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Conflict-free Coloring

Definition

Given a graph G, a conflict-free coloring is an assignment of colors to V(G)
such that

I For each vertex v there is at least one color appearing exactly once in
the neighborhood of v.

The minimum number of colors required for such a coloring is called the
conflict-free chromatic number.

We consider both closed and open neighborhoods.
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Conflict-free closed neighborhood (CF-CN) coloring

Definition

Given a graph G, a conflict-free closed neighborhood coloring is an
assignment of colors to V(G) such that

I For each vertex v there is at least one color appearing exactly once in
the closed neighborhood of v.

The minimum number of colors required for such a coloring is called the
CF-CN chromatic number, denoted by χCN(G).
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Figure 1: χCN(G) = 2
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Conflict-free open neighborhood (CF-ON) coloring

Definition

Given a graph G, a conflict-free open neighborhood coloring is an
assignment of colors to V(G) such that

I For each vertex v there is at least one color appearing exactly once in
the open neighborhood of v.

The minimum number of colors required for such a coloring is called the
CF-ON chromatic number, denoted by χON(G).
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Figure 2: χON(G) = 2



Conflict-free open neighborhood (CF-ON) coloring

Definition

Given a graph G, a conflict-free open neighborhood coloring is an
assignment of colors to V(G) such that

I For each vertex v there is at least one color appearing exactly once in
the open neighborhood of v.
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CFCN (or) CF-ON problem

Input: A graph G

Question: Find χCN(G) (or) χON(G).



Examples: Complete Graphs
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Figure 3: χCN(K5) = 2 and χON(K5) = 3
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Relation between χ(G), χCN(G) and χON(G)

I χCN(G) 6 χ(G) for any graph G.

I χCN(G) 6 2χON(G) for any graph G [Pach and Tardos, Combin. Probab.

Comput 2009].

I χ(G) vs χON(G)

I Let K ′n be the graph obtained from the complete graph Kn on vertices
by subdividing each edge.

I χ(K ′n) = 2 as it is bipartite.

I Each of the new vertex of K ′n has degree 2, so all original vertices must
receive different colors, hence χON(K ′n) = n.
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Motivation: Frequency Assignment Problem

1. The conflict-free coloring problem was introduced by Even et al. [FOCS

2002] in a geometric setting to study the frequency assignment problem
for cellular networks.

2. The cellular networks contains two different types of nodes:
base-stations and clients.

3. Fixed frequencies are assigned to base stations to allow connections to
clients.

4. The frequency assignment problem on cellular networks is an
assignment of frequencies to base stations such that for each client
there exists a base station of unique frequency within his region.



Related Work

I Due to both its practical motivations and its theoretical interest,
conflict-free coloring has been investigated in several papers.

I Pach and Tardos [Combin. Probab. Comput 2009] initiated the theoretic
study of the CF-chromatic number in general graphs and hypergraphs.

I The problem of determining the CF-CN (resp. CF-ON) chromatic
number of a graph is NP-complete [Gargano and Rescigno TCS 2015].

I Determining the CF-ON chromatic number is NP-complete even on
bipartite graphs.



Restricted Graph Classes 1

I Interval Graphs

I Split Graphs

I Cographs

1I.V., Theoretical Computer Science 2018



Interval Graphs

Definition

A graph G = (V, E) is an interval graph if there exists a set I of intervals on
the real line such that there is a bijection f : V → I satisfying the following:
v1v2 ∈ E(G) if and only if f(v1) ∩ f(v2) 6= ∅.
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Interval Graphs

Theorem

Let G be an interval graph with at least one edge, then

χCN(G) 6 4 and χON(G) 6 4

Idea:
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Interval Graphs: Improved bounds

I Fekete and Keldenich [ISAAC-2017] showed that χCN[G] 6 3, which is
tight.

I Bhyravarapu et al.[MFCS-2022] showed that χON(G) 6 3, which is tight.



Polynomial time algorithms: Interval Graphs

I Recently Gonzalez and Mann [DAM-2024] showed that CF-CN and
CF-ON problems can be solved in polynomial time when mim-width and
number of colors are bounded. This includes the class of interval graphs.

I Independent of Gonzalez and Mann [DAM-2024], Bhyravarapu et al.
[MFCS-2022] also showed that the CF-CN and CF-ON problems can be
solved in polynomial time.

I Their algorithm is more explicit runs in O(n5) and based on the idea of
multi-chain ordering of interval graphs.



Split Graphs

Definition (Split Graph)

A graph G = (C, I) is a split graph if its vertices can be partitioned into a
clique and an independent set.

Theorem

Let G = (C, I) be a split graph, then

χCN[G] 6 3

Idea:

I Color one vertex of C with 1 and all remaining vertices (if any) with 2.

I Color all vertices (if any) of independent set I with 3.
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Split Graphs: CFCN Coloring

Theorem

Let G = (C, I) be a split graph without universal vertices.

1. If |C| = 2 then χCN[G] = 2.

2. If |C| > 2 then χCN[G] = 2 if and only if |N(v) ∩ I| = 1 for every v ∈ C.

Theorem

The CF-CN coloring problem is polynomial time solvable on the class of
split graphs.
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Split Graphs-CFON

Theorem

The CF-ON coloring problem is NP-complete on the class of split graphs.



Cographs

Definition

A graph G is a cograph if G does not contain any path with four vertices as
an induced subgraph.

Definition (Recursive)

The class of cographs can also be defined recursively as follows.

I The one vertex graph K1 is a cograph.

I Let G1 and G2 be two cographs. Then, the disjoint union G1 +G2 is a
cograph.

I Let G1 and G2 be two cographs. Then, the join G1 ⊕G2 is a cograph.
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Cographs

Theorem

Let G be a connected co-graph on n(> 5) vertices , then

2 6 χCN[G], χON[G] 6 3

Idea: Let G = G1 ⊕G2,
I For CF-CN/CF-ON coloring color one vertex of G1 with 1, one vertex

of G2 with 2 and all other remaining vertices (if any) of G with 3.



Polynomial-time Algorithm for CF-CN and CF-ON coloring on
Cographs

Lemma

Let G be a cograph with at least five vertices. The graph G has a universal
vertex if and only if χCN(G) = 2.

Lemma

CF-ON coloring can be solved in polynomial time on cographs.

Proof follows from the following facts:

I Cographs have clique-width at most two.

I CF-ON coloring [IWOCA 2021] can be solved in time O(2O(wk)nO(1)),
where w is the clique-width of G, k is the number of colors and n is the
number of vertices of G.
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Open Question: Chordal Graphs

1. Chordal graphs are superclass of interval graphs and split graphs.

2. CF-ON coloring is NP-complete on chordal graphs.

3. What is the complexity of CF-CN coloring on chordal graphs?
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Figure 4: → represents ⊂ relation.
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Parameterized Complexity

I The time complexity of an algorithm is measured not just in terms of
the input size but also a additional secondary measurement called
parameter.

I The goal is to identify interesting parameterizations of hard problems
where we can design algorithms running in time f(k)poly(n) .

I Such algorithms are called “fixed-parameter tractable” (FPT)
algorithms



Kernelization

A kernelization for a parameterized problem L is an algorithm that takes an
instance (x, k) and maps it in time polynomial in |(x, k)| to an instance
(x ′, k ′) such that

I (x, k) ∈ L ⇔ (x ′, k ′) ∈ L
I |(x ′, k ′)| 6 f(k) where f is a function we call the size of the kernel.

Theorem

A parameterized problem Π is FPT if and only of it admits a kernel.
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How to choose a parameter

In general there are two main approaches in selecting a parameter for graph
problems

I The natural parameter is size of solution.

I The parameters which do not involve objective function, which are
selected based on structure of the graph called structural graph
parameters.

I In this talk, we concentrate on structural parameters: Vertex cover and
distance to cluster
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Relation between Parameters
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Figure 5: There is a line between two parameters if the parameter below is larger
than the parameter above.



Parameterized Algorithms

I Vertex Cover(warmup)

I Distance to cluster



Vertex Cover

Definition

A vertex cover of a graph G is a subset X ⊆ V(G) of vertices such that for
every edge of G at least one of its endpoints is in X. A minimum vertex
cover is a vertex cover having the smallest possible number of vertices.

v1

v2

v3

v4

v5

1

Figure 6: {v2, v4} is a vertex cover of size two.



Parameterization by Vertex Cover

Input: A graph G, a vertex cover X ⊆ V(G) and an integer k

Parameter: d := |X|

Question: Does G have a CF-CN coloring with at most k colors?

Goal: Design an algorithm with running time f(d)poly(n)
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Input: A graph G, a vertex cover X ⊆ V(G) and an integer k

Parameter: d := |X|

Question: Does G have a CF-CN coloring with at most k colors?

Goal: Design an algorithm with running time f(d)poly(n)



Parameterization by Vertex Cover2

Theorem

If G has a vertex cover of size d then

χCN[G] 6 d+ 1 and χON(G) 6 2d+ 1

Idea (i):
I Let X be a vertex cover of size d and I = V − X is an independent set.
I To each u ∈ I assign the color 0.
I Color vertices of X with d distinct colors.
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Parameterization by Vertex Cover

Idea (ii): A CF-ON-(2d+ 1)-coloring C of G can be obtained as follows.

I To each u ∈ I assign the color C(u) = 0.

I Color vertices of X with d distinct colors from the set {1. . . . , d}.

I For each x ∈ X if C(N(x)) = {0} choose one node u ∈ N(x) and recolor it
with any C(u) ∈ {d+ 1, ..., 2d} that is not already used by C.
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FPT algorithm for CF-CN Coloring w.r.to Vertex Cover

Theorem

CF-CN coloring problem is fixed-parameter tractable when parameterized by
the vertex cover number of the input graph.

Proof Idea (ii): Let X be a vertex cover of G of size d.
I Without loss of generality we assume that k < d+ 1.
I For a subset Y ⊆ X, define

TY = {x ∈ I | N(x) ∩ X = Y}

I I
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CF-CN Coloring-Vertex Cover

I I
d
x

Tye Ty T ᵈ

INDEPENDENTSETI

I For each Y ⊆ X, if |TY | > d+ 2 then removing all vertices except d+ 2

from TY does not change χCN(G).

I After applying the above rule on input graph G, the number of vertices
in the reduced instance is at most d+ (d+ 2)2

d
.



CF-ON with respect to Vertex Cover

Along the similar lines, we can show that CF-ON is FPT parameterized by
vertex cover.



Distance to cluster (or) cluster vertex deletion number

Definition

A cluster graph is a disjoint union of complete graphs.

Definition

The cluster vertex deletion number (or distance to a cluster graph) of a
graph G is the minimum number of vertices that have to be deleted from G
to get a disjoint union of complete graphs.

I The cluster vertex deletion number is an intermediate parameter
between the vertex cover number and the clique-width/rank-width.

I We show that both variants of conflict free coloring problems are FPT
parameterized by the cluster vertex deletion number.
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Cluster vertex deletion number: CFCN

Theorem

If G has a cluster vertex deletion number d then

χCN[G] 6 d+ 2

Idea: Let X ⊆ V(G) of size d such that G− X is cluster graph.
A CF-CN (d+ 2)-coloring CG of G can be obtained as follows.
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Figure 7: Neighborhood diversity five.
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Cluster vertex deletion number: CFON

Theorem

If G has a cluster vertex deletion number d then

χON[G] 6 2d+ 3

Idea: Let X ⊆ V(G) of size d such that G− X is cluster graph.
A CF-ON (2d+ 3)-coloring CG of G can be obtained as follows.

d
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Figure 8: Neighborhood diversity five.



Improved Results: cluster vertex deletion number

Bhyravarapu and Kalyanasundaram [WG 2020] improved the bounds and
obtained the following results.

Theorem

χCN(G) 6 max{3, d+ 1} and χON(G) 6 d+ 3, where d is cluster vertex
deletion number of G.



FPT Algorithm-CFCN-CVD

Theorem

The CF-CN coloring problem is fixed-parameter tractable when
parameterized by the cluster vertex deletion number of the input graph.

Idea: Let X ⊆ V(G) of size d such that G− X is cluster graph.
I Without loss of generality we assume that k < d+ 2.
I For a subset Y ⊆ X and a clique C in G− X, define

TCY = {x ∈ C | N(x) ∩ X = Y}

I This way we can partition vertices of a clique C into at most 2d subsets
(called types), one for each Y ⊆ X.
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Theorem

The CF-CN coloring problem is fixed-parameter tractable when
parameterized by the cluster vertex deletion number of the input graph.
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FPT Algorithm-CFCN-CVD

Reduction Rule 1: For a clique C ∈ G \ X, if a type TCY (G) has more than
k+ 1 vertices for some Y ⊆ X, then removing all vertices except k+ 1 from
TCY (G) does not change χCN[G].
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FPT Algorithm-CFCN-CVD

I For each subset S ⊆ {0, 1, . . . , k+ 1}2
d

,

TS(G1) := {C ∈ G1 \ X | TC = S}

I Next, we partition the cliques in G− X based on their type vector.
I This way we can partition cliques of G1 \ X into at most (k+ 2)2

d

subsets (called mega types), one for each S ⊆ {0, 1, · · · , k+ 1}2d .

i a lied

Figure 9: Neighborhood diversity five.



FPT Algorithm-CFCN-CVD

Reduction Rule 2: For a subset S ⊆ {0, 1, · · · , k+ 1}2d , If the mega type
TS(G) has more than d+ 1 cliques then removing all cliques except d+ 1

cliques from TS(G) does not change the χCN[G].

i a lied

Figure 10: Neighborhood diversity five.



FPT Algorithm-CFCN-CVD

I After applying the above reduction rules on input graph G, the size of
the reduced instance is at most O((k+ 2)2

d
(d+ 1)(k+ 1)).

I As k < d+ 2, we get a kernel of size at most O(d2
d+2).

The proof of CF-ON coloring is similar to the CF-CN coloring except some
minor changes in the reduction rules.
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Other Variants

I Till now, all the vertices of the graph are colored in a conflict-free
coloring.

I One variant of conflict-free coloring problem, which asks to color a
subset of vertices of the graph maintaining a uniquely colored neighbor
for each vertex.

I Conflict-Free Full Coloring - all the vertices are colored.

I Conflict-Free Partial Coloring - subset of vertices colored.

Note that this does not change asymptotic results for general graphs: it
suffices to introduce one additional color for vertices that are left uncolored.
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I One variant of conflict-free coloring problem, which asks to color a
subset of vertices of the graph maintaining a uniquely colored neighbor
for each vertex.
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Partial Conflict-free Coloring

Definition

Given a graph G = (V, E), a partial conflict-free coloring is an assignment of
colors to a subset of vertices in V such that every vertex in V has a uniquely
colored vertex in its neighborhood.
Notation:

I χ∗CN(G): for closed neighborhood coloring.

I χ∗ON(G): for open neighborhood coloring.



Examples
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Figure 11: χ∗CN(G) = 2 and χ∗ON(G) = 1



Related work

Abel et al. [SIDMA-2018] studied the problem on planar and outer planar
graphs.

I For closed neighborhoods: It is NP-complete to decide whether a planar
graph has a conflict-free coloring with one color, while for outerplanar
graphs, this can be decided in polynomial time.

I For open neighborhoods: For any planar graph G, χ∗ON(G) 6 8.

I For any outerplanar graph G, χ∗ON(G) 6 6.

Bhyravarapu and Kalyanasundaram [WG-2020] improved the above bounds.

I For any planar graph G, χ∗ON(G) 6 6.

I For any outerplanar graph G, χ∗ON(G) 6 4.

Huang, Guo and Yuan [SIDMA-2020] improved the bounds to 5 and 4
respectively.

We have studied the problem(both variants) on restricted graph classes, unit
square, unit disk etc.
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CF-ON* coloring

This is a joint work with B. Sriram, S. Kalyanasundaram, Tim A.
Hartmann and Hung P. Hoang, IWOCA 2021.

Graph Class Upper Bound Lower Bound Complexity

Block graphs 3 3 P
Cographs 2 2 P

Interval graphs 3 3 -

Proper Interval graphs 2 2 -

Unit square 27 3 NP-hard

Unit disk 54 3 NP-hard

Split graphs - - NP-hard

For unit square and unit disk graphs there is still a wide gap between lower
and upper bound, and it would be interesting to improve those bounds.



Our Results and Open Questions

I We have shown that both variants (CF-CN* and CF-ON*) of the
problem are FPT when parameterized by combined parameters
clique-width and number of colors.

I It remains an open question if there exists an FPT algorithm with only
clique-width as a parameter.

I Gonzalez and Mann [DAM-2024] showed that both open neighborhood and
closed neighborhood variants are polynomial time solvable (XP) when
mim-width and the number of colors are bounded.

I As mim-width generalizes clique-width, it is interesting to see if there exists
an FPT algorithm parameterized by mim-width and k.
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Other Variants

1. Unique maximum coloring [Fabrici et al. DAM 2023]

2. Minimum Conflict Free Colouring [Ashok et al. CALDAM 2020]

3. Proper Conflict-free coloring [Fabrici et al. DAM 2023]

4. Odd coloring [Caro et al. Discrete Mathematics 2023]
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