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Communication Complexity

e Two-party communication model [Yao,89].
e More restrictive (one-way) and more general (multi-party) models.
e General “lower-bound technique” in algorithms and complexity.

e Applications:
o  Streaming algorithms
Data structures

Boolean formula size and depth
VLSI chip design

o O O O



One-way communication model
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One-way randomized (public coin)
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Examples



Equality
oRCCT(f) = CCT(f) < Tlog, [X]]

oEQ: {0,1}" x{0,1}" — {0,1} :

1 ifx=y
0 otherwise

EQ(z,y) = {

oCC™(EQ) = n (pigeon-hole principle)

eRCC™(EQ) = O(1)



Disjointness

eDISJ : 2 x 2l — £0 1} -

1 ifSNT =0,
0 otherwise

DISJ(S,T) = {

e¢CC™(DISJ) = n (pigeon-hole principle)

eRCC™(DISJ) = Q(n)



The streaming model: estimating frequency moments

eUniverse U = {1,...,n}. e Task is to estimate Fj := Z fr.
i=1
Output a number in [0.9F}, 1.1Fy].
eStream s : aq,...,a,,. Eacha; €U.

ovi € [n], fi = [{j € [m] | a; = i}

e Algorithm A with bounded memory.

e A has “one-pass access” to the stream.



The streaming model
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The streaming model: estimating frequency moments

o/ = 1: Fp = m. Easy: maintain a counter. O(logm) space.

-Deterministic and exact.

e Any k: Maintain frequency vector (fi,..., fn). O(nlogm) space.

-Deterministic and exact.

e[ Alon, Matias, Szegedy, 1999] There is a O(logn + logm)
space algorithm for £ = 0 and 2.

-Randomized and approximate. Godel Prize 2005!



Hardness of estimating F.

n
o[ :=max f;.
i=1

~

Theorem [Alon, Matias, Szegedy 1999]. Every randomized
streaming algorithm that, for every data stream of length m, outputs
a number in the range [0.9 F, 1.1 F.] with probability at least 75,
uses space ()(min{m, n}).

\_ /

Proof idea: If there is such a streaming algorithm with space
o(min{m, n}), then there is a randomized one-way protocol for
disjointness of complexity o(n).



Hardness of estimating £ : continued

Proof.

Let A be a streaming algorithm that outputs an estimate in [0.9/, 1.1 F] with
probability %3, and runs in space s.

We will use Ato construct a protocol for disjointness.



Hardness of estimating £, : continued

Protocol:

—_—

Alice runs A on the sequence of elements of S.

Alice sends the contents of her memory to Bob.

Bob continues the run of 4 with the communicated memory
image on the sequence of elements of T.

4. If the output of Ais at most 1.5, output “disjoint”. Else, output
“intersecting”.

SEN

Communication Complexity: s



Hardness of estimating F : continued

Correctness:
Case 1: The sets are intersecting. Let the sets intersect at i ¢ [n].

Then, there will be two occurrences of 7 in the stream. This implies that foc = 2
(note that no element has frequency magre than 2).

Thus with probability at least %5 _4 outputs a number that is at least 1.8. Thus, with
probability %, the protocol gives correct output.



Hardness of estimating F. : continued

Correctness (continued):
Case 2: The sets are disjoint.
Then, each element occurs at most once in the stream. Hence I, <1

Thus with probability at least % A outputs a number that is at most 1.1. Thus, with
probability %3, the protocol gives correct output.

Conclusion: Since the randomized communication complexity of disjointness is Q(n)
,we conclude that s = Q(n)



Two-way communication model
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Two-way randomized (public coin)

yey
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Data structures: cell-probe model

eMemory: s cells organized in w-bit words.

«— w bits — Parameters to optimize (minimize) :

eSpace s

eWord size w

s cells
eQuery time t

e Static: Store data such that queries can be supported. No updation.



Set-intersection

o ={1,....,n}.

ePreprocessing: Store an arbitrary Y C U in memory, using space s (worst case over Y).

eObjective: Support queries of the form “Is X NY empty?” in as low a time ¢ (worst case over X and Y')

as possible.



Scheme-1

eStore Y as a string of n bits broken up into words of size w.

os,t = [n/w].



Scheme-2

ekor every set X store whether Y intersects X.

os =2"/w,t =1,



A lower bound

Theorem: Any data structure that solves the set intersection problem must have

t([logs| +w) >n+ 1.

Proof idea:

Fact: CC(DISJ) =n + 1.




Proof of the lower bound

Proof: We will show that Alice and Bob may use a data structure to
deterministically solve Disjointness with at most t([log s| + w)communication.

”

Protocol: Bob stores 7' as per the data structure pre-processing. Alice “queries S”.
Alice then invokes the query service routine of the data structure and solves the
set disjointness by accessing + memory cells of the data structure in £ rounds as
follows: In each round, Alice requests for the content of a memory cell to Bob, by
sending him the address of the cell. This requires bits of communication. Alice
responds to each of those queries by sending the content ( bits). Thus, the
communication complexity is ¢([logs| + w)

The proof follows from the fact CC(DISJ) = n + 1.



Structure of communication protocols

o T'wo way. Deterministic.

oZ =1{0,1},ie., f: X xY — {0,1}.



Structure of communication protocols

Yy

Mf(xay) - f(xvy)

o _ Round 1
Communication matrix My



Structure of communication protocols

Yy

Mf(xay) - f(xvy)

Communication matrix M;

Round 2




Structure of communication protocols

Yy

Mf(xay) - f(xay)

Communication matrix M;

Round 3




Partition number

e Partition number p(y)of a function 7 is the minimum number £ such
that M, can be partitioned into at most i monochromatic rectangles.

o Clearly cc(f) > [log, P(f)):
° CC(f):O(logP(f).)z (Aho, Ullman, Yannakakis 1983).

e Tight (G00s, Pitassi, Watson 2017).



Lower bounding Partition number: Rank

My = Sum of P(f) rank one matrices.



Rank (continued)

eThus, rank(Ms) < P(f).

eEixample: Equality (again).

o Mgq is the identity matrix of dimension 2" x 2".

eThus, CC(EQ) > [log, P(EQ)] > [log, rank(Meq)] = n.

ebixercise: Show that the rank of Mpg; is 2".



The Log-rank conjecture

«CC(f) = [logy rank(M)].

eHow much larger can CC(f) be than log, rank(f)?

eRank over real numbers.

-

\

~

Log-rank conjecture (Lovasz and Saks 1988): 3 > 0 such that Vf, CC(f) = O(log rank(M,)").

)




The Log-rank conjecture

eLasy: CC(f) = O(rank(My)).

eBest known bound: CC(f) = O(~/rank(M) log rank(M)). (Lovett 2014)

eBest lower bound: 3f such that CC(f) = Q(log P(f))* = Q(log rank(M;))?. (G60s, Pitassi, Watson 2017)

e Log-approzimate-rank conjecture: refuted by Chattopadhyay, Mande and Sherif (2020).



Fooling sets

eConsider the Equality problem.

eConsider the set of all its I-inputs EQ'(1) = {(z,z) | = € {0,1}"}.

e Any rectangle that contains both (z,z) and (y,y) also contains (x,y) and (y, x).

Cannot be monochromatic.

eEQ'(1) is a “fooling set”.



Fooling Sets continued

eP(EQ) > 9on (to cover EQ_l(l))—F 1 (to cover EQ'(0)):

oCC(EQ) > [log, P(EQ)| > n+ 1.

eTight bound for equality.

eExercise: Find a 2"-sized fooling set for disjointness.

eMay give exponentially worse bounds sometimes.
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Index function

oINDEX : {0,1}" x [n] — {0,1} :

INDEX(z, 1) = x;

o¢CC7(INDEX) = n (pigeon-hole principle)

eRCC™(INDEX) = Q(n)



Gap-Hamming
eGapHam : 2" x 2l — 10 1} -

1 if |[SAT| > %+ /n,
GapHam(S,T) = if |SAT| <2 —/n,

* otherwise

e¢CC’(GapHam) = n (pigeon-hole principle)

eRCC™(GapHam) = Q(n)



Circuit complexity

X
Ty + 'y
Y
o2-input AND and OR Gates. oT'(n) step algorithm = O(T'(n)) sized circuit.

eDepth=max. length of an i/p-o/p path = 2.

eSize=no. of gates=3.



Size-depth trade-off

6pen question: Can every function that is computable using circuits of size\
polynomial in n be computed by circuits of depth O(log n)?

\ /




Monotone functions and circuits

Monotone functions: Changing an input variable from 0 to 1 does not
change the function value from 1 to O.

Example: AND, OR.

“Algorithmic examples”: Matching, Connectivity.

Monotone circuits: No NOT gate.

Any monotone function can be computed by a monotone circuit.
However, use of NOT gates may lead to cheaper circuits. Example: The
perfect matching function has polynomial sized non-monotone circuit
(perfect matching has a polytime algorithm) but no polynomial sized
monotone circuit (Razborov 1985).



Monotone Karchmer-Wigderson game

of :{0,1}" — {0, 1} is a monotone function.

eAlice is given x € f71(0), Bob is given y € f~(1).

eTask: find an index ¢ such that x; = 0 and y; = 1.

-~

\_

Theorem (Karchmer-Wigderson 1990): Communication complexity of the
KW-game=circuit depth complexity of /.

~

)




The match function

1 if G has a matching of size at least n/3 + 1,
0 otherwise.

match(G) = {

e Monotone, has a polysized circuit.
e |Is there a low-depth circuit?

-

\_

Theorem (Raz-Wigderson 1992): Any monotone circuit computing
match on input graphs with n vertices has depth ()(n).




Proof idea

Recall:

Theorem (Karchmer-Wigderson 1990): Communication complexity of the
KW-game=circuit depth complexity of .

|dea: Show a lower bound on the KW game for match.

Fact: RCC(DISJ) = Q(n).

Randomized reduction from DISJ to KW game .



Proof idea (contd.)

e Showing that any protocol 17 for the KW game given by match has
communication complexity (2 (n).

e Randomized reduction from DISJ. Given inputs S, T, the parties produce
inputs G, G’ to KW game by public randomness and no communication. G
and G’ are graphs with ©(n) vertices.

e Lete be the edge that I returns.

e Bob examines e and answers whether S and T intersect with no additional
communication.

e Forevery S, T, Bob’s answer is correct with probability at least 7.

e Proof follows from the Fact.



Scheme-3

eParameter p.

ekor every subset V' of size at most p store whether or not Y intersects V.

e Every set X can be expressed as a union of at most [n/p| disjoint sets.

o5 = ?:Tl(:?)’t = [n/p].



