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Definitions and Background
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Vertex Coloring

Vertex Coloring

A proper vertex coloring of a graph G is an assignment of colors to the
vertices such that no two adjacent vertices receive the same color.

The Chromatic Number of G , denoted by χ(G ), is the minimum number
of colors required for a proper vertex coloring of a graph G .

A

B C

χ(K3) = 3
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Vertex Coloring

Theorem (Brooks 1941)

For a graph G with maximum degree ∆(G ),

χ(G ) ≤

{
∆(G ) + 1 if G is a complete graph or an odd cycle,

∆(G ) otherwise.
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...

Edge Coloring of Graphs
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Edge Coloring

Edge Coloring

An proper Edge Coloring of a graph G is an assignment of colors to its
edges such that no two edges incident on a vertex receive the same color.

The Edge Chromatic Number of G , denoted by χ′(G ), is the minimum
number of colors required for a proper edge coloring of the graph G .

A

B C

χ′(K3) = 3
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Edge Coloring

Theorem (Vizing 1964)

For a graph G with maximum degree ∆(G ),

∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1

Definition

G is of Class 1 if χ′(G ) = ∆ and is of Class 2 if χ′(G ) = ∆ + 1
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Sufficient condition for Class I

Theorem

( Vizing ) If G∆ , (where G∆ , core of G, is the subgraph induced by all
major vertices of G), is forest, then G is of Class 1.
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Edge Coloring Classification

Definition

For a vertex v ∈ V (G ), we denote the degree of v by dG (v), the number
of vertices of maximum degree joined with v by d∗G (v), and
d∗(G ) = minv∈V (G) d

∗
G (v).

Theorem (Niessen and Volkman[1990])

If G is a graph of odd order 2n + 1 such that

1 E (G ) ≤ n∆(G ), that is, G is not overfull, and

2 δ(G ) ≥ n + |V (G∆)|+ d∗(G ).

then χ′(G ) = ∆(G ).

Theorem (Niessen and Volkman[1990])

If G is a graph of even order 2n such that δ(G ) ≥ n + |V (G∆)| − 2, then
χ′(G ) = ∆(G ).
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Some Conjectures

Definition

A graph is called a 1-factorizable is it can be factored into perfect
matchings.

Conjecture (Hilton and Chetwynd[1985])

For a regular simple graph G on 2n vertices of degree d(G ), if d(G ) ≥ n
then G is 1-factorizable.

Theorem (Niessen and Volkman[1990])

If G is a regular graph with d(G ) ≥ 1
2 (
√

7− 1)|V (G )|, then G is
1-factorizable. ( d(G ) ≥ 1.64n)
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Total Coloring

Total Coloring

A total coloring of a graph G is a coloring of the vertices and the edges
such that:

no two adjacent vertices receive the same color (vertex coloring),

no two incident edges receive the same color (edge coloring),

no edge receives the same color as one of its endpoints.

The Total Chromatic Number of G , denoted by χT (G ) or χ′′(G ), is the
minimum number of colors required for a total coloring a graph G .
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Total Coloring

A

B C

χ′′(K3) = 3
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Total Coloring

Total Coloring Conjecture (Behzad 1965, Vizing 65)

Let ∆(G ) is the maximum degree of the graph G .

∆(G ) + 1 ≤ χ′′(G ) ≤ ∆(G ) + 2
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Total Coloring Classification Problem

Total Coloring Conjecture (Behzad 1965, Vizing 65)

Let ∆(G ) is the maximum degree of the graph G .

∆(G ) + 1 ≤ χ′′(G ) ≤ ∆(G ) + 2

For a graph G which satisfies the Total Coloring Conjecture, there is a
natural classification into two categories:

G is of

{
Type 1 if χ′′ = ∆(G ) + 1,

Type 2 if χ′′ = ∆(G ) + 2.
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The class of Regular graphs is complete for TCC

If H is a subgraph of G , then χ”(H) ≤ χ”(G ).

( Konig’s Theorem) Every graph G with maximum degree k can be
embedded into a k-regular graph.

So, if TCC holds for regular graphs, then it holds for every graph. So,
the class of regular graphs is complete for TCC.
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Total Graph of a Graph

Definition

Total Graph of G = (V ,E ) is GT = (VT ,ET ), VT = V ∪ E and
ET = {ve|v is incident on e} ∪ {uv |uv ∈ E} ∪ {ef |e and f are adjacent in
G}.

Note: χ”(G ) = χ(GT ).

Theorem

The Indpendence Number of Total Graph satisfies:
α(GT ) = αT (G ) ≤ α(G ) + b |V (G)|−α(G)

2 c
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Comparison for Complete Graph

For a complete graph Kn with maximum degree ∆(Kn) = n − 1,

χ(Kn) = ∆(Kn) + 1,

χ′(Kn) =

{
∆(Kn) if n is even,

∆(Kn) + 1 if n is odd.

χ′′(Kn) =

{
∆(Kn) + 2 if n is even,

∆(Kn) + 1 if n is odd.
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Totoal Coloring of Kn, n odd

For odd n, arrange the vertices as the vertices of a regular n-gon. The
set {v1, v2vn, v3vn−1, v4vn−2, . . . , } is one color class, The set
{v2, v3v1, v4vn, v5vn−1, . . . , } is another color class and so on.
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b b

b b

b b

b

b b

b b

b b

b
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v5

So χ”(Kn) = ∆(Kn) + 1, if n is odd. So, Kn, n odd, is Type-I graph.
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Total Coloring of Kn, n is even

For even n, χ”(Kn) ≤ χ”(Kn+1) = n + 1 = ∆(Kn) + 2.

How to get lower bound?

Counting Technique

αT (Kn) ≤ n/2 and VE (Kn) = n + (n(n − 1)/2 = n(n + 1)/2. So,
χ”(Kn) ≥ n + 1.

So, χT (Kn) = n + 1 = ∆(Kn) + 2 is n is even. Hence, Kn is Type-II
for n even.
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Conformability

Definition

Conformable Graph: A (∆(G ) + 1)-vertex coloring of G is said to be a
conformable coloring if def (G ) ≥ (∆(G ) + 1)− r , where r is the number
of color classes with same parity of V , and
def (G ) =

∑
v∈V (G)(∆(G )− d(v)).

A graph that admits a conformable vertex coloring is called a conformable
graph..
Note: Some of the V ′i s can be empty.

Kn is conformable if n is odd else not conformable.

Kn,n is conformable if n is even.
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Necessary Condition for Type I Graph

Theorem

(chetwynd and Hilton(88)) Every Type-I graph is Conformable.

Suppose π be a (∆ + 1)-total coloring of G using colors c1, c2, . . . , cs .
Let ni be the number of vertices of G colored ci . Let r of the
numbers n1, n2, . . . , ns are of same parity as n = V (G ). The
remaining s − r numbers are of opposite parity as n. Let Vi be a color
class that is of different parity than V . Then V −Vi is odd and hence
there is vertex i v ∈ V \ Vi that is not colored with i and none of its
incident edges is colored with i in the total coloring. So, d(v) < ∆.
So, each color class ( vertex coloring) of different parity than V
contributes 1 to the def (G ). Hence, def (G ) ≥ s − r .
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Total Coloring of K2n Using non-conformabilty

χ”(K2n) ≤ χ”(K2n+1) = 2n + 1. So, χ”(K2n) ≤ ∆(K2n) + 2.

Note that, K2n is not Conformable as in every 2n- vertex coloring,
each color class is a singleton and hence is of different parity than V .
For the 2n-coloring to be conformable, def (G ) should have been 2n.
However, def (G ) = 0. So, χ”(K2n) ≥ 2n + 1.

Hence, K2n is Type-II.
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Conformability is NOT a SUFFICIENT CONDITION for
TYPE I Graph

For each even n ≥ 2, Kn,n is conformable. However, Kn,n is Type-II.

HILTON’s Conjecture: Let ∆(G ) ≥ 1
2 (n + 1). Then G is not type 1

iff either G contains a non-conformable subgraph H with
∆(H) = ∆(G ) or ∆(G ) is even and G contains a subgraph H
obtained by inserting a new vertex into an edge of K∆(G)+1.
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Total Coloring of Km,n

G = (X ,Y ,E ), X = {x1, x2, . . . , xm}, and Y = {y1, y2, . . . , yn}
Assume that m ≥ n.Let
Ap = {yixp+i |i = 1, 2, 3, ..., n}, p = 1, 2, 3, ...m, the indices are
modulo m. Ap is a complete matching.

Suppose m > n. Then Bp = Ap ∪ {xp} and Bm+1 = Y . Thus
χT (G ) = m + 1.

For m = n, αT (G ) ≤ m and hence χT (G ) ≥ m + 2. Take
Am+1 = X ,Am+2 = Y . Hence A1,A2, . . . ,Am + 2 are the color
classes. Hence, χT (G ) = m + 2.
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Strong Evidence for TCC to HOLD TRUE

Let Pn be the probability of graphs of order n having χT (G ) > ∆(G ) + 2.

1. McDiarmid(90) Pn → 0 as n→∞
3. Hind: Almost every graph satisfies TCC.
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Complexity Status

1. Arroya(89) Determining χT (G ) is NP-hard.

2. Sanchez-Arroya: Deciding whether χT (G ) = ∆(G ) + 1 even for
regular bipartite graph is NP-complete.
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How to show TCC holds for a class of graphs? Proof
Technique I

Lemma (Chetwyand and Hilton; Yap, Wang and Zhang [1986] )

If G contains an independent set S such that |G − S | ≤ ∆ + 1, then

χ′′(G ) ≤ ∆ + 2

Find a maximal matching M in G − S . Color the vertices in S and
edges in M using the same color.

Add a dummy vertex v∗ to G , and join edges between v∗ and vertices
in G − S . We call such graph G ∗.

If ∆(G ∗) = ∆(G ) + 1, then G ∗∆+1 is a forest and then G ∗ admits a
∆ + 1-edge coloring.

If ∆(G ∗) = ∆, use edge coloring results to give an edge coloring to
G ∗ using ∆(G ) + 1 colors.

Remove v∗ and the edges incident with it, and color the vertex w at
the other end with the color of the edge v∗w in G ∗.
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Proof Technique I

Find a maximal matching M in G − S . Color the vertices in S and
edges in M using the same color.

S G − S
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Proof Technique I

Add a dummy vertex v∗ to G , and join edges between v∗ and vertices
in G − S .

v∗

S G − S
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Proof Technique I

Use edge coloring results to give an edge coloring to G ∗ using
∆(G ) + 1 colors.

v∗

S G − S
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Proof Technique I

Remove the dummy vertex v∗ and the edges incident with it, and
color the vertex w at the other end with the color of the edge v∗w in
G ∗.

S G − S
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Complete Multipartite Graphs

Definition

The complete p-partite graph K = K (r1, . . . , rp), r1 ≤ r2, ·,≤ rp, is the
graph with vertex set V (K ) = ∪pi=1Vi with |Vi | = ri for 1 ≤ i ≤ p (each
set Vi is called a part) in which two vertices are joined if and only if they
occur in different parts of K .
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Complete Multipartite Graphs

K (r1, r2, r3) = K (2, 3, 3)

r1 = 2 r2 = 3

r3 = 3
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Results

Lemma (Chetwyand and Hilton; Yap, Wang and Zhang [1986] )

Let G be a graph of order n. If G contains an independent set S of
vertices such that |G − S | ≤ ∆ + 1, then

χ′′(G ) ≤ ∆ + 2

Theorem (Yap[89])

For a complete multipartite graph K (V1,V2, . . . ,Vp),

χ′′(K ) ≤ ∆(K ) + 2

Proof.

Take S = Vp, the largest part. Now |V (K ) \ S | ≤ ∆(G ) + 1. Hence TCC
holds for K (V1,V2, . . . ,Vp).
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Limitations of Technique I

The requirement that |G − S | ≤ ∆(G ) + 1 or in other words that G has
an independent set S of size at least |V (G )| −∆(G )− 1 is too stringent,
and very few graphs satisfy this criteria.
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Proof Technique II

We look for multiple independent sets S1, . . . ,Sk and corresponding
maximal independent matchings M1, . . . ,Mk such that

|G − ∪ki=1Si | ≤ ∆(G ) + 2− k.

We need to show the existence of such independent sets S1, . . . ,Sk
and corresponding maximal independent matchings M1, . . . ,Mk . We
color vertices of each independent set Si and corresponding maximal
matching Mi with the same color.

Add a dummy vertex v∗ to G , and join edges between v∗ and vertices
in G − ∪ki=1Si . We call such graph G ∗.

Use edge coloring results to give an edge coloring to G ∗ using
∆(G )− k + 2 colors.

We remove the dummy vertex v∗ and the edges incident with it, and
color the vertex w at the other end with the color of the edge v∗w in
G ∗.
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Limitations

The requirement that there exists multiple independent sets
S1, . . . ,Sk and corresponding maximal independent matchings
M1, . . . ,Mk such that

|G − ∪ki=1Si | ≤ ∆(G ) + 2− k .
is still too stringent, and few additional graphs satisfy this
criteria.
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...

Total Coloring Problems for some class of graphs
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Total Coloring Problem for some class of graphs

Class of Graphs Conjecture? Classification Problem

Complete Graphs, Kn Holds

{
Type 2 if n is even,

Type 1 if n is odd.

Complete Bipartite
Graphs, Kn,m

Holds

{
Type 2 if n = m,

Type 1 if n 6= m.

Complete Multipartite
Graphs, K

Holds

{
Type 1 if |V (K )| is odd,

? Otherwise.

Interval Graphs, G Holds

{
Type 1 if ∆(G ) is even,

? Otherwise.

Planar Graphs, G Holds except
∆ = 6

{
Type 1 if ∆(G ) ≥ 9,

? Otherwise.
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...

Total Coloring Conjecture
under specific conditions
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Graphs of low degree

Theorem (Rosenfeld [1971] and Vijayaditya[1971])

For any graph G having ∆(G ) = 3,

χ′′(G ) ≤ ∆(G ) + 2

Theorem (Kostochka[1977])

For any graph G having ∆(G ) = 4,

χ′′(G ) ≤ ∆(G ) + 2

Theorem (Kostochka[1978])

For any graph G having ∆(G ) = 5,

χ′′(G ) ≤ ∆(G ) + 2
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Graphs of high degree

Theorem (Yap, Wang and Zhang[1989])

For any graph G of order n having ∆(G ) ≥ n − 4,

χ′′(G ) ≤ ∆(G ) + 2

Theorem (Yap and Chew[1992])

For any graph G of order n having ∆(G ) ≥ n − 5,

χ′′(G ) ≤ ∆(G ) + 2

Theorem (Hilton and Hind[1993])

For any graph G of order n having ∆(G ) ≥ 3
4 |V (G )|,

χ′′(G ) ≤ ∆(G ) + 2
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Graphs of high degree

Theorem (Xie and Yang[2002)

Let G 6= K2 be a graph of even order. If δ(G ) + ∆(G ) ≥ 3
2 |V (G )| − 5

2 ,
then χ′′(G ) ≤ ∆ + 2.

Theorem (Xie and He[2005)

Let G be a regular graph of even order. If δ(G ) ≥ 2
3 |V (G )|+ 23

6 , then
χ′′(G ) ≤ ∆ + 2.
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Some Results on Classification Problem

Theorem (Hilton [1990)

Let n ≥ 1, let J be a subgraph of K2n, let e = |E (J)| and let j be the
maximum size (i.e. number of edges) of a matching in J. Then

X ′′(K2n − E (J)) = 2n + 1

if and only if e + j ≤ n − 1.

Theorem (Chen and Fu[1992])

Let G be a graph of order 2n and ∆(G ) = 2n − 2. Then G is of Type 2 if
and only if G c is a disjoint union of an edge and a star having 2n−3 edges.

Theorem (Xie and Yang[2002)

Let G 6= K2 be a graph of even order and G∆ be a forest. If
δ(G ) + ∆(G ) ≥ 3

2 |V (G )| − 3
2 , then χ′′(G ) = ∆ + 1.
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Classification: Complete Multipartite graph with odd
Order

Theorem (Chew and Yap[92]; Hoffman and Rodger[92])

Let K be a complete multipartite graph such that |V (K )| is odd,

χ′′(K ) = ∆(K ) + 1
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Classification: Complete Multipartite graph with even
Order

Theorem (Hoffman and Rodger[96])

Let K (r1, r2, . . . , rp) be a complete multipartite graph such that
|V (K )| = 2n. If

def (K ) ≥


2n − r1 if p = 2 or

if p is even, r1is odd, and r1 = rp−1,

2n − rp otherwise,

then K is of Type 1, where def (G ) = Σv∈V (G)(∆(G )− dG (v)).
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Conjecture

Conjecture (Hoffman and Rodger[96])

A complete multipartite graph K (r1, r2, . . . , rp) is of Type 2 if and only if

1. p = 2 and K is regular, or

2. |V (K )| is even and def (K ) is less than the number of parts of odd
size.
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Results based on size of parts

Theorem (Chew and Yap[92])

Let K (r1, r2, . . . , rp) be a complete multipartite graph. If r1 < r2, then K
is of Type 1.

Theorem (Dong and Yap[2000])

Let K (r1, r2, . . . , rp) be a complete multipartite graph such that |V (K )| is
even. If r2 ≤ r3 − 2, then K is of Type 1.

Theorem (Dalal, Panda and Rodger[2016])

Let K (r1, r2, . . . , rp) be a complete multipartite graph such that |V (K )| is
even. If r2 < r3, then K is of Type 1.
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Theorem (Dalal, Panda and Rodger[2023])

Let K (r1, r2, . . . , rp) be a complete multipartite graph such that |V (K )| is
even. If r3 < r4, then K is of Type 1.

Theorem (Dalal, Panda [2024])

Let K [V1,V2, . . . ,Vp] be a complete multipartite graph of even order such
that |V1| = . . . = |Vk | = r < |Vk+1| ≤ . . . |Vp|. If,

p

k
≥

{
4 when r is even,

7 when r is odd.

then K is of Type 1.
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Results based on numbers of parts

Theorem (Chew and Yap[92])

Let K (r1, r2, . . . , r3) be a complete 3-partite graph of even order. Then K
is of Type 1.

Theorem (Dong and Yap[2000])

Let K (r1, r2, . . . , r4) be a complete 4-partite graph of even order. Then K
is of Type 2 if and only if def(K) is less than the number of parts of odd
size.

Theorem (Dalal and Rodger[2014])

Let K (r1, r2, . . . , r5) be a complete 5-partite graph of even order. Then K
is of Type 2 if and only if def(K) is less than the number of parts of odd
size.
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Theorem (Dalal and Panda[2024])

Let K (r1, r2, . . . , r6) be a complete 5-partite graph of even order. Then K
is of Type 2 if and only if def(K) is less than the number of parts of odd
size.
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Clasification of high degree graphs

Chew ( Discrete Math, 1999) proved the following theorem for graphs of
odd order and high degree:

Theorem

If G is a graph of odd order, minimum degree δ(G ) such that
δ(G ) + ∆(G ) ≥ 3

2 |V (G )|+ |V (G∆)|+ 5
2 , then χ′′(G ) = ∆(G ) + 1.
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However, such sufficient conditions for graphs of even order are not
known. The classification problems for graphs of even order is generally
believed to be more difficult. Accordingly, graphs of even order have been
studied under certain constraints. Other than the classification result for
graphs of even order with ∆ = |V (G )| − 1 by Hilton and ∆ = |V (G )| − 2
by Chen and Fu, the only result that the authors are aware for general
graphs is the following result in 2003 by Xie and Yang.

Theorem

( Xie and Yang, Discrete Mathematics, 2003) Let G 6= K2 be graph of
even order and G∆ be a forest. If δ(G ) + ∆(G ) ≥ 3

2 |V (G )| − 3
2 , then

χ′′(G ) = ∆(G ) + 1.

The above Theorem has been used to prove many results. However, it puts
a stringent condition on G∆ to be a forest which limits its applicability.

Bhawani Sankar Panda (IITD) Total Coloring of Graphs February 16, 2024 54 / 83



More precisely, we prove that

Theorem

Let G 6= K2 be a graph of even order such that G∆ is triangle-free. Then,
χ′′(G ) = ∆(G ) + 1 if

1 δ(G ) + ∆(G ) ≥ 3
2 |V (G )| − 3

2 when |G∆| ≤ |V (G )| −∆(G ) + 1,

2 δ(G ) + 1
2 ∆(G ) ≥ |V (G )|+ |G∆|+ 1

2 , otherwise.
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The following corollary of Theorem 42 is a generalization of the Theorem
41 of Xie and Yang, as a graph G whose core is a forest satisfies the
hypothesis of the corollary.

Corollary

Let G be a graph of even order such that G∆ is triangle-free and has a
pendant vertex. If δ(G ) + ∆(G ) ≥ 3

2 |V (G )| − 3
2 , then χ′′(G ) = ∆(G ) + 1.

Proof of Corollary 43.

Since G∆ has a pendent vertex, say v , there are ∆− 1 vertices in G in
V (G ) \ V (G∆) adjacent to v . This implies (∆− 1) + |V (G∆)| ≤ |V (G )|.
Thus, |V (G∆)| ≤ |V (G )| −∆ + 1. By Theorem 42, G is of Type 1.
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We also prove the following theorem which provides sufficient conditions
for graphs with triangle-free to be of Type 1.

Theorem

Let G 6= K2 be a graph such that G∆ is triangle-free. If

δ(G ) + 3∆(G ) ≥ 7

2
|V (G )|+ 5

2
.

then χ′′(G ) = ∆(G ) + 1.
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Problems in Total Coloring

1 Upper Bounds for Total Coloring

2 Settling the Total Coloring Conjecture under specific conditions.

3 Settling the Total Coloring Conjecture for class of graphs.

4 Solve the classification problem for class of graphs for which Total
Coloring Conjecture holds.
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...

Upper Bounds for Total Coloring
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Probabilistic Method

Theorem (Hind[1990])

For any graph G ,

χ′′(G ) ≤ ∆(G ) + dlog |V (G )|e+ 3

Proof.

Wlg ssume n ≥ 3. let l = dlog |V (G )|e+ 2. Consider an arbitrary
∆ + 1 vertex coloring C = {S1, S2, . . . ,S∆+1} and an arbitrary ∆ + 1
edge coloring D = {M1,M2, . . . ,D∆+1} of G .

Let C1,C2, . . . ,C(∆+1)! be the (∆ + 1)! vertex colourings which are
obtained by permuting the colour class names of C .

We show that for some i , combining Ci with D yields a reject graph
R with ∆(R) ≤ l − 1 ( Ri = ∪∆+1

i=1 {xy |xy ∈ Mj and x or y receives
colour j under Ci}.
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Thus, R can be colored with l new colors, thereby completing the
desired ∆ + l + 1 total colouring of G .
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proof Contd...

To do so, we consider picking a Ci uniformly at random and let
R = Ri be the random reject graph thereby obtained.

We show that the expected number of vertices of degree at least l in
R is less than one and thereby prove that there exists an Ri with
maximum degree less than l .

By the Linearity of Expectation, to show that the expected number of
vertices of degree at least l is less than 1, it is enough to show that
for each vertex v , Pr(dR(v) ≥ l) < 1

n .

Now, at most one edge incident to v is in R because it conflicts with
v . So we consider the event that there are l − 1 edges incident to v
which conflict with their other endpoint. We need only show that the
probability of this event is less than 1

n .
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proof Contd..

We actually show that for any vertex v , the expected number of sets
of l − 1 edges incident to v , all of which are in R because they
conflict with their other endpoint is less than 1

n . Applying Markovs

Inequality, ( P(X ≥ a) ≤ E(X )
a , a > 0) we obtain the desired result.

To this end, we first compute the probability that a particular set
{vu1, vu2, . . . , vul−1} of l − 1 edges incident to v are all in R because
they conflict with their other endpoint. We let αi be the colour of
vui . We let βi be the colour that ui is assigned under C . We are
computing the probability that our random permutation takes βi to
αi for 1 ≤ i ≤ l − 1.

This probability is zero if the βi are not distinct.
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proof Contd...

Otherwise, the probability that the permutation does indeed take
each of the l − 1 colors βi to the corresponding αi is (∆+1−(l−1))!

(∆+1)! .

Now, there are at most
( ∆
l−1

)
sets of l − 1 edges incident to v in G.

So the expected number of sets of l − 1 edges incident with v which
conflict with their other endpoint is at most:( ∆
l−1

)
( ∆+1−(l−1))!

(∆+1)! < 1
(l−1)! .

It is easy to see that (dlog ne+ 1)! is greater than n provided n is at
least three, so the result holds.
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Lovasz Local Lemma and bounds

Theorem

The Lovasz Local Lemma: Consider a set E of (typically bad) events such
that for each A ∈ E ,

a Pr(A) = p < 1, and

b A is mutually independent of a set of all but at most d of the other
events. If 4pd ≤ 1 then with positive probability, none of the events
in E occur.
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assign each vertex a uniformly random colour without considering the
colours assigned to the other vertices.

Our bad events would each be determined only by the colours on a
cluster of vertices which are all very close together, and so events
corresponding to clusters in distant parts of the graph would occur
independently.

The problem with this approach is that it is very unlikely to generate
a proper vertex colouring.

To overcome this problem, consider a two phase procedure, consisting
of a random initial phase which retains the flavour of the random
procedure, followed by a deterministic phase which ensures that we
have a proper total colouring.

Bhawani Sankar Panda (IITD) Total Coloring of Graphs February 16, 2024 66 / 83



We first randomly partition V into k sets V1,V2, . . . ,Vk such that for
each i , the graph Hi induced by Vi has maximum degree at most
l − 1 with l near ∆

k .

We then greedily color the vertices of each Hi using the colors in
Ci = {(i − 1)l , . . . , il − 1}. This yields a kl coloring of V (G ).
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We fix any ∆ + 1 edge colouring {M1, . . . ,M∆+1} before performing
this process.

An edge xy conflicts with the endpoint x if xy is colored with a colour
in Ci and x is assigned to Vi . We note that if e does not conflict with
x then in the second phase, the color assigned to x will be different
from that used on e.

The advantage to widening our definition of conflict in this way is
that now the conflicts depend only on the random phase of the
procedure, and this allows us to apply the Local Lemma

Theorem

For any graph G with maximum degree ∆ sufficiently large,

χ”(G ) ≤ ∆ + ∆
3
4 .
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proof

As usual, we can assume that G is ∆-regular. Set k = k∆ = d∆
1
3 e,

l = l∆ = b∆+∆
3
4

k c. We fix an arbitrary ∆ + 1-edge colouring of G using
the colours 1, 2, . . . ,∆ + 1. We then specify a vertex colouring of G using

the colours 0, 1, . . . , kl − 1 = ∆ + ∆
3
4 − 1 as follows.

We first partition V (G ) into V1,V2, . . . ,Vk such that

(i) fore ach vertex v and part i , |Nv ∩ Vi | ≤ l − 1, and

(ii) For each vertex v , there are at most ∆
3
4 − 3 edgese = uv such that

u ∈ Vi and e has a colour in Ci .

Our next step will be to refine this partition into a proper colouring,
colouring the vertices of Vi using the colours in Ci .
By (i), we can do so using the simple greedy procedure since the subgraph
induced by Vi has maximum degree l − 1. By (ii), the reject graph formed

has maximum degree at most ∆
3
4 − 2 (there is a 2 and not a 3 here

because we may reject an edge incident to v because it has the same

colour as v). Recolouring these edges with at most ∆
3
4 − 1new colours

yields the desired total colouring of G .
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It only remains to show that we can actually partition the vertices so that
(i) and (ii) hold. To do so, we simply assign each vertex to a uniformly
random part (where of course, these choices are made independently). For
each v , i , we let Av ,i be the event that (i) fails to hold for {v , i} and Bv

be the event that (ii) fails to hold for v . We will use the Local Lemma to
prove that with positive probability none of these bad events occur. Bv

and Av ,i are determined by the colours of the vertices adjacent to v . Thus,
by the Mutual Independence Principal, they are mutually independent of
all events concerning vertices which are at distance more than 2 from v ,
and so every event is mutually independent of all but at most
(k + 1)∆2 < ∆3. other events. We will show that the probability that any
particular bad event holds is much less than 1

4∆3 . Thus, by the Local
Lemma, there exists a colouring satisfying (i) and (ii).
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Consider first the event Bv . Let Rejv be the set of edges e = uv with the
property that e has a colour in Ci and u ∈ Vi . Since there are k parts, the
probability that this occurs for a given e is exactly 1

k . Furthermore, as the
choices of the parts are independent, the size of Rejv is just the sum of ∆
independent 0− 1 variables each of which is 1 with probability p = 1

k Â·
Applying the Chernoff Bound for BIN(∆, p) we obtain:

Pr(||Rejv | − ∆
k | >

∆
k ) ≤ 2e−

∆
3k ,

Since k = d∆
1
3 e and ∆

3
4

2 > ∆
k , it follows that for ∆ sufficiently large,

Pr(Bv ) ≤ 2e−∆
1
2 .
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The size of Nv ∩ Vi is just the sum of ∆ independent 0− 1 variables each
of which is 1 with probability 1

k , and so applying the Chernoff Bound as
above we obtain that for large ∆,

Pr(Av ,i ) ≤ Pr(|Nv ∩ Vi | − ∆
k | >

∆
3
4

2 ) ≤ 2e−∆
1
2 .
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Total Coloring

First Approach: Choose an edge colouring and then choosing a vertex
colouring which didn’t significantly conflict with it. We then obtained
a total colouring by modifying the edge colouring so as to eliminate
the conflicts.
The opposite approach: first choosing a vertex colouring and then
choosing an edge colouring which does not conflict at all with the
vertex colouring, thereby obtaining a total colouring.

It is believed that ( If List Coloring Conjecture: χ(G ) = χL(G ) for a
Line graph) is True) for every ∆ + 3 -vertex coloring, there is some
edge colouring using the same colours with which it does not conflict.

We note that the analogous statement does not hold for edge
colouring, even if we replace the ∆ + 3 by 2∆− 1.

To see this, consider the graph obtained from a clique of order ∆ by
adding a pendant edge at each vertex The clique has maximum
degree ∆− 1 and hence has a ∆ edge coloring.
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We can extend this to a ∆ + 1-edge coloring of the whole graph by
coloring the pendant edge from a vertex v of the clique with the color
which does not appear on any of the other edges incident with v . But
now ∆ new colors are needed to colour the vertices of the clique if we
are to avoid conflicts.
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Given that we cannot always extend ∆ + 3 -edge colourings without
introducing new colours, why should we expect to be able to extend
∆ + 3 - vertex colourings?

The answer is that colouring the vertices places very few restrictions
on the edge colouring. Specifically, consider fixing a vertex colouring
C which uses the colours {1, 2, . . . ,∆ + 3}.
Then, for each edge e there is a list of ∆ + 1 acceptable colours
whose assignment to e will not generate a conflict.

Bhawani Sankar Panda (IITD) Total Coloring of Graphs February 16, 2024 75 / 83



Thus, if the List Colouring Conjecture is correct there is an edge
colouring in which each edge receives an acceptable colour and hence
which does not conflict with C .

We note that ∆ + 3 is best possible here, as Hind has given examples
of ∆ + 2-vertex colourings which cannot be extended to ∆ + 2 -total
colourings.

Although it is believed that every ∆ + 3 -vertex colouring can be
extended to a ∆ + 3-total colouring, vertex colourings with a special
property are considered which makes them easier to extend.

Bhawani Sankar Panda (IITD) Total Coloring of Graphs February 16, 2024 76 / 83



Definition A k-frugal colouring is a proper vertex colouring in which no
colour appears more than k times in any one neighbourhood.
Hind, Molloy and Reed [80] proved the following:

Theorem

Every graph G with maximum degree ∆ sufficiently large, has a log8 ∆-
frugal ∆ + 1-colouring.
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Theorem

There exists a ∆0 such that for ∆ ≥ ∆0, every log8∆-frugal
∆ + 1-colouring of a graph G with maximum degree ∆ can be extended to
a ∆ + 2 log10 ∆ + 2 -total colouring o G.

Combining these two results yields:

Theorem

If G has maximum degree ∆, the χ
′′

(G ) ≤ ∆ + O(log10 ∆).
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Some Results

Theorem (Hind[1990])

For any graph G and any positive integer k ≤ ∆(G ),

χ′′(G ) ≤ χ′(G ) + dχ(G )

k
e+ k
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bounds...

Theorem (Chetwynd and Haggkvist[1992])

If G is a graph of order n and k is an integer such that k! ≥ n,

χ′′(G ) ≤ χ′(G ) + k

Theorem (Sanchez and Arroyo[1995])

For any graph G,

χ′′(G ) ≤ χ′(G ) + bχ(G )

3
c+ 2
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Some Bounds which depend only on maximum degree

Theorem (Koshtochka[1977])

For any multigraph G with ∆(G ) ≥ 6,

χ′′(G ) ≤ 3

2
∆(G )

Theorem (Molly and Reed[1998])

For any graph G,
χ′′(G ) ≤ ∆(G ) + 1026

Remark. Molloy and Reed have mentioned that with much more effort
i1026 can be brought down to 500.
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Thank You
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