j \in[k]$.
- A star chromatic number $S(G)$ of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\left\{V_{1}, \ldots, V_{k}\right\}$.
- Recolor until, there exists a color class, say V_{k}, such that there exists a color $i_{v} \in\{1, \ldots, k-1\}$ for every vertex $v \in V_{k}$ such that coloring

$$
c^{\prime}(v)=\left\{\begin{array}{ccc}
c(v) & : \quad c(v) \neq k \\
i_{v} & : \quad c(v)=k
\end{array}\right.
$$

is a star $(k-1)$-coloring.

- We call this procedure a star reducing algorithm.

Relation Q_{s}

We say that coloring c^{\prime} is in relation Q_{s} with coloring c, that is $c^{\prime} Q_{s} c$.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph G).

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_{s}}$ has some minimal elements.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph $G)$.
- There are finite many different star colorings of G.
- Therefore $\overline{Q_{s}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_{s}}$ is the star b-chromatic number of a graph G denoted by $S_{b}(G)$.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_{s}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_{s}}$ is the star b-chromatic number of a graph G denoted by $S_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of $\overline{Q_{s}}$ is $S(G)$.

Star b-chromatic number

- Let $\overline{Q_{s}}$ be a transitive closure of relation Q_{s}.
- Relation $\overline{Q_{s}}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_{s}}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_{s}}$ is the star b-chromatic number of a graph G denoted by $S_{b}(G)$.
- Notice that the minimum number of colors used in a minimal element of $\overline{Q_{s}}$ is $S(G)$.
- Hence $S_{b}(G)$ is a kind of a dual of $S(G)$.

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

definition

Color $\ell \neq c(v)$ is blocked for vertex $v \in V(G)$ if
(1) $\ell \in C N_{c}(v)$ or
(2) $\exists j \in C N_{c}(v): G\left[V_{j, \ell} \cup\{v\}\right]$ contains a path on 4 vertices.

Star b-vertex

b-vertex

- A b-vertex in a color class V_{i} shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $C N_{c}[v]$ and $C N_{c}(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

definition

Color $\ell \neq c(v)$ is blocked for vertex $v \in V(G)$ if
(1) $\ell \in C N_{c}(v)$ or
(2) $\exists j \in C N_{c}(v): G\left[V_{j, \ell} \cup\{v\}\right]$ contains a path on 4 vertices.

star b-vertex

A vertex $v \in V(G)$ is a star b-vertex if every color $\ell \in[k]$ is blocked.

Characterization

Theorem

A star k-coloring c is a minimal element of \prec_{s} if and only if every color class $V_{i}, i \in[k]$, contains a b-star vertex.

Characterization

Theorem

A star k-coloring c is a minimal element of \prec_{s} if and only if every color class $V_{i}, i \in[k]$, contains a b-star vertex.

Corollary

The star b-chromatic number $S_{b}(G)$ of a graph G is the largest integer k, such that there exists a star b-coloring with k colors, where every color class $V_{i}, i \in[k]$, contains a b-star vertex.

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where
- A_{0} contains all neighbors of v that do not have neighbors in $N_{2}(v)$,

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where
- A_{0} contains all neighbors of v that do not have neighbors in $N_{2}(v)$,
- A_{1} contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_{3}(v)$,

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where
- A_{0} contains all neighbors of v that do not have neighbors in $N_{2}(v)$,
- A_{1} contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_{3}(v)$,
- $A_{2}=N(v)-\left(A_{0} \cup A_{1}\right)$.

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where
- A_{0} contains all neighbors of v that do not have neighbors in $N_{2}(v)$,
- A_{1} contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_{3}(v)$,
- $A_{2}=N(v)-\left(A_{0} \cup A_{1}\right)$.
- The star degree of v is

$$
d_{G}^{s}(v)=\left|A_{0}\right|+\left\lfloor\frac{\left|A_{1}\right|}{2}\right\rfloor+\left|N\left(A_{1}\right)\right|+\left|A_{2}\right|+\left|N\left(A_{2}\right)\right|
$$

Star degree

b-vertex

- $N_{2}(v)=\{u \in V(G): d(v, u)=2\}$ and $N_{3}(v)=\{u \in V(G): d(v, u)=3\}$.
- Consider a weak partition of $N_{G}(v)$ into A_{0}, A_{1}, A_{3} where
- A_{0} contains all neighbors of v that do not have neighbors in $N_{2}(v)$,
- A_{1} contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_{3}(v)$,
- $A_{2}=N(v)-\left(A_{0} \cup A_{1}\right)$.
- The star degree of v is

$$
d_{G}^{s}(v)=\left|A_{0}\right|+\left\lfloor\frac{\left|A_{1}\right|}{2}\right\rfloor+\left|N\left(A_{1}\right)\right|+\left|A_{2}\right|+\left|N\left(A_{2}\right)\right|
$$

Theorem

Maximum $d_{G}^{s}(v)$ of colors can be blocked for $v \in V(G)$.

An example

An upper bound

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.

An upper bound

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_{1}, \ldots, v_{n} of G be ordered by its non-increasing star degree.

An upper bound

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_{1}, \ldots, v_{n} of G be ordered by its non-increasing star degree.
- We define an m_{s}-degree of a graph G denoted by $m_{s}(G)$ as

$$
m_{s}(G)=\max \left\{i: i-1 \leq d_{G}^{s}\left(v_{i}\right)\right\} .
$$

An upper bound

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_{1}, \ldots, v_{n} of G be ordered by its non-increasing star degree.
- We define an m_{s}-degree of a graph G denoted by $m_{s}(G)$ as

$$
m_{s}(G)=\max \left\{i: i-1 \leq d_{G}^{s}\left(v_{i}\right)\right\} .
$$

Theorem

For any graph G we have $S_{b}(G) \leq m_{s}(G)$.

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_{b}(G) \leq(\Delta(G))^{2}+1$.

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_{b}(G) \leq(\Delta(G))^{2}+1$.

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $S_{b}\left(G_{n}\right)=m_{s}\left(G_{n}\right)=\Delta\left(G_{n}\right)^{2}+1$.

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_{b}(G) \leq(\Delta(G))^{2}+1$.

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $S_{b}\left(G_{n}\right)=m_{s}\left(G_{n}\right)=\Delta\left(G_{n}\right)^{2}+1$.

Slika: Graph G_{3} and its 10-star b-coloring.

Paths and cycles

Proposition

Let P_{n} be a path on n vertices. Then

$$
S_{b}\left(P_{n}\right)= \begin{cases}1 & ; n=1 \\ 2 & ; 2 \leq n \leq 3 \\ 3 & ; 4 \leq n \leq 7 \\ 4 & ; 8 \leq n \leq 22 \\ 5 & ; n \geq 23\end{cases}
$$

Paths and cycles

Proposition

Let P_{n} be a path on n vertices. Then

$$
S_{b}\left(P_{n}\right)= \begin{cases}1 & ; n=1 \\ 2 & ; 2 \leq n \leq 3 \\ 3 & ; 4 \leq n \leq 7 \\ 4 & ; 8 \leq n \leq 22 \\ 5 & ; n \geq 23\end{cases}
$$

Proposition

Let C_{n} be a cycle on $n \geq 3$ vertices. Then

$$
S_{b}\left(C_{n}\right)= \begin{cases}3 & ; n \leq 9 \\ 4 & ; 10 \leq n \leq 19 \\ 5 & ; n \geq 20\end{cases}
$$

Relation between $m_{s}(G)$ and $S_{b}(G)$

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(m_{s}\left(G_{n}\right)-S_{b}\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Relation between $m_{s}(G)$ and $S_{b}(G)$

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(m_{s}\left(G_{n}\right)-S_{b}\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Slika: The infinite family of graphs G_{n}.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\} .
$$

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $S_{b}(G \vee H)=S_{b}(G)+q$.

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $S_{b}(G \vee H)=S_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $S_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\} .
$$

If $H \cong K_{q}$, then $S_{b}(G \vee H)=S_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $S_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $S_{b}\left(W_{k}\right)=S_{b}\left(C_{k-1}\right)+1$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\}
$$

If $H \cong K_{q}$, then $S_{b}(G \vee H)=S_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $S_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $S_{b}\left(W_{k}\right)=S_{b}\left(C_{k-1}\right)+1$;
- $S_{b}\left(F_{k}\right)=S_{b}\left(P_{k-1}\right)+1$;

Join

- Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between $V(G)$ and $V(H)$.

Theorem

For two non-complete graphs G and H we have

$$
S_{b}(G \vee H)=\max \left\{S_{b}(G)+n_{H}, S_{b}(H)+n_{G}\right\}
$$

If $H \cong K_{q}$, then $S_{b}(G \vee H)=S_{b}(G)+q$.

Corollary

For every positive integers k, ℓ, m, n, where $k, \ell \geq 5$, we have

- $S_{b}\left(K_{n, m}\right)=1+\max \{n, m\}$;
- $S_{b}\left(W_{k}\right)=S_{b}\left(C_{k-1}\right)+1$;
- $S_{b}\left(F_{k}\right)=S_{b}\left(P_{k-1}\right)+1$;
- $S_{b}\left(K_{n} \vee \bar{K}_{m}\right)=n+1$.

Two more relations

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(S_{b}\left(G_{n}\right)-S\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Two more relations

Theorem

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(S_{b}\left(G_{n}\right)-S\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Corollary

There exists an infinite family of graphs G_{1}, G_{2}, \ldots such that $\left(S_{b}\left(G_{n}\right)-\chi_{b}\left(G_{n}\right)\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Relation between $\chi_{b}(G)$ and $A_{b}(G)$

Theorem

There exists a graph G where $S_{b}(G)$ is arbitrarily smaller that $\chi_{b}(G)$.

Slika: Graph G for which $5=A_{b}(G)<\chi_{b}(G)=6$.

Second example

Slika: Graph G for which $10=S_{b}(G)<\chi_{b}(G)=12$.

End

THANK YOU FOR YOUR ATTENTION!

