Introduction 000000000

Packing coloring

TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF GRAPH

Iztok Peterin

FEECS, University of Maribor and IMFM Ljubljana

CALDAM 2024, February 2024 Joint work with M. Anholcer, D. Božović, S. Cichacz, D. Gözüpek, B. Pawlik and D. Mesarič Štesl

Introduction	Acyclic coloring	Packing coloring	Star coloring
•00000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000
Literatu	re		

- M. Anholcer, S. Cichacz, I. Peterin, On b-acyclic chromatic number of a graph, Comput. Appl. Math. 42 (2023) #21 (20p).
- M. Anholcer, S. Cichacz, I. Peterin, On acyclic b-chromatic number of cubic graphs, in preparation.
- D. Božović, I. Peterin, D. Mesarič Štesl, On star b-chromatic number of a graph, in preparation.
- D. Gözüpek, I. Peterin, Grundy packing chromatic number of a graph, in preparation.
- B. Pawlik, I. Peterin, On Grundy acyclic chromatic number of a graph, in preparation.

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000

Definition

• Let G be a graph. A map $c: V(G) \to \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.

Definition

- Let G be a graph. A map $c: V(G) \rightarrow \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
- For every $i \in \{1, ..., k\}$ is the set $V_i = \{v \in V(G) : c(v) = i\}$ the *i*th color class of vertex k-coloring c.

Definition

- Let G be a graph. A map $c: V(G) \to \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
- For every $i \in \{1, ..., k\}$ is the set $V_i = \{v \in V(G) : c(v) = i\}$ the *i*th color class of vertex k-coloring c.
- Clearly is {V₁,...,V_k} a partition of V(G) into independent sets of vertices.

Definition

- Let G be a graph. A map $c: V(G) \to \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
- For every $i \in \{1, ..., k\}$ is the set $V_i = \{v \in V(G) : c(v) = i\}$ the *i*th color class of vertex k-coloring c.
- Clearly is {V₁,...,V_k} a partition of V(G) into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.

Definition

- Let G be a graph. A map $c: V(G) \to \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
- For every $i \in \{1, ..., k\}$ is the set $V_i = \{v \in V(G) : c(v) = i\}$ the *i*th color class of vertex k-coloring c.
- Clearly is $\{V_1, \ldots, V_k\}$ a partition of V(G) into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.
- A vertex v ∈ V_i is called a b-vertex (of color i) if there are all colors in N_G[v].

法国际 化菌素

Definition

- Let G be a graph. A map $c: V(G) \to \{1, \ldots, k\}$ is called a (proper) vertex k-coloring of G if $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
- For every $i \in \{1, ..., k\}$ is the set $V_i = \{v \in V(G) : c(v) = i\}$ the *i*th color class of vertex k-coloring c.
- Clearly is {V₁,...,V_k} a partition of V(G) into independent sets of vertices.
- The chromatic number $\chi(G)$ of a graph G is the minimum integer k such that there exists a vertex k-coloring.
- A vertex v ∈ V_i is called a b-vertex (of color i) if there are all colors in N_G[v].

Fact

Well known lower bound is $\chi(G) \geq \omega(G),$ where $\omega(G)$ is the clique number of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000	000000000000000000000000000000000000000	0000000000000	0000000000000000
1.1	1		

Heuristic approach

• It is difficult to compute $\chi(G)$.

★ ∃ ► < ∃ ►</p>

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		0000000000000000
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.

Introduction	Acyclic coloring	Packing coloring	Star coloring	
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000	
Heuristi	Heuristic approach			

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000			
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.
- The Grundy number $\Gamma(G)$ of a graph G represents the worst case scenario for the greedy algorithm

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000			
Heuristi	c approach		

- It is difficult to compute $\chi(G)$.
- We are often satisfied with some approximate results.
- For this we need a polynomial algorithm that produces a coloring of a graph.
- We will briefly recall two of them: greedy approach and reduction of colors by recoloring algorithm.
- Every obtained coloring gives an upper bound for $\chi(G)$.
- We often analyze the worst case scenario to get some information about the quality of approximate or heuristic algorithm.
- The Grundy number $\Gamma(G)$ of a graph G represents the worst case scenario for the greedy algorithm
- and the b-chromatic number $\chi_b(G)$ of G in the case of recoloring algorithm.

周 ト イ ヨ ト イ ヨ ト

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000			
Greedy	algorithm		

• Order vertices of G in an arbitrary order.

▶ < ∃ >

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Greedy	algorithm		

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.

Introduction 000000000	Acyclic coloring 000000000000000000000000000000000000	Packing coloring 00000000000000	Star coloring 000000000000000000000000000000000000
Greedy algorithm			

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
0000000000	000000000000000000000000000000000000000	000000000000000	000000000000000000000000000000000000000
Greedy	algorithm		
cieccy			

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.
- The maximum number of colors obtained by this algorithm is called the Grundy number $\Gamma(G)$ of G.

Introduction		Packing coloring	
000000000	000000000000000000000000000000000000000	0000000000000	0000000000000000
Greedy	algorithm		

- Order vertices of G in an arbitrary order.
- In the mention order color vertices in such a way, that v receives the minimum color not present in its neighborhood until that moment.
- Clearly, this yields a proper coloring of G.
- The maximum number of colors obtained by this algorithm is called the Grundy number $\Gamma(G)$ of G.
- One can find about 100 papers on this topic.

Introduction 000000000

An example on trees

< ロ > < 同 > < 三 > < 三 >

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000000

• Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.

Introduction	Acyclic coloring	Packing coloring	
000000000	000000000000000000000000000000000000000	0000000000000	00000

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_k by possible exchange of colors, such that V_k is without a b-vertex.

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_k by possible exchange of colors, such that V_k is without a b-vertex.
- For every vertex v of color k there exists a color $i_v \in \{1, \dots, k-1\}$ such that

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a (k-1)-coloring.

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_k by possible exchange of colors, such that V_k is without a b-vertex.
- For every vertex v of color k there exists a color $i_v \in \{1, \dots, k-1\}$ such that

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a (k-1)-coloring.

• Repeat this procedure until every color class has a b-vertex.

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_k by possible exchange of colors, such that V_k is without a b-vertex.
- For every vertex v of color k there exists a color $i_v \in \{1, \dots, k-1\}$ such that

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a (k-1)-coloring.

- Repeat this procedure until every color class has a b-vertex.
- We call this procedure a reducing algorithm.

- Let c be any k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- If every color class has a b-vertex, then stop.
- Otherwise there exists a color class, say V_k by possible exchange of colors, such that V_k is without a b-vertex.
- For every vertex v of color k there exists a color $i_v \in \{1, \dots, k-1\}$ such that

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a (k-1)-coloring.

- Repeat this procedure until every color class has a b-vertex.
- We call this procedure a reducing algorithm.

Relation Q

We say that coloring c' is in relation Q with coloring c, that is c'Qc.

Packing coloring

Original definition by Irving and Manlove (1999)

• Let \overline{Q} be a transitive closure of relation Q.

Packing coloring

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).

Packing coloring

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.

Packing coloring 0000000000000

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \overline{Q} has some minimal elements.

Packing coloring

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of ${\cal G}.$
- Therefore \overline{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \overline{Q} is the **b-chromatic number** of a graph G denoted by $\chi_b(G)$.

Packing coloring

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \overline{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering Q
 is the b-chromatic number of a graph G denoted by χ_b(G).
- Notice that the minimum number of colors used in a minimal element of ordering \overline{Q} is $\chi(G)$.

Packing coloring

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \overline{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \overline{Q} is the **b-chromatic number** of a graph G denoted by $\chi_b(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \overline{Q} is $\chi(G)$.
- Hence $\chi_b(G)$ is a kind of a dual of $\chi(G)$.
Packing coloring

Original definition by Irving and Manlove (1999)

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of G.
- Therefore \overline{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \overline{Q} is the **b-chromatic number** of a graph G denoted by $\chi_b(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \overline{Q} is $\chi(G)$.
- Hence $\chi_b(G)$ is a kind of a dual of $\chi(G)$.
- b-chromatic number could alternatively be called the upper chromatic number, similar as domination and upper domination number.

Packing coloring

Original definition by Irving and Manlove (1999)

- Let \overline{Q} be a transitive closure of relation Q.
- Relation \overline{Q} is strict partial ordering (of all colorings of graph G).
- There are finite many different colorings of ${\cal G}.$
- Therefore \overline{Q} has some minimal elements.
- The maximum number of colors used in a minimal element of ordering \overline{Q} is the **b-chromatic number** of a graph G denoted by $\chi_b(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering \overline{Q} is $\chi(G)$.
- Hence $\chi_b(G)$ is a kind of a dual of $\chi(G)$.
- b-chromatic number could alternatively be called the upper chromatic number, similar as domination and upper domination number.

Theorem

The **b-chromatic number** of a graph G, denoted $\chi_b(G)$, is the largest integer k such that G admits a proper k-coloring in which every color class contains at least one b-vertex.

Introduction	Acyclic coloring	Packing coloring	Star coloring
0000000●0	000000000000000000000000000000000000		000000000000000000000000000000000000
Trivial b	oounds		

• Every b-vertex must have big enough degree, at least $\chi_b(G) - 1$.

A B M A B M

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	00000000000000	0000000000000000
Trivial I	bounds		

- Every b-vertex must have big enough degree, at least $\chi_b(G) 1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

∃ ► < ∃ ►</p>

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Trivial	aounde		

- Trivial bounds
 - Every b-vertex must have big enough degree, at least $\chi_b(G) 1$.
 - Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered v_1, v_2, \ldots, v_n so that $d(v_1) \ge d(v_2) \ge \ldots \ge d(v_n)$. Then the *m*-degree, m(G), of G is defined by

 $m(G) = \max\left\{i : d(v_i) \ge i - 1\right\}$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Trivial	aunda		

- Every b-vertex must have big enough degree, at least $\chi_b(G) 1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered v_1, v_2, \ldots, v_n so that $d(v_1) \ge d(v_2) \ge \ldots \ge d(v_n)$. Then the *m*-degree, m(G), of G is defined by

 $m(G) = \max\{i : d(v_i) \ge i - 1\}$

If G is an r-regular graph, then m(G) = r + 1:

000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
This is the	a consider		

- Every b-vertex must have big enough degree, at least $\chi_b(G) 1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

VIdI

Dounus

For a graph G, suppose that the vertices of G are ordered v_1, v_2, \ldots, v_n so that $d(v_1) \ge d(v_2) \ge \ldots \ge d(v_n)$. Then the *m*-degree, m(G), of G is defined by

$$m(G) = \max\{i : d(v_i) \ge i - 1\}$$

If G is an r-regular graph, then m(G) = r + 1: $1 \quad 2 \quad 3 \quad \cdots \quad n$ degree $r \quad r \quad r \quad \cdots \quad r$

000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
This is the	a consider		

Irivial bounds

- Every b-vertex must have big enough degree, at least $\chi_b(G) 1$.
- Therefore, one can expect an upper bound in connection with degrees of vertices.

Definition

For a graph G, suppose that the vertices of G are ordered $v_1, v_2, ..., v_n$ so that $d(v_1) \ge d(v_2) \ge ... \ge d(v_n)$. Then the *m*-degree, m(G), of G is defined by

$$m(G) = \max\{i : d(v_i) \ge i - 1\}$$

If G is an r-regular graph, then m(G) = r + 1: 1 2 3 \cdots n degree r r r \cdots r

Trivial bounds

 $\chi(G) \le \chi_b(G) \le m(G).$

Packing coloring

How to proceed by special colorings

• A coloring is **special** if it fulfills an additional condition(s).

< 3 > 4 3 >

Introduction	Acyclic coloring	Packing coloring	Star coloring
00000000	000000000000000000000000000000000000000	0000000000000	00000000

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?

Introduction	Acyclic coloring	Packing coloring	
00000000	000000000000000000000000000000000000000	0000000000000	000

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.

Introduction	Acyclic coloring	Packing coloring	
00000000			

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.

Introduction	Acyclic coloring	Packing coloring	
00000000			

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.

Introduction	Acyclic coloring	Packing coloring	
00000000			00

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:

Introduction	Acyclic coloring	Packing coloring	
00000000			

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
 - acyclic coloring (both approaches),

Introduction	Acyclic coloring	Packing coloring	
00000000			

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
 - acyclic coloring (both approaches),
 - star coloring (reducing algorithm approach)

Star coloring

- A coloring is **special** if it fulfills an additional condition(s).
- Can one transforms the greedy algorithm or the reducing algorithm to work on a special coloring?
- Meaningful demand is that one can check the extra condition(s) in polynomial time.
- If this is possible, then we obtain a heuristic approach to a special coloring.
- Again it is desirable to study the worst possible scenario.
- We present some recent results for:
 - acyclic coloring (both approaches),
 - star coloring (reducing algorithm approach) and
 - packing coloring (greedy approach).

Introduction	Acyclic coloring	Pac
	•000000000000000000000000000000000000	

Packing coloring

Algorithmic approach to reduce colors

• A coloring is acyclic if any two color classes induce a forest,

Introduction	Acyclic coloring	Packi
	•0000000000000000000000000000000000000	000

Packing coloring

Algorithmic approach to reduce colors

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.

Introduction	Acyclic coloring	Packing coloring	
000000000	•0000000000000000000000000000000000000	0000000000000	000000

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.
- An acyclic chromatic number A(G) of a graph G is the minimum number of colors in an acyclic coloring of G.

Introduction	Acyclic coloring	Packing coloring	Star colori
000000000	•••••••••••••••••••••••••••••••••••••••	0000000000000	000000

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.
- An acyclic chromatic number A(G) of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any **acyclic** k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.

Introduction	Acyclic coloring	Packing coloring	
000000000	●0000000000000000000000000000000000000	0000000000000	00000

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.
- An acyclic chromatic number A(G) of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any **acyclic** k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is an acyclic (k-1)-coloring.

Introduction	Acyclic coloring	Packing coloring	
000000000	●0000000000000000000000000000000000000	0000000000000	00000

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.
- An acyclic chromatic number A(G) of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any **acyclic** k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : \quad c(v) \neq k \\ i_v & : \quad c(v) = k \end{cases}$$

is an acyclic (k-1)-coloring.

• We call this procedure a acyclic reducing algorithm.

Introduction	Acyclic coloring	Packing coloring	
000000000	●0000000000000000000000000000000000000	0000000000000	0000

- A coloring is acyclic if any two color classes induce a forest,
- that is $G[V_i \cup V_j]$ is without cycles for every $i, j \in [k]$.
- An acyclic chromatic number A(G) of a graph G is the minimum number of colors in an acyclic coloring of G.
- Let c be any **acyclic** k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is an acyclic (k-1)-coloring.

• We call this procedure a acyclic reducing algorithm.

Relation Q_a

We say that coloring c' is in relation Q_a with coloring c, that is $c'Q_ac$.

Introduction 000000000	Acyclic coloring 000000000000000000000000000000000000	Packing coloring	Star coloring 000000000000000000000000000000000000
Acyclic	b-chromatic number		

• Let $\overline{Q_a}$ be a transitive closure of relation Q_a .

B 5

Introduction 000000000	Acyclic coloring ⊙●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Packing coloring	Star coloring 000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_a}$ has some minimal elements.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_a}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_a}$ is the acyclic b-chromatic number of a graph G denoted by $A_b(G)$.

Introduction	Acyclic coloring	Packing coloring 0000000000000	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_a}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_a}$ is the acyclic b-chromatic number of a graph G denoted by $A_b(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering $\overline{Q_a}$ is A(G).

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Acyclic	b-chromatic number		

- Let $\overline{Q_a}$ be a transitive closure of relation Q_a .
- Relation $\overline{Q_a}$ is strict partial ordering (of all acyclic colorings of G).
- There are finite many different acyclic colorings of G.
- Therefore $\overline{Q_a}$ has some minimal elements.
- The maximum number of colors used in a minimal element of ordering $\overline{Q_a}$ is the acyclic b-chromatic number of a graph G denoted by $A_b(G)$.
- Notice that the minimum number of colors used in a minimal element of ordering $\overline{Q_a}$ is A(G).
- Hence $A_b(G)$ is a kind of a dual of A(G).

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	00000000000000	000000000000000000
Acyclic	h-vertex		

b-vertex

• A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
A 11			

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?

Introduction		Acyclic coloring	Packing coloring	
00000000	0	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	00000000000000000	000000000000000000000000000000000000000

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i$, $i \in [k]$, is a weak acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_\ell \cup V_j \cup \{v\}] \text{ contains a cycle })$ (1)
	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000000	000000000000000000000000000000000000000

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i$, $i \in [k]$, is a weak acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_\ell \cup V_j \cup \{v\}] \text{ contains a cycle })$ (1)

• A b-vertex v is also a weak acyclic b-vertex, since $[k] - CN_c[v] = \emptyset$.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	00000000000000	0000000000000000

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for acyclic b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i$, $i \in [k]$, is a weak acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_\ell \cup V_j \cup \{v\}] \text{ contains a cycle })$ (1)

- A b-vertex v is also a weak acyclic b-vertex, since $[k] CN_c[v] = \emptyset$.
- There are weak acyclic b-vertices that are not b-vertices:

Introduction 000000000 Acyclic coloring

Packing coloring

Example

Slika: Graph G_2 with $\Delta(G_2) = 5 < 8 = A_b(G_2)$.

Introduction 00000000

Acyclic coloring

Packing coloring

Weak acyclic b-vertices are not enough!

Iztok Peterin TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

くぼう くほう くほう

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000

• Observe the following simple example:

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000
	and the second		

• Observe the following simple example:

• Color 3 (and symmetric also color 2) has no weak acyclic b-vertex.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

• Observe the following simple example:

- Color 3 (and symmetric also color 2) has no weak acyclic b-vertex.
- Vertices of V_3 cannot be acyclic recolored!

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000

• Observe the following simple example:

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000

• Observe the following simple example:

• Color 3 has no weak acyclic b-vertex.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000

• Observe the following simple example:

- Color 3 has no weak acyclic b-vertex.
- All vertices from V_3 can be acyclic recolored if the left lower vertex is colored with 2.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

• Observe the following simple example:

- Color 3 has no weak acyclic b-vertex.
- All vertices from V_3 can be acyclic recolored if the left lower vertex is colored with 2.
- All vertices from V_3 cannot be acyclic recolored if the left lower vertex is colored with 4.

Introduction

Acyclic coloring

Packing coloring

Problematic cycles for color i

Properties of problematic cycles are:

• There are at least two vertices of color *i* on cycle *C*.

Iztok Peterin TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

Introduction	Acyclic
	0000

 Packing coloring

Problematic cycles for color i

- There are at least two vertices of color *i* on cycle *C*.
- Every second vertex on C has the same color $j \neq i.$

Acyclic coloring
000000000000000000000000000000000000000

Packing coloring

Problematic cycles for color i

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6.

Problematic cycles for color i

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6.
- Hence, C is of even length.

Problematic cycles for color i

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6.
- Hence, C is of even length.
- Cycle C is colored with exactly three colors say k, beside i and j.

Problematic cycles for color i

- There are at least two vertices of color i on cycle C.
- Every second vertex on C has the same color $j \neq i$.
- Hence, C must be of length at least 6.
- Hence, C is of even length.
- Cycle C is colored with exactly three colors say k, beside i and j.
- Every vertex of color *i* can be recolored only with color *k* for the coloring to remain acyclic.

Introduction 000000000 Acyclic coloring

Packing coloring

Critical cycle systems

Slika: Cycles C and C' form a critical cycle system CCS(1).

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i, i \in [k]$, is an acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_{j,\ell} \cup \{v\}] \text{ contains a cycle } \lor$

there exists a $CCS(\ell)$ of G that contains v and is not recolorable).

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i, i \in [k]$, is an acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_{j,\ell} \cup \{v\}] \text{ contains a cycle } \lor$

there exists a $CCS(\ell)$ of G that contains v and is not recolorable).

Theorem

An acyclic k-coloring c is a minimal element of \prec_a if and only if every color class V_i , $i \in [k]$, contains an acyclic b-vertex.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000	000000000000000000000000000000000000000

Definition

Let G be a graph with an acyclic coloring $c: V(G) \rightarrow [k]$. A vertex $v \in V_i, i \in [k]$, is an acyclic b-vertex if it satisfies

 $\forall \ell \in [k] - CN_c[v], \exists j \in CN_c(v) : (G[V_{j,\ell} \cup \{v\}] \text{ contains a cycle } \lor$

there exists a $CCS(\ell)$ of G that contains v and is not recolorable).

Theorem

An acyclic k-coloring c is a minimal element of \prec_a if and only if every color class V_i , $i \in [k]$, contains an acyclic b-vertex.

Corollary

The acyclic b-chromatic number $A_b(G)$ of a graph G is the largest integer k, such that there exists an acyclic k-coloring, where every color class V_i , $i \in [k]$, contains an acyclic b-vertex.

Some additional results

Corollary

For every positive integers n, k, ℓ , where $k \geq 3$ and $\ell \geq 5$, we have

- $A_b(\overline{K}_n) = 1.$
- $A_b(P_\ell) = 3.$
- $A_b(C_k) = 3.$

Some additional results

Corollary

For every positive integers n, k, ℓ , where $k \geq 3$ and $\ell \geq 5$, we have

- $A_b(\overline{K}_n) = 1.$
- $A_b(P_\ell) = 3.$
- $A_b(C_k) = 3.$

Corollary

Let T be a tree. If T is a pivoted tree, then $A_b(T) = m(T) - 1$ and otherwise, if T is not pivoted, then $A_b(T) = m(T)$.

(E)

Some additional results

Corollary

For every positive integers n, k, ℓ , where $k \ge 3$ and $\ell \ge 5$, we have

- $A_b(\overline{K}_n) = 1.$
- $A_b(P_\ell) = 3.$
- $A_b(C_k) = 3.$

Corollary

Let T be a tree. If T is a pivoted tree, then $A_b(T) = m(T) - 1$ and otherwise, if T is not pivoted, then $A_b(T) = m(T)$.

Corollary

There exists an infinite family of graphs G_1, G_2, \ldots such that $(A_b(G_n) - A(G_n)) \to \infty$ as $n \to \infty$.

通 ト イ ヨ ト イ ヨ ト

Introduction 000000000 Acyclic coloring

Packing coloring

Blocking the recoloring

Introduction

Acyclic coloring

Packing coloring

Blocking the recoloring

We stop with the recoloring algorithm when every color class has:

• a b-vertex, or

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- $\bullet\,$ In both cases this means some neighbors of v into which vertex cannot be recolored, or

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- $\bullet\,$ In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- $\bullet\,$ In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.
- Therefore we consider a weak partition $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ of $N_G(v)$ into k + 1 disjoint sets such that $|A_0^P| \ge 0$ and $|A_i^P| \ge 2$ for $i \in [k]$.

- a b-vertex, or
- a vertex close to a b-vertex and for the missing colors there exists problematic cycles that contain that vertex.
- Say that v is such a vertex for some color i.
- $\bullet\,$ In both cases this means some neighbors of v into which vertex cannot be recolored, or
- at least two neighbors of v of the same color and disjoint paths of even length between these neighbors.
- Therefore we consider a weak partition $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ of $N_G(v)$ into k + 1 disjoint sets such that $|A_0^P| \ge 0$ and $|A_i^P| \ge 2$ for $i \in [k]$.
- The vertices of A_0^P are colored with distinct colors and all the vertices of A_j^P , $j \in [k]$, with the same clor that is different than already used colors.

Introduction 000000000	Acyclic coloring 000000000000000000000000000000000000	Packing coloring	Star coloring 000000000000000000000000000000000000
Countir	ng paths		

• Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000		00000000000000	000000000000000000000000000000000000
Countin	g paths		

- Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.
- Let $elp_G(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets A_i^P , $i \in [k]$.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	0000000000000000
Countin	g paths		

- Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.
- Let $elp_G(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets A_i^P , $i \in [k]$.
- In the worst case one cannot recolor v to exactly $(|A_0^P| + k + elp_G(v, P))$ colors different than c(v).

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	0000000000000000
Countin	ø naths		

- Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.
- Let $elp_G(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets A_i^P , $i \in [k]$.
- In the worst case one cannot recolor v to exactly $(|A_0^P| + k + elp_G(v, P))$ colors different than c(v).
- $(|A_0^P| + k)$ colors are blocked by the neighbors.
| | Acyclic coloring | Packing coloring | Star coloring |
|-----------|---|------------------|-------------------|
| 000000000 | 000000000000000000000000000000000000000 | 00000000000000 | 00000000000000000 |
| Countir | a nothe | | |

- Counting paths
 - Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.
 - Let $elp_G(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets A_i^P , $i \in [k]$.
 - In the worst case one cannot recolor v to exactly $(|A_0^P|+k+{\rm elp}_G(v,P))$ colors different than c(v).
 - $(|A_0^P| + k)$ colors are blocked by the neighbors.
 - At most $elp_G(v, P)$ by the alternately colored bi-chromatic internal-vertex disjoint paths or problematic cycles that could appear in the coloring.

Countin	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
000000000	000000000000000000000000000000000000000	00000000000000000	000000000000000000000000000000000000000
	Acyclic coloring	Packing coloring	Star coloring

- Counting paths
 - Let $P = \{A_0^P, A_1^P, \dots, A_k^P\}$ be a weak partition of $N_G(v)$.
 - Let $elp_G(v, P)$ be the maximum number of paths disjoint with v having odd number of vertices (i.e., of even length), with both ends in one of the sets A_i^P , $i \in [k]$.
 - In the worst case one cannot recolor v to exactly $(|A_0^P|+k+{\rm elp}_G(v,P))$ colors different than c(v).
 - $(|A_0^P| + k)$ colors are blocked by the neighbors.
 - At most $elp_G(v, P)$ by the alternately colored bi-chromatic internal-vertex disjoint paths or problematic cycles that could appear in the coloring.
 - This motivates the definition of the ${\it acyclic}\ {\it degree}$ of v as

$$d_{G}^{a}(v) = \max_{P \in \mathcal{P}(v)} \{ (|A_{0}^{P}| + (|P| - 1) + elp_{G}(v, P)) \},\$$

where $\mathcal{P}(v)$ is the family of all the weak partitions P of $N_G(v)$ defined as above.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

An example

Slika: Graph G with the optimal weak partition $A_0^P = \{u, z_1^1, y_1^2\}, A_1^P = \{x_1^1, x_2^1\}$, implying $|A_0^P| = 3$, |P| - 1 = 1, $elp_G(v, P) = 3$ and $d_G^u(y_1^1) = 7$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
An uppe	er bound		

• This gives an analogy to the relation between degree $d_G(v)$ and $\chi_b(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_b(G)$ to be large.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
An uppe	er bound		

- This gives an analogy to the relation between degree $d_G(v)$ and $\chi_b(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_b(G)$ to be large.
- We order the vertices v_1, \ldots, v_{n_G} of G by non-increasing acyclic degree.

	Acyclic coloring	Packing coloring	Star coloring
	000000000000000000000000000000000000000		
An uppe	er bound		

- This gives an analogy to the relation between degree $d_G(v)$ and $\chi_b(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_b(G)$ to be large.
 - We order the vertices v_1, \ldots, v_{n_G} of G by non-increasing acyclic degree.
 - The value of $m_a(G)$ is then the maximum position i in this order such that $d^a_G(v_i) \geq i-1,$

Introduction	Acyclic coloring	Packing coloring	Star coloring
	000000000000000000000000000000000000000		
A n unn	or bound		

- An upper bound
 - This gives an analogy to the relation between degree $d_G(v)$ and $\chi_b(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_b(G)$ to be large.
 - We order the vertices v_1, \ldots, v_{n_G} of G by non-increasing acyclic degree.
 - The value of $m_a(G)$ is then the maximum position i in this order such that $d^a_G(v_i) \ge i 1$,that is

$$m_a(G) = \max\{i : i - 1 \le d_G^a(v_i)\}.$$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
An uppe	er bound		

- This gives an analogy to the relation between degree $d_G(v)$ and $\chi_b(G)$, where we needed sufficient number of vertices of high degree to expect $\chi_b(G)$ to be large.
 - We order the vertices v_1, \ldots, v_{n_G} of G by non-increasing acyclic degree.
 - The value of $m_a(G)$ is then the maximum position i in this order such that $d^a_G(v_i) \ge i 1$,that is

$$m_a(G) = \max\{i : i - 1 \le d_G^a(v_i)\}.$$

Theorem

For any graph G we have $A_b(G) \leq m_a(G)$.

An upper bound

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $(A_b(G_n) - \Delta(G_n)) \to \infty$ as $n \to \infty$.

通 ト イ ヨ ト イ ヨ ト

Acyclic coloring

Packing coloring

An upper bound depending on maximum degree

Theorem

For any graph G with $\Delta(G) \geq 2$ we have $A_b(G) \leq \frac{1}{2}(\Delta(G))^2 + 1$.

Packing coloring

An upper bound depending on maximum degree

Theorem

For any graph G with $\Delta(G) \geq 2$ we have $A_b(G) \leq \frac{1}{2}(\Delta(G))^2 + 1$.

Corollary

For any cubic graph G with we have $A_b(G) \leq 5$.

Packing coloring

An upper bound depending on maximum degree

Theorem

For any graph G with $\Delta(G) \geq 2$ we have $A_b(G) \leq \frac{1}{2}(\Delta(G))^2 + 1$.

Corollary

For any cubic graph G with we have $A_b(G) \leq 5$.

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $A_b(G_n) = m_a(G_n) = \frac{1}{2}(\Delta(G_n))^2 + 1.$

	Acyclic coloring	Packing coloring
000000000	000000000000000000000000000000000000000	0000000000000

A construction

Slika: Graphs $H_{2,i}$ and $H_{3,i}$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	00000000000000	00000000000000000
Join			

• Join of graphs G and H is the graph $G \lor H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

J	oin			
Intr	oduction	Acyclic coloring	Packing coloring	Star coloring
00	0000000	000000000000000000000000000000000000	00000000000000	00000000000000000

• Join of graphs G and H is the graph $G \lor H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs ${\cal G}$ and ${\cal H}$ we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Join			

• Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs ${\cal G}$ and ${\cal H}$ we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If $H \cong K_q$, then $A_b(G \vee H) = A_b(G) + q$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Join			

• Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs G and H we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If $H \cong K_q$, then $A_b(G \vee H) = A_b(G) + q$.

Corollary

•
$$A_b(K_{n,m}) = 1 + \max\{n, m\};$$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Join			

• Join of graphs G and H is the graph $G \lor H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs G and H we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If $H \cong K_q$, then $A_b(G \vee H) = A_b(G) + q$.

Corollary

- $A_b(K_{n,m}) = 1 + \max\{n, m\};$
- $A_b(W_k) = 4;$

	Acyclic coloring	Packing coloring	Star coloring
	000000000000000000000000000000000000000		
loin			
JOIL			

• Join of graphs G and H is the graph $G \lor H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs G and H we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If $H \cong K_q$, then $A_b(G \vee H) = A_b(G) + q$.

Corollary

- $A_b(K_{n,m}) = 1 + \max\{n, m\};$
- $A_b(W_k) = 4;$
- $A_b(F_k) = 4;$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Join			

• Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs G and H we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If $H \cong K_q$, then $A_b(G \vee H) = A_b(G) + q$.

Corollary

- $A_b(K_{n,m}) = 1 + \max\{n, m\};$
- $A_b(W_k) = 4;$
- $A_b(F_k) = 4;$
- $A_b(K_n \vee \overline{K}_m) = n+1;$

	Acyclic coloring	Packing coloring	
000000000	000000000000000000000000000000000000000	0000000000000	0000000000000000
lain			
JOIN			

• Join of graphs G and H is the graph $G \vee H$ obtained from disjoint copies of G and H with all the edges between V(G) and V(H).

Theorem

For two non-complete graphs G and H we have

$$A_b(G \lor H) = \max\{A_b(G) + n_H, A_b(H) + n_G\}.$$

If
$$H \cong K_q$$
, then $A_b(G \lor H) = A_b(G) + q$.

Corollary

- $A_b(K_{n,m}) = 1 + \max\{n, m\};$
- $A_b(W_k) = 4;$
- $A_b(F_k) = 4;$
- $A_b(K_n \vee \overline{K}_m) = n+1;$
- $A_b(P_k \vee P_\ell) = A_b(P_k \vee C_\ell) = A_b(C_k \vee C_\ell) = 3 + \max\{k, \ell\}.$

ntroduction Acyclic coloring

Packing coloring

Relation between $\chi_b(G)$ and $A_b(G)$

Theorem

There exists a graph G where $A_b(G)$ is arbitrarily smaller that $\chi_b(G)$.

Slika: Graph G for which $5 = A_b(G) < \chi_b(G) = 6$.

Acyclic coloring	Packing coloring
000000000000000000000000000000000000000	

Second example

Slika: Graph G for which $10 = A_b(G) < \chi_b(G) = 12$.

B 5

Acyclic coloring

Packing coloring

General result

< ロ > < 回 > < 回 > < 回 > < 回 >

Acyclic coloring

Packing coloring

General result

Theorem

For every cubic graph G we have $A(G) \leq 4$.

通 ト イ ヨ ト イ ヨ ト

Packing coloring

General result

Theorem

For every cubic graph G we have $A(G) \leq 4$.

Theorem

For every cubic graph G but prism $K_2 \Box K_3$ we have $A_b(G) \ge 4$. Moreover, $A_b(K_2 \Box K_3) = 3$.

 Packing coloring

Other exceptions from Jakovac and Klavžar

Slika: Graphs prism $K_2 \Box K_3$, $K_{3,3}$ and G_1 and their acyclic b-colorings.

Acyclic coloring

Packing coloring

Proof

Slika: Corrected b-colorings of Jakovac and Klavžar: first graph of the second line of Figure 14 and first, fourth and fifth graph from Figure 15; now acyclic.

Acyclic coloring

Packing coloring

How many cubic graphs with $A_b(G) = 4$ exists?

< ロ > < 同 > < 三 > < 三 >

• A tree T is called *cubic* if every inner vertex of T is of degree three.

- A tree T is called *cubic* if every inner vertex of T is of degree three.
- The smallest cubic tree is K_2 that is without inner vertices and next is $K_{1,3}$ with one inner vertex.

- A tree T is called *cubic* if every inner vertex of T is of degree three.
- The smallest cubic tree is K_2 that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph C(T) as follows.

- A tree T is called *cubic* if every inner vertex of T is of degree three.
- The smallest cubic tree is K_2 that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph C(T) as follows.
- First we replace every inner vertex v with its neighbors x, y, z by a triangle abc, where edges ax, by and cz are added between triangle and $N_T(v)$.

- A tree T is called *cubic* if every inner vertex of T is of degree three.
- The smallest cubic tree is K_2 that is without inner vertices and next is $K_{1,3}$ with one inner vertex.
- From a cubic tree T we construct a cubic graph C(T) as follows.
- First we replace every inner vertex v with its neighbors x, y, z by a triangle abc, where edges ax, by and cz are added between triangle and $N_T(v)$.
- Add a copy of H_3 for every leaf ℓ and amalgamate ℓ with w from the copy of H_3 for ℓ .

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000

A construction

Slika: Construction of graph C(T) from a cubic tree $T \cong K_{1,3}$.

	Acyclic coloring	Packing coloring	Star coloring
000000000	0000000000000000000 00000000000000 000000	0000000000000	00000000

A construction

Slika: Construction of graph C(T) from a cubic tree $T \cong K_{1,3}$.

Theorem

If T is a cubic tree, then $A_b(C(T)) = 4$.
	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000

A construction

Slika: Construction of graph C(T) from a cubic tree $T \cong K_{1,3}$.

Theorem

If T is a cubic tree, then $A_b(C(T)) = 4$.

Corollary

The number of cubic graphs G with $A_b(G) < m_a(G) = 5$ is not finite.

Acyclic coloring

Critical cycle system in cubic graph 1

ヨート

Acyclic coloring

Critical cycle system in cubic graph 2

TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

Iztok Peterin

 Packing coloring

Generalized Petersen graphs

• The generalized Petersen graphs G(n,k), where $1 \le k < n/2$, are the graphs on 2n vertices $\{x_0, \ldots, x_{n-1}, y_0, \ldots, y_{n-1}\}$

Packing coloring 0000000000000

Generalized Petersen graphs

- The generalized Petersen graphs G(n,k), where $1 \le k < n/2$, are the graphs on 2n vertices $\{x_0, \ldots, x_{n-1}, y_0, \ldots, y_{n-1}\}$
- The edge set consists of the polygon $\{x_i x_{i+1} : 0 \le i \le n-1\}$, the star polygon $\{y_i y_{i+k} : 0 \le i \le n-1\}$ and the spokes $\{x_i y_i : 0 \le i \le n-1\}$, where the sums are taken modulo n.

Acyclic coloring

Generalized Petersen graphs

- The generalized Petersen graphs G(n, k), where $1 \le k < n/2$, are the graphs on 2n vertices $\{x_0, ..., x_{n-1}, y_0, ..., y_{n-1}\}$
- The edge set consists of the polygon $\{x_i x_{i+1} : 0 \le i \le n-1\}$, the star polygon $\{y_i y_{i+k} : 0 \le i \le n-1\}$ and the spokes $\{x_i y_i : 0 \le i \le n-1\}$, where the sums are taken modulo n.

APPROACHES FOR SOME SPECIAL COLORINGS OF G TWO HEURISTIC

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

I wo results

Theorem

If $k \geq 3$ and $n \geq 5(2k + (-1)^k)$, then $A_b(G(n,k)) = 5$.

(E)

Two results

Theorem

If
$$k \geq 3$$
 and $n \geq 5(2k + (-1)^k)$, then $A_b(G(n,k)) = 5$.

Theorem

 $A_b(G(3,0)) = 4$ and $A_b(G(n,0)) = 4$ for $n \ge 4$.

イロン イヨン イヨン イヨン

3

Introduction 000000000 Acyclic coloring

Packing coloring

Proof idea for even k

イロト イポト イヨト イヨト

Packing coloring

Proof idea for odd k

イロト イポト イヨト イヨト

Acycling coloring of (0, j)-prism

• The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.

roduction Acyclic coloring

Packing coloring

- The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.
- Between rims we add edges v₀¹v₀², v₁¹v₂², v₄¹v₄²,... that are called spokes of type 0

roduction Acyclic coloring

Packing coloring

- The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.
- Between rims we add edges $v_0^1v_0^2, v_2^1v_2^2, v_4^1v_4^2, \ldots$ that are called spokes of type 0
- and edges $v_1^1v_{j+1}^2,\,v_3^1v_{3+j}^2,v_5^1v_{5+j}^2,\ldots$ that are called spokes of type 1.

roduction Acyclic coloring

Packing coloring

- The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.
- Between rims we add edges $v_0^1v_0^2, v_2^1v_2^2, v_4^1v_4^2, \ldots$ that are called spokes of type 0
- and edges $v_1^1v_{j+1}^2,\,v_3^1v_{3+j}^2,v_5^1v_{5+j}^2,\ldots$ that are called spokes of type 1.
- (0, j)-prism is a cubic graph and is isomorphic to an (0, -j)-prism.

 Packing coloring

Star coloring

- The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.
- Between rims we add edges $v_0^1v_0^2, v_2^1v_2^2, v_4^1v_4^2, \ldots$ that are called spokes of type 0
- and edges $v_1^1v_{j+1}^2,\,v_3^1v_{3+j}^2,v_5^1v_{5+j}^2,\ldots$ that are called spokes of type 1.
- (0, j)-prism is a cubic graph and is isomorphic to an (0, -j)-prism.
- Therefore we can assume that $0 \le j \le \frac{n}{2}$.

oduction Acyclic coloring

Packing coloring

Acycling coloring of (0, j)-prism

- The (0, j)-prism of order 2n for an even j is the graph with two vertex disjoint cycles $R_n^i = v_0^i, \ldots, v_{n-1}^i$ for $i \in \{1, 2\}$ of length n called rims.
- Between rims we add edges $v_0^1v_0^2, v_2^1v_2^2, v_4^1v_4^2, \ldots$ that are called spokes of type 0
- and edges $v_1^1v_{j+1}^2,\,v_3^1v_{3+j}^2,v_5^1v_{5+j}^2,\ldots$ that are called spokes of type 1.
- (0, j)-prism is a cubic graph and is isomorphic to an (0, -j)-prism.
- Therefore we can assume that $0 \le j \le \frac{n}{2}$.

Theorem

If
$$j > 0$$
 and $n \ge 5(j+2)$, then $A_b(Pr_n(0,j)) = 5$.

伺い イラト イラト

Introduction	

Acyclic coloring

Packing coloring

Proof idea

(日) (四) (三) (三)

Introduction 000000000 Acyclic coloring

Packing coloring

Honycomb lattice

< ロ > < 回 > < 回 > < 回 > < 回 >

Acyclic coloring

Packing coloring

Honycomb lattice

Theorem

Let G be a benzenoid graph. Assume there are five internal vertices v_j , $j \in [5]$ in G, such that for each $1 \leq i < j \leq 5$ we have $d(v_i, v_j) \geq 4$. If every spanning tree of the distance graph $D_G(\{v_1, v_2, v_3, v_4, v_5\})$ contains at least one edge weighted with 5, then $A_b(G) = 5$.

Acyclic	Grundy chromatic number		
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Introduction	Acyclic coloring	Packing coloring	Star coloring

• Run an adapted greedy algorithm on graph G:

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Acyclic	Grundy chromatic number		

- Run an adapted greedy algorithm on graph G:
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Acvelie	Grundy chromatic number		

- Run an adapted greedy algorithm on graph G:
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.

Acyclic	Grundy chromatic number		
Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000

- Run an adapted greedy algorithm on graph G:
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.
- The number of colors represents an upper bound for A(G).

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
A 11			

Acyclic Grundy chromatic number

- Run an adapted greedy algorithm on graph G:
- at each step we color the vertex with a smallest color that the colored vertices induce an acyclically colored subgraph (on all already colored vertices).
- At the end we obtain an acyclic coloring of G.
- The number of colors represents an upper bound for A(G).
- Acyclic Grundy chromatic number $\Gamma_a(G)$ of G is the maximum number of colors obtained by the mentioned procedure.

Corona of graphs

Proposition

For graphs G and H we have

$$\Gamma_a(G \odot H) = \Gamma_a(G) + \Gamma_a(H)$$

and

$$\Gamma(G\odot H)=\Gamma(G)+\Gamma(H)$$

イロト イポト イヨト イヨト

Corona of graphs

Proposition

For graphs G and H we have

$$\Gamma_a(G \odot H) = \Gamma_a(G) + \Gamma_a(H)$$

and

$$\Gamma(G \odot H) = \Gamma(G) + \Gamma(H)$$

Theorem

For every natural number k there exists a graph ${\cal G}$ such that

$$\Gamma_a(G) - \Gamma(G) = k.$$

くぼう くほう くほう

Theorem

For graphs G and H we have

 $\Gamma_a(G \lor H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Theorem

For graphs G and H we have

 $\Gamma_a(G \vee H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Corollary

For every positive integers m, n we have

•
$$\Gamma_a(K_{1,n}) = \Gamma_a(K_1 \vee \overline{K_n}) = 2$$
,

Theorem

For graphs G and H we have

 $\Gamma_a(G \lor H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Corollary

For every positive integers m, n we have

•
$$\Gamma_a(K_{1,n}) = \Gamma_a(K_1 \vee \overline{K_n}) = 2,$$

•
$$\Gamma_a(K_{m,n}) = \Gamma_a(\overline{K_m} \vee \overline{K_n}) = \max\{m+1, n+1\},\$$

Theorem

For graphs G and H we have

 $\Gamma_a(G \lor H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Corollary

For every positive integers m, n we have

- $\Gamma_a(K_{1,n}) = \Gamma_a(K_1 \vee \overline{K_n}) = 2$,
- $\Gamma_a(K_{m,n}) = \Gamma_a(\overline{K_m} \vee \overline{K_n}) = \max\{m+1, n+1\},\$

•
$$\Gamma_a(W_{n+1}) = \Gamma_a(K_1 \lor C_n) = 4$$
,

• • = • • = •

Theorem

For graphs G and H we have

 $\Gamma_a(G \lor H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Corollary

For every positive integers m, n we have

- $\Gamma_a(K_{1,n}) = \Gamma_a(K_1 \vee \overline{K_n}) = 2$,
- $\Gamma_a(K_{m,n}) = \Gamma_a(\overline{K_m} \vee \overline{K_n}) = \max\{m+1, n+1\},\$
- $\Gamma_a(W_{n+1}) = \Gamma_a(K_1 \lor C_n) = 4$,
- $\Gamma_a(F_{n+1}) = \Gamma_a(K_1 \vee P_n) = 4$,

★ E ► < E ►</p>

Theorem

For graphs G and H we have

 $\Gamma_a(G \lor H) = \max\{\Gamma_a(G) + |V(H)|, \ \Gamma_a(H) + |V(G)|\}.$

Corollary

For every positive integers m, n we have

•
$$\Gamma_a(K_{1,n}) = \Gamma_a(K_1 \vee \overline{K_n}) = 2,$$

•
$$\Gamma_a(K_{m,n}) = \Gamma_a(\overline{K_m} \vee \overline{K_n}) = \max\{m+1, n+1\},\$$

•
$$\Gamma_a(W_{n+1}) = \Gamma_a(K_1 \lor C_n) = 4$$
,

•
$$\Gamma_a(F_{n+1}) = \Gamma_a(K_1 \vee P_n) = 4$$
,

•
$$\Gamma_a(K_m \vee \overline{K}_n) = m + 1.$$

Upper bound

Theorem

For every positive integer Δ there exists a graph G such that $\Delta=\Delta(G)$ and

$$\Gamma_a(G) \leqslant \begin{cases} \frac{3\Delta^2 + 13}{8} & \text{if } \Delta \text{ is odd,} \\ \frac{3\Delta^2 + 2\Delta + 8}{8} & \text{if } \Delta \text{ is even.} \end{cases}$$

(<)</pre>

Upper bound

Theorem

For every positive integer Δ there exists a graph G such that $\Delta=\Delta(G)$ and

$$\Gamma_a(G) \leqslant \begin{cases} \frac{3\Delta^2 + 13}{8} & \text{if } \Delta \text{ is odd,} \\ \frac{3\Delta^2 + 2\Delta + 8}{8} & \text{if } \Delta \text{ is even.} \end{cases}$$

くぼう くほう くほう

Introduction 000000000 Acyclic coloring

Packing coloring

Odd maximum degree

< ロ > < 同 > < 三 > < 三 >

Introduction 000000000 Acyclic coloring

Packing coloring

Even maximum degree

TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

Iztok Peterin
Introduction 000000000 Acyclic coloring

Packing coloring

$\Gamma(G)$ can be bigger than $\Gamma_a(G)$

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that

$$\left(\Gamma(G_k) - \Gamma_a(G_k)\right) \to \infty$$

as $k \to \infty$.

э

Introduction 000000000 Acyclic coloring

Packing coloring

$\Gamma(G)$ can be bigger than $\Gamma_a(G)$

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that

$$\left(\Gamma(G_k) - \Gamma_a(G_k)\right) \to \infty$$

as $k \to \infty$.

Slika: Graph G such that $\Gamma(G) \geq \Gamma_a(G)$.

Introduction 000000000	Acyclic coloring 000000000000000000000000000000000000	Packing coloring ●00000000000000	Star coloring
Packing	; chromatic number		
• A a	set $X \subseteq V(G)$ is a t -packing if any two re at distance more than t .	different vertice	es from X

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Introduction 000000000	Acyclic coloring	P	Packing coloring	Star coloring
Packing	chromatic number			
• A	set $X \subseteq V(G)$ is a <i>t</i> -pack re at distance more than <i>t</i> .	<mark>ng</mark> if any two d	ifferent vertice	s from X

• For t = 1 is a 1-packing X an independent set.

Packing	chromatic number		
Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000		●0000000000000	000000000000000000000000000000000000

- A set X ⊆ V(G) is a t-packing if any two different vertices from X are at distance more than t.
- For t = 1 is a 1-packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \to \{1, \ldots, k\}$, such that if c(u) = c(v) = i for $u \neq v$, then $d_G(u, v) > i$.

000000000	000000000000000000000000000000000000000	•00000000000000	000000000000000000000000000000000000000
Packing	chromatic number		

- A set X ⊆ V(G) is a t-packing if any two different vertices from X are at distance more than t.
- For t = 1 is a 1-packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \to \{1, \ldots, k\}$, such that if c(u) = c(v) = i for $u \neq v$, then $d_G(u, v) > i$.
- So, an *i*-th color class of a packing coloring represents *i*-packing of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000		●00000000000000	000000000000000000000000000000000000
Packing	chromatic number		

- A set X ⊆ V(G) is a t-packing if any two different vertices from X are at distance more than t.
- For t = 1 is a 1-packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \to \{1, \ldots, k\}$, such that if c(u) = c(v) = i for $u \neq v$, then $d_G(u, v) > i$.
- So, an *i*-th color class of a packing coloring represents *i*-packing of G.
- The packing chromatic number $\chi_p(G)$ is the minimum integer k for which there exists a packing k-coloring of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	●00000000000000	000000000000000000000000000000000000
Packing	chromatic number		

- A set X ⊆ V(G) is a t-packing if any two different vertices from X are at distance more than t.
- For t = 1 is a 1-packing X an independent set.
- A packing k-coloring of G is a function $c: V(G) \to \{1, \ldots, k\}$, such that if c(u) = c(v) = i for $u \neq v$, then $d_G(u, v) > i$.
- So, an *i*-th color class of a packing coloring represents *i*-packing of G.
- The packing chromatic number $\chi_p(G)$ is the minimum integer k for which there exists a packing k-coloring of G.
- We adopt a greedy algorithm to produce a packing chromatic number of G.

Heuristic algorithm for packing coloring

Algorithm

• Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.

< 3 > 4 3 >

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.
- While every vertex is not colored

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.
- While every vertex is not colored
 - pick an uncolored vertex v;

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.
- While every vertex is not colored
 - pick an uncolored vertex v;
 - find first non-zero entry i in array for v and set c(v) = i;

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.
- While every vertex is not colored
 - pick an uncolored vertex v;
 - find first non-zero entry i in array for v and set c(v) = i;
 - make *i* distance levels of a BFS algorithm from v and for every uncolored vertex u set $u_i = 0$.

Algorithm

- Input: Graph G and every vertex with |V(G)| dimensional array with 1s for every vertex.
- **Output:** Packing coloring c of G.
- While every vertex is not colored
 - pick an uncolored vertex v;
 - find first non-zero entry i in array for v and set c(v) = i;
 - make *i* distance levels of a BFS algorithm from v and for every uncolored vertex u set $u_i = 0$.

Theorem

Algorithem computes a packing coloring of a given graph G in $\mathcal{O}(mn^2)$ time, where n = |V(G)| and m = |E(G)|.

通 ト イ ヨ ト イ ヨ ト

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000000

(1, 1, 1, 1, 1, 1)(1, 1, 1, 1, 1, 1, 1)(1, 1, 1, 1, 1, 1)(1, 1, 1, 1, 1, 1, 1) $\overline{(1,1,1,1,1,1)}$ (1, 1, 1, 1, 1, 1, 1)

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

ntroduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000

$$(1,1,1,1,1,1) (0,1,1,1,1,1) (0,1,1,1,1,1) (1,1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1) (1,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1,1) (0,0,1,1,1) (0,0,1,1,1) (0,0,1,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1$$

ntroduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

ntroduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

ntroduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ → ● ● ● ● ●

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Iztok Peterin

TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

Dealiting			
000000000	000000000000000000000000000000000000000	000000000000000	00000000000000000
	Acyclic coloring	Packing coloring	Star coloring

• Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_p(G)$ and presents a heuristic algorithm for $\chi_p(G)$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_p(G)$ and presents a heuristic algorithm for $\chi_p(G)$.
- Therefore we call a coloring obtained by Algorithm a *packing greedy coloring* of *G*.

Introduction	Acyclic coloring	Packing coloring	Star colorin
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_p(G)$ and presents a heuristic algorithm for $\chi_p(G)$.
- Therefore we call a coloring obtained by Algorithm a *packing greedy coloring* of *G*.
- Clearly, $\chi_p(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.

Introduction	Acyclic coloring	Packing coloring	
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_p(G)$ and presents a heuristic algorithm for $\chi_p(G)$.
- Therefore we call a coloring obtained by Algorithm a *packing greedy coloring* of *G*.
- Clearly, $\chi_p(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.
- The maximum possible number of colors obtained by Algorithm is called the packing Grundy chromatic number of G denoted by $\Gamma_p(G)$.

Introduction	Acyclic coloring	Packing coloring	Star
000000000	000000000000000000000000000000000000000	0000000000000	000

- Every run of Algorithm 1 on a graph G gives an upper bound for $\chi_p(G)$ and presents a heuristic algorithm for $\chi_p(G)$.
- Therefore we call a coloring obtained by Algorithm a *packing greedy coloring* of *G*.
- Clearly, $\chi_p(G)$ is the minimum number of colors in a coloring that can be obtained by Algorithm 1.
- The maximum possible number of colors obtained by Algorithm is called the packing Grundy chromatic number of G denoted by $\Gamma_p(G)$.
- Alternative description of $\Gamma_p(G)$ is just the maximum number of colors in a packing coloring, such that every vertex of color $i \ge 2$ has a vertex of color j at distance at most j for every $j \in \{1, \ldots, i-1\}$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Polynor	nial transformation		

• For a graph G we denote by G^{ℓ} a graph with $V(G^{\ell}) = \{v^{\ell} : v \in V(G)\} \text{ and } E(G^{\ell}) = \{u^{\ell}v^{\ell} : d_{G}(u,v) \leq \ell\}.$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Polynon	nial transformation		

- For a graph G we denote by G^{ℓ} a graph with $V(G^{\ell}) = \{v^{\ell} : v \in V(G)\}$ and $E(G^{\ell}) = \{u^{\ell}v^{\ell} : d_G(u, v) \leq \ell\}.$
- Clearly, $G^1 \cong G$ and if $k \ge \operatorname{diam}(G)$, then $G^k \cong K_n$ for n = |V(G)|.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000
Polynon	nial transformation		

- For a graph G we denote by G^{ℓ} a graph with $V(G^{\ell}) = \{v^{\ell} : v \in V(G)\}$ and $E(G^{\ell}) = \{u^{\ell}v^{\ell} : d_G(u, v) \leq \ell\}.$
- Clearly, $G^1 \cong G$ and if $k \ge \operatorname{diam}(G)$, then $G^k \cong K_n$ for n = |V(G)|.
- For a positive integer k we define graph G(k) by $V(G(k)) = \cup_{i=1}^{k} V(G^{i})$ and $E(G(k)) = \{v^{j}v^{i} : 1 \leq i < j \leq k\} \cup \left(\cup_{i=1}^{k} E(G^{i})\right).$

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000
Polynon	nial transformation		

- For a graph G we denote by G^{ℓ} a graph with $V(G^{\ell}) = \{v^{\ell} : v \in V(G)\}$ and $E(G^{\ell}) = \{u^{\ell}v^{\ell} : d_{G}(u, v) \leq \ell\}.$
- Clearly, $G^1 \cong G$ and if $k \ge \operatorname{diam}(G)$, then $G^k \cong K_n$ for n = |V(G)|.
- For a positive integer k we define graph G(k) by $V(G(k)) = \cup_{i=1}^{k} V(G^{i}) \text{ and } E(G(k)) = \{v^{j}v^{i} : 1 \leq i < j \leq k\} \cup \left(\cup_{i=1}^{k} E(G^{i})\right).$
- v^1, \ldots, v^k induces a clique Q_v in G(k) and that every independent set of G(k) contains at most one of them.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Introduction Acyclic coloring

Packing coloring 00000000000000

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in \{1, ..., n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in G(k).

• • = • • = •

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in \{1, ..., n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in G(k).

Lemma

Let G be a graph on n vertices and $k \in \{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in G(k) where $A^i = A \cap G^i$ is a maximal independent set of $G^i - \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$.

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in \{1, ..., n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in G(k).

Lemma

Let G be a graph on n vertices and $k \in \{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in G(k) where $A^i = A \cap G^i$ is a maximal independent set of $G^i - \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$.

• Every independent set A of G(k) of cardinality n = |V(G)| is a maximal independent set of G(k) because Q_v are cliques for every $v \in V(G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in \{1, ..., n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in G(k).

Lemma

Let G be a graph on n vertices and $k \in \{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in G(k) where $A^i = A \cap G^i$ is a maximal independent set of $G^i - \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$.

- Every independent set A of G(k) of cardinality n = |V(G)| is a maximal independent set of G(k) because Q_v are cliques for every $v \in V(G)$.
- However, the condition of last lemma is not always fulfilled.

・ロン ・回 と ・ 回 と ・ 回 と
Packing coloring

Packing Grundy chromatic number

Lemma (Argiroffo et al.)

Let G be a graph on n vertices and $k \in \{1, ..., n\}$. A graph G admits a packing k-coloring if and only if there exists an independent set of cardinality n in G(k).

Lemma

Let G be a graph on n vertices and $k \in \{1, \ldots, n\}$. A graph G admits a packing greedy k-coloring if and only if there exists an independent set A of cardinality n in G(k) where $A^i = A \cap G^i$ is a maximal independent set of $G^i - \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$.

- Every independent set A of G(k) of cardinality n = |V(G)| is a maximal independent set of G(k) because Q_v are cliques for every $v \in V(G)$.
- However, the condition of last lemma is not always fulfilled.
- Therefore we introduce a dense maximization procedure or DMP for short of an independent set A of G(k) of cardinality $\underline{n}_{k-1} \in \mathbb{R}^{n-1}$

Dense maximization procedure

• If $A^i = A \cap G^i$ is a maximal independent set of $G^i - \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in \{1, \ldots, k-1\}$ such that A_i is not maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$.

Star coloring

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum i ∈ {1,..., k − 1} such that A_i is not maximal independent set of Gⁱ − ∪^{i−1}_{i=1}A^j.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{j=1}^{i-1} A^j$.

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum i ∈ {1,..., k − 1} such that A_i is not maximal independent set of Gⁱ − ∪ⁱ⁻¹_{i=1}A^j.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{i=1}^{i-1} A^j$.
- We exchange z^{ℓ} with z^i in A and keep the notation A.

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in \{1, \ldots, k-1\}$ such that A_i is not maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{i=1}^{i-1} A^j$.
- We exchange z^{ℓ} with z^i in A and keep the notation A.
- We do this until A^i is maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in \{1, \ldots, k-1\}$ such that A_i is not maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{j=1}^{i-1} A^j$.
- We exchange z^{ℓ} with z^i in A and keep the notation A.
- We do this until Aⁱ is maximal independent set of Gⁱ − ∪^{i−1}_{i=1}A^j.
- Next we continue with first t > i where A^t is not a maximal independent set of Gⁱ − ∪_{i=1}^{t-1}A^j if it exists.

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in \{1, \ldots, k-1\}$ such that A_i is not maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{j=1}^{i-1} A^j$.
- We exchange z^{ℓ} with z^i in A and keep the notation A.
- We do this until A^i is maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- Next we continue with first t > i where A^t is not a maximal independent set of $G^i \bigcup_{j=1}^{t-1} A^j$ if it exists.
- DMP(A) is biggest ℓ where $A \cap V(G^{\ell}) \neq \emptyset$ after any run of DMP.

Dense maximization procedure

- If $A^i = A \cap G^i$ is a maximal independent set of $G^i \bigcup_{j=1}^{i-1} A^j$ for every $i \in \{1, \ldots, k-1\}$, then we are done.
- Otherwise, there exists minimum $i \in \{1, \dots, k-1\}$ such that A_i is not maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- There exists $z^{\ell} \in A$ for some $\ell > i$ such that $A_i \cup \{z^i\}$ is independent in $G^i \bigcup_{j=1}^{i-1} A^j$.
- We exchange z^{ℓ} with z^i in A and keep the notation A.
- We do this until A^i is maximal independent set of $G^i \bigcup_{i=1}^{i-1} A^j$.
- Next we continue with first t > i where A^t is not a maximal independent set of Gⁱ − ∪^{t−1}_{i=1}A^j if it exists.
- DMP(A) is biggest ℓ where $A \cap V(G^{\ell}) \neq \emptyset$ after any run of DMP.

Theore<u>m</u>

Let G be a graph with n = |V(G)|. If \mathcal{I} is a set of all independent sets of G(k) of cardinality n for any possible integer $k \leq n$, then

 $\Gamma_p(G) = \max_{A \in \mathcal{I}} \{DMP(A)\}.$

Packing coloring

Computational complexity of $\Gamma_p(G)$

Corollary

If G is a graph, then $\Gamma_p(G) \leq n-i(G)+1$ wher i(G) denotes the lower independence number.

(E)

Packing coloring

Computational complexity of $\Gamma_p(G)$

Corollary

If G is a graph, then $\Gamma_p(G) \leq n-i(G)+1$ wher i(G) denotes the lower independence number.

PGC problem

PACKING GRUNDY COLORING PROBLEM INSTANCE: A graph G on n vertices and an integer $1 \le k \le n$. QUESTION: Is $\Gamma_p(G) \le k$?

Packing coloring 00000000●0000

Computational complexity of $\Gamma_p(G)$

Corollary

If G is a graph, then $\Gamma_p(G) \leq n-i(G)+1$ wher i(G) denotes the lower independence number.

PGC problem

PACKING GRUNDY COLORING PROBLEM INSTANCE: A graph G on n vertices and an integer $1 \le k \le n$. QUESTION: Is $\Gamma_p(G) \le k$?

Theorem

PGC problem is NP-complete even when G is restricted to bipartite graphs, to line graphs, to circle graphs, to unit disk graphs, or to planar cubic graphs.

Packing coloring

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_p(G) = n$ if and only if $\Delta(G) = n - 1$.

< 回 > < 三 > < 三 > -

Introduction Acyclic coloring

Packing coloring

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_p(G) = n$ if and only if $\Delta(G) = n - 1$.

Lemma

If i(G) = 2, then $rad(G) \in \{2, 3\}$ and $diam(G) \in \{2, 3, 4, 5\}$.

Packing coloring

Big packing Grundy chromatic number

Proposition

Graph G on n vertices has $\Gamma_p(G) = n$ if and only if $\Delta(G) = n - 1$.

Lemma

If i(G) = 2, then $rad(G) \in \{2, 3\}$ and $diam(G) \in \{2, 3, 4, 5\}$.

Theorem

A connected graph G on n vertices has $\Gamma_p(G)=n-1$ if and only if all the following statements hold

- (i) i(G) = 2.
- (ii) diam $(G) \leq 4$.
- (iii) If rad(G) = 3, then there exist an i(G)-set $\{x, y\}$ with d(x, y) = 3and $w \in N(x)$ such that $d(w, z) \le 2$ for every vertex $z \in N(y)$.
- (iv) If rad(G) = 2 and diam(G) = 4, then there exists an i(G)-set that avoids one central vertex and one additional non-diametrical vertex.

Graphs with diam(G) = 2

Corollary

If G is a graph with $\operatorname{diam}(G) = 2$, then $\Gamma_p(G) = n - i(G) + 1$.

通 ト イ ヨ ト イ ヨ ト -

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If G and H are graphs, then $\Gamma_p(G\vee H)=|V(G)|+|V(H)|-\min\{i(G),i(H)\}+1.$ In particular, for $s,t\geq 1,\ p,r\geq 4$ and $n\geq 2,$

•
$$\Gamma_p(K_{s,t}) = s + t - \min\{s,t\} + 1;$$

伺 ト く ヨ ト く ヨ ト

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If ${\boldsymbol{G}}$ and ${\boldsymbol{H}}$ are graphs, then

 $\Gamma_p(G\vee H)=|V(G)|+|V(H)|-\min\{i(G),i(H)\}+1.$ In particular, for $s,t\geq 1,\ p,r\geq 4$ and $n\geq 2,$

•
$$\Gamma_p(K_{s,t}) = s + t - \min\{s,t\} + 1;$$

•
$$\Gamma_p(K_{s,1}) = s + 1;$$

伺 ト く ヨ ト く ヨ ト

Acyclic coloring

Packing coloring

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If ${\cal G}$ and ${\cal H}$ are graphs, then

 $\Gamma_p(G\vee H)=|V(G)|+|V(H)|-\min\{i(G),i(H)\}+1.$ In particular, for $s,t\geq 1,\ p,r\geq 4$ and $n\geq 2,$

•
$$\Gamma_p(K_{s,t}) = s + t - \min\{s,t\} + 1;$$

•
$$\Gamma_p(K_{s,1}) = s + 1;$$

•
$$\Gamma_p(W_n) = \Gamma_p(C_{n-1} \lor K_1) = n;$$

向下 イヨト イヨト

Packing coloring

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If G and H are graphs, then $\Gamma_p(G \lor H) = |V(G)| + |V(H)| - \min\{i(G), i(H)\} + 1$. In particular, for $s, t \ge 1, p, r \ge 4$ and $n \ge 2$, • $\Gamma_p(K_{s,t}) = s + t - \min\{s, t\} + 1$; • $\Gamma_p(K_{s,1}) = s + 1$; • $\Gamma_p(K_{n,1}) = s + 1$; • $\Gamma_p(W_n) = \Gamma_p(C_{n-1} \lor K_1) = n$; • $\Gamma_n(F_n) = \Gamma_n(P_{n-1} \lor K_1) = n$;

ACYCLIC Coloring

Packing coloring

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If G and H are graphs, then $\Gamma_p(G \lor H) = |V(G)| + |V(H)| - \min\{i(G), i(H)\} + 1$. In particular, for $s, t \ge 1, p, r \ge 4$ and $n \ge 2$, • $\Gamma_p(K_{s,t}) = s + t - \min\{s, t\} + 1$; • $\Gamma_p(K_{s,1}) = s + 1$; • $\Gamma_p(K_{s,1}) = s + 1$; • $\Gamma_p(W_n) = \Gamma_p(C_{n-1} \lor K_1) = n$; • $\Gamma_p(F_n) = \Gamma_p(P_{n-1} \lor K_1) = n$; • $\Gamma_p(K_s \lor \overline{K}_n) = s + n$; Acyclic coloring

Packing coloring

Graphs with diam(G) = 2

Corollary

If G is a graph with
$$\operatorname{diam}(G) = 2$$
, then $\Gamma_p(G) = n - i(G) + 1$.

Corollary

If G and H are graphs, then
$$\begin{split} &\Gamma_p(G \lor H) = |V(G)| + |V(H)| - \min\{i(G), i(H)\} + 1. \text{ In particular, for } s, t \ge 1, p, r \ge 4 \text{ and } n \ge 2, \\ &\bullet \Gamma_p(K_{s,t}) = s + t - \min\{s, t\} + 1; \\ &\bullet \Gamma_p(K_{s,1}) = s + 1; \\ &\bullet \Gamma_p(K_n) = \Gamma_p(C_{n-1} \lor K_1) = n; \\ &\bullet \Gamma_p(F_n) = \Gamma_p(P_{n-1} \lor K_1) = n; \\ &\bullet \Gamma_p(K_s \lor \overline{K}_n) = s + n; \\ &\bullet \Gamma_p(K_s \lor \overline{K}_n) = s + n; \\ &\bullet \Gamma_p(P_p \lor P_r) = \Gamma_p(P_p \lor C_r) = \Gamma_p(C_p \lor C_r) = p + r - \min\left\{ \left\lceil \frac{p}{3} \right\rceil, \left\lceil \frac{r}{3} \right\rceil \right\}. \end{split}$$

通 ト イ ヨ ト イ ヨ ト

Graphs with diam(G) = 2

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If diam(G) = 3, then $\Gamma_p(G) = |V(G)| - m(G) + 2$ where

 $m(G) = \min_{A \in \mathcal{I}} \{ |A| + |Q| : Q \text{ is a maximal clique of min. cardinality of } D(G) - A \}.$

通 ト イ ヨ ト イ ヨ ト ー

Graphs with $\operatorname{diam}(G) = 2$

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If diam(G) = 3, then $\Gamma_p(G) = |V(G)| - m(G) + 2$ where

 $m(G) = \min_{A \in \mathcal{I}} \{ |A| + |Q| : Q \text{ is a maximal clique of min. cardinality of } D(G) - A \}.$

Corollary

Let G be a graph with diam(G) = 3. If there exists an i(G)-set A with a singleton K_1 in D(G) - A, then $\Gamma_p(G) = n - i(G) + 1$.

Graphs with diam(G) = 2

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If diam(G) = 3, then $\Gamma_p(G) = |V(G)| - m(G) + 2$ where

 $m(G) = \min_{A \in \mathcal{I}} \{ |A| + |Q| : Q \text{ is a maximal clique of min. cardinality of } D(G) - A \}.$

Corollary

Let G be a graph with diam(G) = 3. If there exists an i(G)-set A with a singleton K_1 in D(G) - A, then $\Gamma_p(G) = n - i(G) + 1$.

Theorem

Let G be a graph and let \mathcal{I} be a family of all maximal independent sets of G. If diam(G) = 3, then $\chi_p(G) = |V(G)| - m'(G) + 2$ where

$$m'(G) = \max_{A \in \mathcal{I}} \{ |A| + \omega(D(G) - A) \}.$$

Introduction	Packing coloring	Star coloring

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Iztok Peterin TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

通 ト イ ヨ ト イ ヨ ト

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Questions

• What about other (infinite) grids?

ヨート

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Questions

- What about other (infinite) grids?
- What is with trees?

-

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	00000000000000	00000000000000

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_p(G) = \chi_p(G)$ holds. In particular, does this equality holds for all well covered graphs?

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_p(G) = \chi_p(G)$ holds. In particular, does this equality holds for all well covered graphs?
- Describe all diameter three graphs for which $\Gamma_p(G) = |V(G)| i(G) + 1$ holds. In particular, does any diametrical graph fulfill the equality and are beside diametrical graphs any other exceptions to the equality?

Theorem

For an integer $k \ge 29$ we have $\Gamma_p(P_k) = 7$.

Questions

- What about other (infinite) grids?
- What is with trees?
- Describe all graphs for which $\Gamma_p(G) = \chi_p(G)$ holds. In particular, does this equality holds for all well covered graphs?
- Describe all diameter three graphs for which $\Gamma_p(G) = |V(G)| i(G) + 1$ holds. In particular, does any diametrical graph fulfill the equality and are beside diametrical graphs any other exceptions to the equality?
- Describe all diameter three graphs for which where vertices of color one do not form an i(G)-set for all $\Gamma_p(G)$ -colorings.

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction	Acyclic coloring	Packing coloring	Star co
000000000	000000000000000000000000000000000000000	0000000000000	0000

Algorithmic approach to reduce colors

 A coloring is star coloring if any two color classes induce a forest of stars,

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.

0000000000

Introduction	Acyclic coloring	
000000000	000000000000000000000000000000000000000	

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.
- A star chromatic number S(G) of a graph G is the minimum number of colors in a star coloring of G.

Introduction	Acyclic coloring
000000000	000000000000000000000000000000000000000

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.
- A star chromatic number S(G) of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.
- A star chromatic number S(G) of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a star (k-1)-coloring.
	Acyclic coloring
000000000	000000000000000000000000000000000000000

Packing coloring

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.
- A star chromatic number S(G) of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a star (k-1)-coloring.

• We call this procedure a star reducing algorithm.

	Acyclic coloring
000000000	000000000000000000000000000000000000000

Algorithmic approach to reduce colors

- A coloring is star coloring if any two color classes induce a forest of stars,
- that is $G[V_i \cup V_j]$ does not contain a cycle nor an induced P_4 for every $i, j \in [k]$.
- A star chromatic number S(G) of a graph G is the minimum number of colors in a star coloring of G.
- Let c be any star k-coloring of a graph G represented by a partition $\{V_1, \ldots, V_k\}$.
- Recolor until, there exists a color class, say V_k , such that there exists a color $i_v \in \{1, \ldots, k-1\}$ for every vertex $v \in V_k$ such that coloring

$$c'(v) = \begin{cases} c(v) & : & c(v) \neq k \\ i_v & : & c(v) = k \end{cases}$$

is a star (k-1)-coloring.

• We call this procedure a star reducing algorithm.

Relation Q_s

We say that coloring c' is in relation Q_s with coloring c, that is $c'Q_sc$.

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 0●00000000000000000000000000000000000
Star b-	chromatic number		
•	Let $\overline{Q_s}$ be a transitive closure of relation Q_s	Q_s .	

▶ < ∃ >

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Star b-o	chromatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).

000000000 000	nic coloring 000000000000000000000000000000000000	00000000000000000000000000000000000000	
Star b-chr	omatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Star b-c	hromatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_s}$ has some minimal elements.

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Star b-c	hromatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_s}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_s}$ is the star b-chromatic number of a graph G denoted by $S_b(G)$.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		0●00000000000000000000000000000000000
Star b-c	hromatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_s}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_s}$ is the star b-chromatic number of a graph G denoted by $S_b(G)$.
- Notice that the minimum number of colors used in a minimal element of $\overline{Q_s}$ is S(G).

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
Star b-c	hromatic number		

- Let $\overline{Q_s}$ be a transitive closure of relation Q_s .
- Relation $\overline{Q_s}$ is a strict partial ordering (of all star colorings of graph G).
- There are finite many different star colorings of G.
- Therefore $\overline{Q_s}$ has some minimal elements.
- The maximum number of colors used in a minimal element of $\overline{Q_s}$ is the star b-chromatic number of a graph G denoted by $S_b(G)$.
- Notice that the minimum number of colors used in a minimal element of $\overline{Q_s}$ is S(G).
- Hence $S_b(G)$ is a kind of a dual of S(G).

Introduction		Packing coloring	Star coloring
Star b-v	artev		

b-vertex

• A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.

(b) A (B) b

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000

Star b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Star b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Star b-ver<u>tex</u>

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

Introduction Acyclic coloring	Packing coloring	Star coloring
00000000 000000000000000000000000000000	000000000000000000000000000000000000000	00 000000000000000000000000000000000000

Star b-vertex

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

definition

Color $\ell \neq c(v)$ is blocked for vertex $v \in V(G)$ if

•
$$\ell \in CN_c(v)$$
 or

 $\begin{tabular}{ll} \Im \end{tabular} \exists j \in CN_c(v): G[V_{j,\ell} \cup \{v\}] \mbox{ contains a path on 4 vertices.} \end{tabular} \end{tabular}$

Introduction Acyclic coloring	Packing coloring	Star coloring
00000000 000000000000000000000000000000	000000000000000000000000000000000000000	00 000000000000000000000000000000000000

Star b-vertex

b-vertex

- A b-vertex in a color class V_i shows that we cannot recolor this color class when dealing with b-colorings.
- Do we have something like that for star b-colorings/b-vertices?
- Yes and no at the same time.
- Let $CN_c[v]$ and $CN_c(v)$ be the set of colors in closed and open, respectively, neighborhood of v.

definition

Color $\ell \neq c(v)$ is blocked for vertex $v \in V(G)$ if

•
$$\ell \in CN_c(v)$$
 or

 $\begin{tabular}{ll} \hline {\bf O} & \exists j \in CN_c(v): G[V_{j,\ell} \cup \{v\}] \mbox{ contains a path on 4 vertices.} \end{tabular}$

star b-vertex

A vertex $v \in V(G)$ is a star **b**-vertex if every color $\ell \in [k]$ is blocked.

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

Characterization

Theorem

A star k-coloring c is a minimal element of \prec_s if and only if every color class $V_i,\,i\in[k],$ contains a b-star vertex.

Characterization

Theorem

A star k-coloring c is a minimal element of \prec_s if and only if every color class V_i , $i \in [k]$, contains a b-star vertex.

Corollary

The star b-chromatic number $S_b(G)$ of a graph G is the largest integer k, such that there exists a star b-coloring with k colors, where every color class V_i , $i \in [k]$, contains a b-star vertex.

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
<u> </u>			

b-vertex

•
$$N_2(v) = \{u \in V(G) : d(v, u) = 2\}$$
 and
 $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000
<u> </u>			

b-vertex

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- Consider a weak partition of $N_G(v)$ into A_0, A_1, A_3 where

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- Consider a weak partition of $N_G(v)$ into A_0, A_1, A_3 where
- A_0 contains all neighbors of v that do not have neighbors in $N_2(v)$,

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- $\bullet\,$ Consider a weak partition of $N_G(v)$ into A_0,A_1,A_3 where
- A_0 contains all neighbors of v that do not have neighbors in $N_2(v)$,
- A_1 contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_3(v)$,

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	000000000000000	000000000000000000000000000000000000000

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- $\bullet\,$ Consider a weak partition of $N_G(v)$ into A_0,A_1,A_3 where
- A_0 contains all neighbors of v that do not have neighbors in $N_2(v)$,
- A_1 contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_3(v)$,

•
$$A_2 = N(v) - (A_0 \cup A_1).$$

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

b-vertex

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- Consider a weak partition of $N_G(v)$ into A_0, A_1, A_3 where
- A_0 contains all neighbors of v that do not have neighbors in $N_2(v)$,
- A_1 contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_3(v)$,

•
$$A_2 = N(v) - (A_0 \cup A_1)$$

• The star degree of v is

$$d_G^s(v) = |A_0| + \left\lfloor \frac{|A_1|}{2} \right\rfloor + |N(A_1)| + |A_2| + |N(A_2)|.$$

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

b-vertex

- $N_2(v) = \{u \in V(G) : d(v, u) = 2\}$ and $N_3(v) = \{u \in V(G) : d(v, u) = 3\}.$
- Consider a weak partition of $N_G(v)$ into A_0, A_1, A_3 where
- A_0 contains all neighbors of v that do not have neighbors in $N_2(v)$,
- A_1 contains all neighbors of v that have at least one neighbor that does not have a neighbor in $N_3(v)$,

•
$$A_2 = N(v) - (A_0 \cup A_1)$$

• The star degree of v is

$$d_G^s(v) = |A_0| + \left\lfloor \frac{|A_1|}{2} \right\rfloor + |N(A_1)| + |A_2| + |N(A_2)|.$$

Theorem

Maximum $d_G^s(v)$ of colors can be blocked for $v \in V(G)$.

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000

An example

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	00000000000000

Star m-degree

• It seems that the candidates for star b-vertices are vertices with a big star degree.

A 34 b

	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000000	0000000000000	000000000000

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_1, \ldots, v_n of G be ordered by its non-increasing star degree.

000

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_1, \ldots, v_n of G be ordered by its non-increasing star degree.
- We define an $m_s\text{-degree}$ of a graph G denoted by $m_s(G)$ as

$$m_s(G) = \max\{i : i - 1 \le d_G^s(v_i)\}.$$

Star m-degree

- It seems that the candidates for star b-vertices are vertices with a big star degree.
- Let the vertices v_1, \ldots, v_n of G be ordered by its non-increasing star degree.
- We define an m_s -degree of a graph G denoted by $m_s(G)$ as

$$m_s(G) = \max\{i : i - 1 \le d_G^s(v_i)\}.$$

Theorem

For any graph G we have $S_b(G) \leq m_s(G)$.

Introduction 000000000

Packing coloring

Star coloring

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_b(G) \leq (\Delta(G))^2 + 1$.

Iztok Peterin TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000000000

cyclic coloring

Packing coloring

Star coloring

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_b(G) \leq (\Delta(G))^2 + 1$.

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $S_b(G_n) = m_s(G_n) = \Delta(G_n)^2 + 1.$

• • = • • = •

An upper bound with $\Delta(G)$

Theorem

For any graph G we have $S_b(G) \leq (\Delta(G))^2 + 1$.

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $S_b(G_n) = m_s(G_n) = \Delta(G_n)^2 + 1.$

Slika: Graph G_3 and its 10-star b-coloring.

Paths and cycles

Proposition

Let P_n be a path on n vertices. Then

$$S_b(P_n) = \begin{cases} 1 & ; n = 1 \\ 2 & ; 2 \le n \le 3 \\ 3 & ; 4 \le n \le 7 \\ 4 & ; 8 \le n \le 22 \\ 5 & ; n \ge 23. \end{cases}$$

イロト イ団ト イヨト イヨト

Paths and cycles

Proposition

Let P_n be a path on n vertices. Then

$$S_b(P_n) = \begin{cases} 1 & ; n = 1 \\ 2 & ; 2 \le n \le 3 \\ 3 & ; 4 \le n \le 7 \\ 4 & ; 8 \le n \le 22 \\ 5 & ; n \ge 23. \end{cases}$$

Proposition

Let C_n be a cycle on $n \ge 3$ vertices. Then

$$S_b(C_n) = \begin{cases} 3 & ; n \le 9\\ 4 & ; 10 \le n \le 19\\ 5 & ; n \ge 20. \end{cases}$$

Packing coloring 00000000000000

Relation between $m_s(G)$ and $S_b(G)$

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $(m_s(G_n) - S_b(G_n)) \to \infty$ as $n \to \infty$.

・ロト ・回ト ・ヨト ・ヨトー

э

Packing coloring 00000000000000

Relation between $m_s(G)$ and $S_b(G)$

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $(m_s(G_n) - S_b(G_n)) \to \infty$ as $n \to \infty$.

Slika: The infinite family of graphs G_n .
Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Introduction	Acyclic coloring	Packing coloring	Star coloring
000000000	000000000000000000000000000000000000		000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs ${\cal G}$ and ${\cal H}$ we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs G and H we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

If $H \cong K_q$, then $S_b(G \lor H) = S_b(G) + q$.

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs G and H we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

If $H \cong K_q$, then $S_b(G \vee H) = S_b(G) + q$.

Corollary

For every positive integers k, ℓ, m, n , where $k, \ell \geq 5$, we have

•
$$S_b(K_{n,m}) = 1 + \max\{n, m\};$$

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs G and H we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

If $H \cong K_q$, then $S_b(G \vee H) = S_b(G) + q$.

Corollary

For every positive integers k, ℓ, m, n , where $k, \ell \geq 5$, we have

•
$$S_b(K_{n,m}) = 1 + \max\{n, m\};$$

•
$$S_b(W_k) = S_b(C_{k-1}) + 1;$$

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs G and H we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

If $H \cong K_q$, then $S_b(G \lor H) = S_b(G) + q$.

Corollary

For every positive integers k, ℓ, m, n , where $k, \ell \geq 5$, we have

•
$$S_b(K_{n,m}) = 1 + \max\{n, m\};$$

•
$$S_b(W_k) = S_b(C_{k-1}) + 1;$$

• $S_b(F_k) = S_b(P_{k-1}) + 1;$

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 000000000000000000000000000000000000
Join			

Theorem

For two non-complete graphs ${\cal G}$ and ${\cal H}$ we have

$$S_b(G \lor H) = \max\{S_b(G) + n_H, S_b(H) + n_G\}.$$

If $H \cong K_q$, then $S_b(G \lor H) = S_b(G) + q$.

Corollary

For every positive integers k, ℓ, m, n , where $k, \ell \geq 5$, we have

•
$$S_b(K_{n,m}) = 1 + \max\{n, m\};$$

•
$$S_b(W_k) = S_b(C_{k-1}) + 1;$$

• $S_b(F_k) = S_b(P_{k-1}) + 1;$

•
$$S_b(K_n \vee \overline{K}_m) = n+1.$$

Two more relations

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $(S_b(G_n) - S(G_n)) \to \infty$ as $n \to \infty$.

< 回 > < 三 > < 三 > -

Two more relations

Theorem

There exists an infinite family of graphs G_1, G_2, \ldots such that $(S_b(G_n) - S(G_n)) \to \infty$ as $n \to \infty$.

Corollary

There exists an infinite family of graphs G_1, G_2, \ldots such that $(S_b(G_n) - \chi_b(G_n)) \to \infty$ as $n \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

roduction Acyclic coloring

Packing coloring

Relation between $\chi_b(G)$ and $A_b(G)$

Theorem

There exists a graph G where $S_b(G)$ is arbitrarily smaller that $\chi_b(G)$.

Slika: Graph G for which $5 = A_b(G) < \chi_b(G) = 6$.

Acyclic coloring	Packing coloring	Star coloring
		0000000

Second example

Slika: Graph G for which $10 = S_b(G) < \chi_b(G) = 12$.

0000000000

Introduction 000000000	Acyclic coloring	Packing coloring	Star coloring 00000000000000000
End			

THANK YOU FOR YOUR ATTENTION!

Iztok Peterin TWO HEURISTIC APPROACHES FOR SOME SPECIAL COLORINGS OF G