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Preface

Discrete Mathematics is a branch of mathematics involving discrete and
distinct mathematical objects. It is viewed as one of the fundamental fields
to understand the mathematical grounds of Computer Science, quintessentially
Algorithms, Cryptography, Graph Theory, Computational Geometry, and re-
lated disciplines. These fields are evergreen and prove to be highly promis-
ing due to immense research conducted around the globe. The Indo-Slovenia
Pre-conference School is an initiative to bring together eminent experts in the
fields of Discrete Mathematics to provide a forum for researchers to discuss the
current advancements in Algorithms and Discrete Applied Mathematics. The
knowledge dissemination and sharing will encourage inquisitive students to be-
come prospective researchers.

Young Reseachers’ Forum (YRF) is a pioneer effort in the series of CAL-
DAM conference. YRF is part of CALDAM Pre-Conference School and is the
fourth in the series of CALDAM conferences. The forum is a unique opportu-
nity as an open discussion session for ambitious young researchers to present a
problem they are attempting to solve in the theme of the conference and to re-
ceive feedback from participating peers and eminent researchers. YRF provides
a friendly environment for young researchers to foster research. An interactive
session of this kind enables students and researchers to engage in the exchange
of knowledge, ideas, and research methods that benefit all participants of the
Pre-Conference School. The deliberations with experts will be an inspiration
and motivation to the students to pursue a research career in field of Algorithms
and Combinatorics. The conference, along with the Pre-Conference School and
Young Researchers’ Forum it is associated with, provide a comprehensive plat-
form that enables attendees to set off on an integrated journey of exploration
and progress in the fascinating fields of algorithms and Combinatorics.
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Topic: On Properties of Modular and
Direct-Co-Direct Products

Topic: Cops and Robber on Surfaces
of Constant Curvature

10:30-11:00 Tea break

Technical Session – 2 Technical Session – 6

11:00 - 12:00 Swagato Sanyal 11:00 - 12:00 Ragesh Jaiswal

Topic: A Tutorial on Communication
Complexity and its applications

Topic: Some Results on Outlier and
Constrained Clustering

12:00 - 13:00 Bodhayan Roy 12:00 - 13:00 Akanksha Agrawal

Topic: Conflict-Free Coloring of Poly-
gons

Topic: Hybrid Parameterizations for
Graph Problems

13:00 - 14:30 Lunch Break

Technical Session – 3 Technical Session – 7

14:30 - 15:30 Riste Skrekoviski 14:30 - 15:30 Tanja Dravec

Topic: Selected Topics on Wiener In-
dex

Topic: Grundy Domination
Invariants

15:30 - 16:00 Tea Break

Technical Session – 4 Technical Session – 8

16:00 - 18:30 Young Researchers’ Forum 16:00 - 17:00 I. Vinod Reddy

(YRF 2024)
Topic: On Conflict-Free Coloring of
Graphs

17:00 - 17:15 Valedictory

19:30 - 21:00 Dinner



CONTENTS

S.No Title Page

1 Two interesting transit functions from IG
Lekshmi Kamal K.Sheela

1

2 A survey on Byzantine Gathering of Mobile Agents

Ashish Saxena

2

3 On Higher Multiplicity Hyperplane and Polynomial Covers for
Symmetry Preserving Subsets of the Hypercube

Chandrima Kayal

4

4 Color-Coded Dispersion in Mobile Robot Networks

Himani
5

5 ℓ-Locating-Dominating Codes in Infinite Grids

Soura Sena Das

6

6 Laplacian State Transfer on Graphs

Swornalata Ojha

7

7 Cycles in 3-connected Planar Graphs

Chitrak Das

8

8 Gathering on a Continuous Circle by Autonomous Robot Swarm
with defected view

Avisek Sharma

9

9 Disjoint Dominating and 2-Dominating Sets in Graphs: Hardness
and Approximation results

Somyashree Rana

10

10 Heterochromatic Geometric Transversals of Convex sets

Soumi Nandi

12

11 Locating and neighbor- locating colorings of graphs

Supraja D K

13

12 The complex problem of the complexity of Minimum Dominating set algorithms

Evangeline Prathibha M.
14

13 Arbitrary Pattern Formationon Infinite Grid in presence of Crash Fault

Pritam Goswami

15

14 Injective Coloring of Interval Graphs

Rumki Ghosh

16

15 Power Domination in Buckminsterfullerene

Ansily Silvaster

17



Two interesting transit functions from IG

Lekshmi Kamal K. Sheela

Department of Futures Studies, University of Kerala, Trivandrum 695 581, India.
lekshmisanthoshgr@gmail.com

Abstract

The interval function IG of a connected graph G is the function IG from V × V
to 2V such that IG(u, v) = {w ∈ V : w lies on some shortest u, v - path in G}.

IG satisfies the following classical axioms (b1), (b2), (b3) and (b4) on every
graph G but (m) may not, see [2].
(b1) If x ∈ R(u, v) and x ̸= v, then v ̸∈ R(u, x), ∀u, v, x ∈ V .
(b2) If x ∈ R(u, v), then R(u, x) ⊆ R(u, v), ∀u, v, x ∈ V .
(b3) If x ∈ R(u, v) and y ∈ R(u, x), then x ∈ R(y, v), ∀u, v, x, y ∈ V .
(b4) If x ∈ R(u, v), then R(u, x) ∩R(x, v) = {x}, ∀u, v, x ∈ V .
(m) If x, y ∈ R(u, v), then R(x, y) ⊆ R(u, v), ∀u, v, x, y ∈ V .

Two interesting transit functions derived from the interval function are the cycle
transit function C and the stress function S, defined as follows:
Cycle transit function: For u, v ∈ V , C(u, v) = {u, v}∪ {w : w ∈ I(x, y) where x, y ∈
I(u, v) and I(x, y) induces a cycle }. If I(u, v) doesn’t contain any cycle, then
C(u, v) = {u, v}.
Stress function: Let u, v ∈ V , S(u, v) = {x : x lies on every (u, v)− shortest path}.
Let x ∈ I(u, v) and x /∈ S(u, v) =⇒ ∃ more than one shortest u, v-path and x
lies in only one =⇒ x ∈ C(u, v). So we have
Observation: For u, v ∈ V (G), I(u, v) = C(u, v) ∪ S(u, v).

Both the functions satisfies the axioms (b1), (b2), (b4). From the definitions,
we observe that both functions have contrasting behavior w.r.t the presence of
distinct u, v-shortest paths. We note that C(u, v) = I(u, v) for all u, v ∈ V (G)
if and only if G is a thick graph (graph in which for any two vertices x, y ∈ V
with d(x, y) = 2 there exists at least two shortest paths between x and y) and
S(u, v) = I(u, v) for all u, v ∈ V (G) if and only if G is a geodetic graph (a graph
in which there is only one shortest path between any pair of vertices).
Problem Identify the properties satisfied by C but not S and vice-versa. Is it
possible to characterize the function S using a set of first order axioms?

References

1. M. Changat, A. K. lakshmikuttyamma, J. Mathews, I. Peterin, P.G. Narasimha-
Shenoi, G. Seethakuttyamma, S. Spacapan, A forbidden subgraph characterization
of some graph classes using betweenness axioms, Disc. Math. 313 (2013) 951–958.

2. H.M. Mulder The Interval function of a GraphMC Tract 132 Mathematisch Cen-
trum, Amsterdam, 1980

1



A survey on Byzantine Gathering of Mobile
Agents

Ashish Saxena

Indian Institute of Technology Ropar, India
ashish.21maz0004@iitrpr.ac.in

Abstract. The gathering of mobile agents in the presence of Byzantine faults
is first studied by Dieudonné et al. [1]. Authors provide a polynomial time al-
gorithm handling any number of weak Byzantine agents in the presence of at
least one good agent considering start-up delays, i.e., the good agents may not
wake up at the same time. Hirose et al. [2] come up with an algorithm con-
sidering start-up delays that use a strong team of at least 4f2 + 8f + 4 many
good agents but runs much faster than that of Dieudonné et al.. Later Hirose et
al. [3] provide another polynomial time algorithm for gathering in the presence
of at least 8f + 8 good agents. However, this algorithm does not work in the
presence of start-up delays, and simultaneous termination of good agents is not
possible. Recently, Saxena et al. [4] provide an algorithm considering start-up
delays of the good agents reducing the number of good agents w.r.t. Hirose et al.
from 4f2 +8f +4 to f2 +4f +9. Also, their algorithm guarantees simultaneous
termination of the good agents.

Dieudonné et al. [1] give algorithms that can handle strong Byzantine agents.
However, their algorithms were not in polynomial time. Additionally, there was
a gap between the upper and lower bounds for the number of agents in the
presence of strong Byzantine agents. Bouchard et al. [5] later match the bounds
for the number of agents but at the cost of an exponential time complexity. In
more recent work, Bouchard et al. [6] introduced a polynomial time algorithm
that can handle strong Byzantine agents, provided there are 5f2 + 6f + 2 good
agents. Some authors [7], [8] have presented a polynomial-time algorithm that
outperforms [6]. However, these algorithms make certain assumptions.

Keywords: Mobile agents, Anonymous graphs, Gathering, Byzantine Faults,
Deterministic algorithm

References

1. Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM
Trans. Algorithms, 11, 2014.

2. Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Gathering
with a strong team in weakly byzantine environments. In Proceedings of the 22nd
International Conference on Distributed Computing and Networking, ICDCN ’21,
page 26–35, New York, NY, USA, 2021. Association for Computing Machinery.

3. Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Brief an-
nouncement: Gathering despite a linear number of weakly byzantine agents. In
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Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing,
PODC’22, page 375–377, New York, NY, USA, 2022. Association for Computing
Machinery.

4. Ashish Saxena and Kaushik Mandal. A further study on weak byzantine gathering
of mobile agents. In Proceedings of the 25th International Conference on Distributed
Computing and Networking, ICDCN ’24, New York, NY, USA, 2024. Association
for Computing Machinery, forthcoming.

5. Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gath-
ering in networks. Distrib. Comput., 29:435–457, 2016.

6. Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering
in polynomial time. Distrib. Comput., 35:235–263, 2022.

7. Avery Miller and Ullash Saha. Fast byzantine gathering with visibility in graphs.
In Cristina M. Pinotti, Alfredo Navarra, and Amitabha Bagchi, editors, Algorithms
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tolerant gathering of mobile agents in arbitrary networks with authenticated white-
boards. IEICE Transactions on Information and Systems, E101.D(3):602–610, 2018.
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On Higher Multiplicity Hyperplane and
Polynomial Covers for Symmetry Preserving

Subsets of the Hypercube

Chandrima Kayal

Indian Statistical Institute, Kolkata

Abstract. Suppose we want to cover all the vertices of the n dimen-
sional Boolean cube using minimum number of hyperplanes. Observe
that this can be easily done using only two hyperplanes: any two hy-
perplanes containing two opposite n− 1 dimensional faces are sufficient.
Moreover, no single hyperplane can cover all the vertices. Now what if
we want to cover only a subset of the Boolean cube? For example, sup-
pose we want to cover all the vertices except one, viz. the origin. One
can observe that n hyperplanes are sufficient. But can we do better? The
celebrated covering result by Alon and Füredi [1] shows that at least n
hyperplanes will be required to cover all the vertices of the n cube leaving
out exactly one vertex. We shall discuss different versions of this cover-
ing problem, and we shall prove a generalization of Alon and Füredi’s
covering result for any symmetric subset of the Boolean cube. Also, we
shall show a strict separation between the size of a polynomial cover and
a hyperplane cover.
This work was jointly done with Arijit Ghosh, Chandrima Kayal and S.
Venkitesh.

References

1. Alon, N., Füredi, Z.: Covering the Cube by Affine Hyperplanes. European Journal of
Combinatorics 14 (1993). https://doi.org/https://doi.org/10.1006/eujc.1993.1011,
http://www.sciencedirect.com/science/article/pii/S0195669883710115,
https://doi.org/10.1006/eujc.1993.1011
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Color-Coded Dispersion in Mobile Robot
Networks

Himani

DA-IICT
Gandhinagar, Gujarat, India.

Abstract. The utilization of mobile robots to solve global problems in
a distributed manner is a unique and intriguing approach to problem-
solving. This approach can be applied to model numerous real-world
problems, including toxic hazard cleanup, large-scale maze exploration,
and collective gathering at a single location. The problem of dispersion
was first introduced in [1] by Augustine and Moses Jr., where they had
given a lower bound of Ω(logn) on the memory and of Ω(D) on the
time complexity for any deterministic algorithm on arbitrary graphs.
The dispersion for arbitrary graph is widely studied in [1–3] for local
and global communication model in [4].
We are currently focused on addressing the challenge of colored disper-
sion, where both nodes and robots exhibit distinct colors. The color-coded
dispersion problem on graphs is to disperse k colored robots among n col-
ored nodes, ensuring each robot settles at a node sharing the same color.
In practical terms, this dispersion algorithm holds significant applica-
tion, especially in contexts resembling multiple charge stations owned by
different companies. For example, envision a scenario where electric cars
or mobile robots navigate to their respective company’s charge station.
This application proves crucial in domains like logistics or transporta-
tion, where each colored node represents a distinct task or location. By
coordinating spatial arrangement based on color-coded attributes, the
algorithm enhances operational efficiency, proving valuable in dynamic
environments where distinct colors signify specific tasks or locations.

Keywords: Dispersion · Time and message complexity · Mobile robots
· Anonymous graphs

References

1. John Augustine and William K Moses Jr. Dispersion of mobile robots: a study of
memory-time trade-offs. In Proceedings of the 19th ICDCN, pages 1–10, 2018.

2. Ajay D Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on
graphs. In Proceedings of the 20th ICDCN, pages 218–227, 2019.

3. Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Fast dis-
persion of mobile robots on arbitrary graphs. In ALGOSENSORS, pages 23–40.
Springer, 2019.

4. Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of
mobile robots using global communication. J. Parallel Distrib. Comput., 161:100–
117, 2022.
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ℓ-locating-dominating codes in infinite grids

Soura Sena Das

Indian Statistical Institute, Kolkata, India

Abstract. Precisely locating intruders in a facility or locating faulty
processors in a multiprocessor environment has been the key motiva-
tion for locating-dominating codes, introduced by Slater in the late 80s.
Locating multiple intruders or faulty processors in a system led to the
generalization of locating-dominating codes into ℓ-locating dominating
codes, introduced by Honkala. We study these codes for infinite grids
and pose some open problems for the same.

Keywords: locating-dominating codes, ℓ-locating-dominating codes in
grids.

References

1. Honkala, I.: An optimal locating-dominating set in the infinite triangular grid.
Discrete Mathematics 306(21), 2670–2681 (2006)
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4. Lehtilä, T.: Three ways to locate-dominate every vertex in a graph. In: Proceedings
of Sixth Russian-Finnish Symposium on Discrete Mathematics. pp. 100–105

5. Pelto, M.: On identifying and locating-dominating codes in the infinite king grid.
Turku Centre for Computer Science (2012)

6. Pelto, M.: On (r,≤ 2)-locating-dominating codes in the infinite king grid. Adv. in
Math. of Comm. 6(1), 27–38 (2012)

7. Pelto, M.: Optimal (r,≤ 3)-locating–dominating codes in the infinite king grid.
Discrete Applied Mathematics 161(16-17), 2597–2603 (2013)

8. Pelto, M.: The number of completely different optimal identifying codes in the
infinite square grid. Discrete Applied Mathematics 233, 143–158 (2017)

9. Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64
(1987)

10. Slater, P.J.: Dominating and reference sets in a graph. Journal of Mathematical
and Physical Sciences 22(4), 445–455 (1988)

11. Slater, P.J.: Locating dominating sets and locating-dominating sets. In: Graph
Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial
International Conference on the Theory and Applications of Graphs. vol. 2, pp.
1073–1079 (1995)

12. Slater, P.J.: Fault-tolerant locating-dominating sets. Discrete Mathematics 249(1-
3), 179–189 (2002)

13. Slater, P.J., Sewell, J.L.: A sharp lower bound for locating-dominating sets in trees.
Australasian Journal of Combinatorics 60(2), 136–149 (2014)
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Laplacian State Transfer on Graphs

Swornalata Ojha

National Institute of Technology, Rourkela, Odisha-769008
ojhaswornalata9@gmail.com

Abstract. LetG be a finite, simple and undirected graph. A continuous-
time quantum walk on G relative to the Laplacian matrix L is defined
by the unitary matrix UL(t) := eitL, t ∈ R. A graph G is said to have
Laplacian perfect state transfer (LPST) between two distinct vertices u
and v if there is a time τ ∈ R such that UL(τ)eu = γev, for γ ∈ C and
|γ| = 1. LPST is a very rare phenomena, so we consider a relaxation
to it which is known as Laplacian pretty good state transfer (LPGST).
Then G is said to have LPGST between two distinct vertices u and
v if there exists a sequence τn ∈ R and γ ∈ C with |γ| = 1, such
that lim

n→∞
UL(τn)eu = γev. The small graphs which exhibit LPST are

K2, C4, K4\e. The complete graph K4n with missing link has LPST
between the two non-adjacent vertices. Also, it has been seen that every
tree with atleast three vertices has no LPST. The LPGST occurs between
the extremal vertices of the path with n vertices iff n is a power of 2.
Corona product of two graphs has no LPST whenever the first graph has
atleast two vertices. However, the corona product of any cocktail party
graph (nK2) with a single vertex graph admits LPGST. In this regard, to
check the existence of LPST on corona product of two graphs whenever
the first graph has atleast 3 or more vertices. Also, finding the values of
n for which the graph knokm exhibits LPGST for all m.

Keywords: Continuous time quantum walk · Laplacian perfect state
transfer · Laplacian pretty good state transfer · Corona product.

References

1. Bose, S., Casaccino, A., Mancini, S., Severini, S. (2009). Communication in XYZ
all-to-all quantum networks with a missing link. International Journal of Quantum
Information, 7(04), 713-723.
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and Business Media.
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state transfer in coronas. Linear Algebra and its Applications, 506, 154-167.

4. Pal, H. (2022). Laplacian state transfer on graphs with an edge perturbation between
twin vertices. Discrete Mathematics, 345(7), 112872.

5. Coutinho, G., Liu, H. (2015). No Laplacian perfect state transfer in trees. SIAM
Journal on Discrete Mathematics, 29(4), 2179-2188.

6. Banchi, L., Coutinho, G., Godsil, C., Severini, S. (2017). Pretty good state transfer
in qubit chains—the Heisenberg Hamiltonian. Journal of Mathematical Physics,
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Cycles in 3-connected Planar Graphs

Chitrak Das

Ramakrishna Mission Vivekananda Educational And
Research Institute

1 Abstract

Moon and Moser conjectured in 1963 that if G is a 3-connected planar graph on
n vertices, then G contains a cycle of length at least Ω(nlog3 2). This conjecture
was later proven by Chen and Yu in their paper ’Long Cycles in 3-Connected
Graphs’ [1]. The results presented by Chen and Yu can be leveraged to address
problems such as determining the minimum number of edge-disjoint cycles of
length at least Ω(nlog3 2) guaranteed in a 3-connected planar graph. This study
involves investigating related problems in this domain.

References

1. Chen, Guantao Yu, Xingxing. (2002). Long Cycles in 3-Connected Graphs. J. Comb.
Theory, Ser. B. 86. 80-99. 10.1006/jctb.2002.2113.
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Gathering on a Continuous Circle by
Autonomous Robot Swarm with defected view

Avisek Sharma

Department of Mathematics, Jadavpur University, Kolkata India

Abstract. A swarm of autonomous robots (mobile computing units) is
deployed on a continuous circular path. This presentation focuses around
gathering problem which asks the robots to gather at a point which is not
decided beforehand. The robot movement is restricted on the circle. The
robots are anonymous (no unique identifier), identical (physically indis-
tinguishable), homogeneous (all robots execute the same algorithm). The
robots operate in Look-Compute-Move cycle. In the “look” phase a robot
finds out the position of the other visible robots. Taking this positions
as input, in the “compute” phase the robot run an inbuilt algorithm and
obtains a position. Finally in the “move” phase the robot moves the po-
sition. The gathering problem in this setting has been already studied in
[1–3] all of has considered limited visibility for the robots. In [4], authors
introduced another model called “defected view”. In a (N, k)-defected
view model, a robot can see k robots among other N − 1 robots. This is
a relevant model in the practical view point as in an erroneous environ-
ment a robot can miss out some other robots presence. In [1, 2], authors
considered π visibility model where a robot cannot see the any robot
situating at the angular distance π. In other robots, the farthest position
on the circle from a robot is invisible for the robot. In the proposed work
we want to generalised the model by introducing defected view model in
it. In this work, we want to consider (N,N−2)-defected view model, i.e.,
a robot cannot see at most one robot which is farthest from it. This work
will investigate what minimal capabilities are required for the robot to
solve the gathering problem in (N,N − 2) model.

References

1. Ghosh, Satakshi, et al. ”Brief Announcement: Asynchronous Gathering of Finite
Memory Robots on a Circle Under Limited Visibility.” International Symposium
on Stabilizing, Safety, and Security of Distributed Systems. Cham: Springer Nature
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2. Di Luna, Giuseppe A., et al. ”Gathering on a Circle with Limited Visibility by
Anonymous Oblivious Robots.” 34th International Symposium on Distributed Com-
puting (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

3. Flocchini, Paola, et al. ”Gathering and election by mobile robots in a continuous
cycle.” 30th International Symposium on Algorithms and Computation (ISAAC
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

4. Kim, Yonghwan, et al. ”Brief Announcement: Gathering Despite Defected View.”
36th International Symposium on Distributed Computing (DISC 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.
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Disjoint Dominating and 2-Dominating Sets in
Graphs: Hardness and Approximation results

Soumyashree Rana1, Sounaka Mishra2, and Bhawani Sankar Panda1

1 Department of Mathematics, Indian Institute of Technology Delhi, New Delhi,
110016, India

2 Department of Mathematics, Indian Institute of Technology Madras, Chennai,
600036, India

Abstract. A set D ⊆ V of a graph G = (V,E) is a dominating set of G
if each vertex v ∈ V \D is adjacent to at least one vertex in D, whereas
a set D2 ⊆ V is a 2-dominating (double dominating) set of G if each
vertex v ∈ V \D2 is adjacent to at least two vertices in D2. A graph G
is a DD2-graph if there exists a pair (D,D2) of dominating set and 2-
dominating set of G which are disjoint. In this paper, we solve some open
problems posed by M.Miotk, J. Topp and P.Żyliński (Disjoint dominat-
ing and 2-dominating sets in graphs, Discrete Optimization, 35:100553,
2020) by giving approximation algorithms for the problem of determin-
ing a minimal spanning DD2-graph of minimum size (Min-DD2) with
an approximation ratio of 3; a minimal spanning DD2-graph of max-
imum size (Max-DD2) with an approximation ratio of 3; and for the
problem of adding minimum number of edges to a graph G to make it a
DD2-graph (Min-to-DD2) with an O(logn) approximation ratio. Fur-
thermore, we prove that Min-DD2 and Max-DD2 are APX-complete
for graphs with maximum degree 4. We also show that Min-DD2 and
Max-DD2 are approximable within a factor of 1.8 and 1.5 respectively,
for any 3-regular graph. Finally, we show the inapproximability result of
Max-Min-to-DD2 for bipartite graphs, that this problem can not be

approximated within n
1
6
−ε for any ε > 0, unless P=NP.

Keywords: Domination· double domination· NP-complete· Approxi-
mation algorithm· APX-complete.
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Heterochromatic Geometric Transversals of
Convex sets

Presenter: Soumi Nandi
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Abstract. An infinite family F of closed convex bodies in Rd has (ℵ0, q)-
property with respect to k-transversals if any countable subcollection of
F contains q sets that can be pierced by a single k-flat (k-dimensional
affine space). Observe that (ℵ0, q)-property is a relaxation of the well-
known (p, q)-property of Hadwiger and Debrunner (Archiv der Math-
ematik 1957) by replacing p with ℵ0. Keller and Perles (Symposium
on Computational Geometry 2022) introduced (ℵ0, q)-property and they
showed that if F is a collection of fat convex sets and satisfy (ℵ0, k+2)-
property with respect to k-transversals then F can be pierced by finitely
many k-flats. I will present countably colorful generalizations of the above
result and also establish their tightness by proving a number of no-go
theorems.

Keywords: (p, q)-theorem · geometric transversals · convexity.

1 Open problem

Can we establish the same result without the fatness assumption?
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Abstract. A proper k-vertex-coloring of a graphG is a neighbor-locating
k-coloring if for each pair of vertices in the same color class, the sets of
colors found in their neighborhoods are different. The neighbor-locating
chromatic number χNL(G) is the minimum k for which G admits a
neighbor-locating k-coloring. A proper k-vertex-coloring of a graph G
is a locating k-coloring if for each pair of vertices x and y in the same
color-class, there exists a color class Si such that d(x, Si) ̸= d(y, Si). The
locating chromatic number χL(G) is the minimum k for which G admits
a locating k-coloring. It follows that χ(G) ≤ χL(G) ≤ χNL(G) for any
graph G, where χ(G) is the usual chromatic number of G.
It is shown that for any three integers p, q, r with 2 ≤ p ≤ q ≤ r (ex-
cept when 2 = p = q < r), there exists a connected graph Gp,q,r with
χ(Gp,q,r) = p, χL(Gp,q,r) = q and χNL(Gp,q,r) = r [2]. It is interest-
ing to know under what conditions does a graph have neighbor-locating
number equal to locating chromatic number (resp. chromatic number).
Alcon et al. [1] proposed the following conjecture for Mycielski graph
µ(G) of a graph G: For every graph G, χNL(µ(G)) = χNL(G) + 1.
Till date, the conjecture is proved for complete multipartite graphs [1],
paths, cycles, fans, wheels and comb graphs [3]. The conjecture still re-
mains open.
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The complex problem of the complexity of
Minimum Dominating set algorithms
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Domination, a fundamental concept in graph theory, seeks to control a net-
work by strategically positioning a minimal set of ”domineering” elements. Find-
ing these sets efficiently has fueled research for decades, leading to a rich tapestry
of algorithmic strategies. For many domination problems, NP-completeness casts
a shadow of computational hardness. However, the battle is not lost. Parametrized
complexity analysis is offering nuanced insights into the problem’s inherent diffi-
culty, paving the way for effective fixed-parameter tractable algorithms for spe-
cific problem configurations. Additionally, approximation algorithms and heuris-
tic approaches are providing practical solutions for large-scale networks.

The classical bound for finding the minimum dominating set S is atO(1.5137n).
This was discovered by van Rooij, J. M. M.; Nederlof, J.; van Dijk, T. C. in 2009.
It was mentioned in their paper titled ”Inclusion/Exclusion Meets Measure and
Conquer: Exact Algorithms for Counting Dominating Sets”, Proc. 17th Annual
European Symposium on Algorithms, ESA 2009, Lecture Notes in Computer
Science, vol. 5757, Springer, pp. 554565.

There is ongoing attempts in various fields, such as quantum computing,
biomolecular computing to create MDS algorithms of better complexity. There
is also domain specific attempts designed for social networks, sensor networks
etc. There is no denying that MDS algorithms are NP-hard and that it is diffi-
cult to find a simple solution. The question that I ponder, is “What approach
has actually yielded the best returns to create an MDS algorithm of improved
complexity? And while we keep challenging the bound, is there a certain bound
beyond which it is impossible to improve?”
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Pritam Goswami

Jadavpur University, Kolkata-700032,India
pritamgoswami.math.rs@jadavpuruniversity.in

Abstract. The field of swarm robot algorithms extensively explores the
Arbitrary Pattern Formation (APF) problem. In this problem, a group
of n robots is initially placed in an environment and are given a particular
but arbitrary pattern defined by a set of points in a global coordinate
system as input. The task is for the robots to navigate in a manner that
concludes with them forming the specified pattern before termination.
Bose et al. initially presented this problem on an infinite grid ([1]), and
subsequent studies have explored it, focusing on optimizing factors such
as time, movement, and space requirements (Ghosh et al. [ IJPEDS(J),
2023 ], Hector et al. [ IPDPS, 2022 ], Sharma et al.[ ICDCN,2024 ]).
However, none of these works have addressed the potential scenario of
robots encountering crashes.
In our work, we introduce the APF (n,f) problem on an infinite rectan-
gular grid, where n robots are initially placed on grid vertices, and up
to f robots may crash. The objective is for the remaining robots to form
the given pattern, incorporating the positions of crashed robots into the
final pattern representation. Robots can move only to adjacent vertices
and are not visible on edges.
Our findings reveal that, employing the OBLOT robot model (robots
without persistent memory and lacking explicit communication), it is
unfeasible to solve APF (n,1) on an infinite rectangular grid using ei-
ther a semi-synchronous or asynchronous scheduler. This leads to two
important conclusions:
– To solve APF (n,1) on an infinite rectangular grid with OBLOT

robot model, it is necessary to have a fully synchronous scheduler.
– To solveAPF (n,1) on an infinite rectangular grid under semi-synchronous

or, asynchronous scheduler it is necessary for the robots to have ei-
ther finite persistent memory or explicit communication using finite
size messages.

While the necessity aspects have been addressed, the sufficiency parts
remain open challenges awaiting resolution.
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Injective Coloring of Interval Graphs
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Abstract. An injective k-coloring of a graph G = (V,E) is a function
f : V → {1, 2, . . . , k} such that for every pair of vertices u, v having a
common neighbor, f(u) ̸= f(v). The injective chromatic number χi(G)
of a graph G is the minimum value of k for which G admits an injec-
tive k-coloring. Given a graph G and a positive integer k, the Decide
Injective Coloring Problem is to decide whether G admits an injec-
tive k-coloring. Decide Injective Coloring Problem is known to be
NP-complete for chordal graphs. In this paper, we prove that the injec-
tive chromatic number of an interval graph is either ∆(G) or ∆(G) + 1,
where ∆(G) is the maximum degree of G. We also characterize the in-
terval graphs having χi(G) = ∆(G) and χi(G) = ∆(G) + 1. Finally, we
present a linear time algorithm to find the injective chromatic number
of an interval graph.
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A nonempty subset S of vertices of a graph G = (V,E) is said to be a power domi-
nating set (PDS) if every vertex and every edge in the graph are monitored by S. The
power domination problem is NP-Complete in general. The power domination number
γp(G) is the minimum cardinality of a PDS of G. Any dominating set of G is a power
dominating set G and therefore, 1 ≤ γp(G) ≤ γ(G).
Graph invariants are useful in studying certain properties of chemical compounds.
Fullerenes, a highly symmetrical allotrope of carbon atoms joined by single and dou-
ble bonds. The graph of Buckminsterfullerene C60 is a 60-vertex 3-regular 3-connected
planar graph comprised of pentagonal and hexagonal faces. We observe that the power
domination number is at most 4. There are 158 non-isomorphic Kekule structures (dou-
ble bonds) of C60 [2]. These are equivalent to the distinct perfect matchings of C60

graph. Each double bond between the carbon atoms of C60 are compressed to a single
vertex (edge compression) which results in a 4-regular graph H with 30 vertices and 60
edges. Joela [1] refers such compressed structure of a molecule as a submolecule of its
double bond. The power domination of these 158 submolecules of C60 are studied and
we found that 3 ≤ γp(H) ≤ 6. The future work is to study the structural aspects of
these submolecules and the contribution of vertices in attaining its power domination
number.

References

[1] Heikki Joela. “The transformation of aromatic molecules into the subspace of their
double bonds”. In: Theoretica chimica acta 39 (1975), pp. 241–246.
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