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Theorem (Wiener)
For every tree T, it holds
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1. Minimum Wiener index for chemical graphs
The forgotten problem
It is well known that

@ Minimum and maximum for all graphs: K,, and P,;
@ Minimum and maximum for all trees: S,, and P,;

@ Minimum and maximum for all chemical trees: Dendrimers and P,;

An “overlooked” problem

Problem

Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

@ G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

o Computer experiments are indicating that G is a 4-regular graph.
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Small n
en=12...,5: K,
en==~6
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The conjecture

@ n = 8: There are 1929 such graphs and minimum Wiener index
value is 40, which is attained by only 6 graphs.
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Every chemical graphs G on n > 5 vertices with the minimum value of
Wiener index is 4-regular.

Conjecture
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1. Minimum Wiener index for chemical graphs
Going to higher degrees

We propose the following conjectures.
Conjecture (The even case conjecture)

Let k > 3, and let n be large enough with respect to k, say n > ny,.
Suppose that G is a graph on n vertices with the maximum degree k,
and with the smallest possible value of Wiener index. If kn is even, then
G is k-regular.

Conjecture (The odd case conjecture)

Let k > 3, and let n be large enough with respect to k, say n > ny,.
Suppose that G is a graph on n vertices with the maximum degree k,
and with the smallest possible value of Wiener index. If kn is odd, then
G has a unique vertex of degree smaller than k and in that case this
smaller degree is k — 1.

(Probably, it suffices to choose ny, = k + 1 therein.)
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2. Regular graphs vs. diameter

Minumum values

Conjecture

Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Examples: Petersen graph, Flower snark J;, Heawood graph

Problem (The degree-diameter problem)

Determine the largest order n(k,d) of a graph of (a maximum) degree k
and diameter d.
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2. Regular graphs vs. diameter

Maximum values

Conjecture

Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

Figure: Graphs Lakyo2 (above) and Lagya (below).

Y.-Z. Chen, X. Li, X.-D. Zhang recently confirmed the last conjecture for
r = 3 with extremal graphs being L,,.
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The original problem

Math. Slovaca 41, 1991, No. 1, 11—16

TRANSMISSION IN GRAPHS :
A BOUND AND VERTEX REMOVING

LUBOMIR SOLTES

ABSTRACT. The transmission of a graph G is the sum of all distances in G. Strict
upper bound on the transmission of a connected graph with a given number of
vertices and edges is provided. Changes of the transmission caused by removing a
vertex are studied.

1. Introduction

All graphs considered in this paper are undirected without loops and multiple
edges. For all terminology on graphs not explained here we refer to [1].

If S is set, then | S| denotes the cardinality of S. Given a graph G, V(G) and
E(G) denote its vertex-set and edge-set, respectively. The cardinalities |v(G)|
and | E(G)| are often denoted n and m, respectively. If v and w are the vertices
of G, then d; (v, w) or, briefly, d (v, w) denotes the distance from v to w in G, ec(v)
or ec(v) denotes the eccentricity of v.

The transmission of a vertex v of a graph G is defined by

o)=Y ds(v,w).
we V(G)
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The original problem

UL 7L 1UL i = 1, LIIVIT WU Lall IL3LIILL UUIDLIVLD WU LT LAdL WIILLL U 19 @I LHU VLI LUA

(it follows from (Dj)). Hence (4) holds and we immediately get
F(G, v) = —(290(v) + (¢ — ) o(G — v)),

which is minimal if and only if G is the path on n vertices. We wil not deal here
with further technical details.
Eventually the following unsolved problem is presented.

Problem. Find all such graphs G that the equality ¢(G) = o(G — v) holds for
all their vertices v. We know just one such graph — the cycle on I1 vertices.

REFERENCES

[1] BEHZAD,M.—CHARTRAND, G.—LESNIAK — FOSTER, L.: Graphs and Digrphs. Weber
& Schmidt, Boston 1979.

[2] ENTRINGER,R.C. JACKSON,D.E. SNYDER, D. A_: Distance in graphs. Czech Math.
J.. 26 (101), 1976, 283—296.
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3. Soltés problem

The original problem

In 1991, L. Soltés posed the following problem:

Problem
Find all graphs G for which

for every v € V(G).

One such graph is Cyy, as
W(C11) = 165 = W (Pyp)
This is the only graph we know ©
We say v satisfies Soltés property if (2) holds, i.e.
W(G) =W(G —v).
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3. Soltés problem

The weaker version

Theorem (M. Knor, S. Majstorovi¢, R. §)

There exist infinitely many graphs G with a particular vertex v such that
W(G) =W (G —wv)

holds.

More precisely:

o for each n > 9, there is a unicyclic graph G on n vertices containing
a vertex v that satisfies the Soltés property;

@ for each ¢ > 5, there is a unicyclic graph G with a cycle of length ¢
and a vertex that satisfies the Soltés property;

o for every graph G there are infinitely many graphs H such that G is
an induced subgraph of H and W(H) = W(H — v) for some
veV(H)\V(G).
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3. Soltés problem

Graph with more vertices satisfying the Soltés property

Bok, Jedlikova, Maxova in 2019 who showed the existence of graph with
more vertices satisfying the Soltés property.

More precisely:

@ infinitely many cactus graphs with exactly k cycles of length at least
7 that contain exactly 2k vertices satisfying the Soltés property; and

@ infinitely many cactus graphs with exactly &k cycles of length 5 or 6
that contain exactly k vertices satisfying the Soltés property.
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3. Soltés problem

We also proposed the following problem:

Problem

Are there k-regular connected graphs G other than C11 for which the
equality
W(G) =W(G —v)

holds for at least one vertex v € V(G)?

We have observed that there are no such graphs for k > n/2.

We believe the solution to the Soltés problem should be graphs having all
vertices of the same degree.

Conjecture
If G is a Soltés graph, then it is regular. }
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For a general (regular) graph G, the values
W(G — u) and W(G —v)
might be significantly different for two different vertices v and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex descreases it.

However, W (G — u) and W(G — v) are equal if vertices u and v belong
to the same vertex orbit.

This led the authors to believe the following.

Conjecture

If G is a Soltés graph, then G is vertex-transitive.
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3. Soltés problem

A computer search on publicly available collections of vertex-transitive
graphs did not reveal any Soltés graph.

There are no Soltés graphs among vertex-transitivegraphs with less than
48 vertices.

We believe:

Conjecture

The cycle on eleven vertices is the only Soltés graph.
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4. Ratio of Wiener index of iterated line graphs

Iterated line graph
L*HG) = L(LM(G))

Figure: Graph, its line graph, and its second iterated line graph
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A. Dobrynin and L. S. Mel'nikov in 2012 proposed to estimate the
extremal values for the ratio

W (LK (G))
W(G)

and explicitly stated the case k = 1 as a problem.
Notice that

W(LS,) _ n=2  W(LEF)) n=2

- - d
W (S, 2nt1) WP  nt1 "

()
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case k =1
In 2015 this problem was solved for the minimum and k& = 1.

Theorem (M. Knor, RS., A Tepeh)

Among all connected graphs G on n vertices, the fraction

W(L(G))
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is minimum for the star S,,.
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case k=1

In 2015 this problem was solved for the minimum and k& = 1.

Theorem (M. Knor, RS., A Tepeh)

Among all connected graphs G on n vertices, the fraction

W(L(G))
w(G)

is minimum for the star S,,.

Recently, the same problem was solved for the maximum and k£ = 1.

Theorem (J. Sedlar & R.S.)

Among all connected graphs G on n vertices, the fraction

W(L(G))
W(G)

is maximum for K,,.
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Let k > 3. Then the path P, attains the minimum value of

W (L*(T))
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in the class of trees on n vertices.
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Trees & generalization

Theorem (M. Knor, K. Hrilidkovd, R.S.)

Let k > 3. Then the path P, attains the minimum value of

W (L*(T))
W(T)

in the class of trees on n vertices.

Conjecture (M. Knor, K. Hrifiakova, R.S.)
Let n be a large number and k > 2. Among all graphs G on n vertices,

W(L*(G))
W(G)

attains the maximum for K,,, and it attains the minimum for P,,.
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Ghebleh’s mail

Mamad Ghebleh <mgh.. @& 23Jan2024,14:42 % @ €
to hrinakova, knor, me

Dear Professors Hrifiakova, Knor, Skrekovski,

Happy new year! | hope this email finds you well. We recently were able to
settle your conjecture on the minimum value of the ratio W(L*2(G))/W(G) and
submitted the paper few weeks ago. It will probably come to you for
refereeing, but nonetheless, we will appreciate any comments you may have
on this manuscript (attached).

Sincerely yours,
M. Ghebleh and A. Kanso
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Ghebleh's paper

On the Second-Order Wiener Ratios of Iterated Line Graphs

Mohammad Ghebleh and Ali Kanso

Department of Mathematics
Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

{mohammad.ghebleh, ali.kanso}@ku.edu.kw

January 22, 2024

Abstract

The Wiener index W (G) of a graph G is the sum of distances between all unordered pairs of its
vertices. Dobrynin and Mel’nikov [in: Distance in Molecular Graphs — Theory, 2012, p. 85-121]
propose the study of estimates for extremal values of the ratio Rx(G) = W (L*(G))/W (G) where
L*(@) denotes the kth iterated line graph of G. Hrifidkové, Knor and Skrekovski [Art Discrete
Appl. Math. 1 (2018) #P1.09] prove that for each k > 3, the path P, has the smallest value of
the ratio Rj among all trees of large order n, and they conjecture that the same holds for the
case k = 2. We give a counterexample of every order n > 22 to this conjecture.
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5. Wiener index for directed graphs

Defintion

We want to consider the Wiener index of not necessarily strongly
connected digraphs. In order to do so, if no directed path from a to b, we
should assume

d(a,b) =0

In a digraph D here the distances dp(u,v) and dp(v,u) may be
different. Therefore we sum the distances over ordered pairs of vertices:

W(D) = Z dp(u,v).

(u,w)EV(D)xV (D)
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Wiener Theorem - directed style

Wiener Theorem for directed graphs

Theorem
Let T be a directed tree with the arc set A(T'). Then

abe A(T)

where t(a) denotes the number of vertices that reach a, and s(b) denotes
the number of vertices reachable from b.

v

36=18
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Wiener index vs. betweenness centrality

The Wiener index - betweenness centrality relation claims that

Directed graph version:

Theorem
For any digraph D of order n

W(D)= 3 B(x)+pD),
zeV (D)

where p(D) denotes the number of ordered pairs (u,v) such that there
exists a directed path from u to v in D.

n

For strongly connected digraphs, p(D) = 2(3).
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Basic properties

Some easy facts and results about oriented graphs:

o W(D)=W (D)

n
o W(P,) =W(P,) = ( ;,rl)
o W(C,) = ”(2) has the maximum Wiener index between all digraphs
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Basic properties

Some easy facts and results about oriented graphs:

®

=
—
3
~

Il

n(g) has the maximum Wiener index between all digraphs

o A directed bipartite graph G with bipartition L, R gets its minimum
Wiener index if all edges are oriented from L to R.
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Extremal orientations
Let Wiax(G) and Winin (G) be the maximum possible and the minimum
possible, respectively, Wiener index among all digraphs obtained by

orienting the edges of a graph G.

Example: G = Cg

Winax = 6+ (5) = 90



5. Wiener index for directed graphs

Extremal orientations
Let Wiax(G) and Winin (G) be the maximum possible and the minimum
possible, respectively, Wiener index among all digraphs obtained by

orienting the edges of a graph G.

Example: G = Cg

Wmax:6'(g):90 Wmin:6'1:6
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Problem
For a given graph G find
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Extremal orientations

Problem
For a given graph G find

Wnax(G) and  Wiyin(G).

Problem
What is the complexity of determing Winax and Wiy ?
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Extremal orientations

@ One may expect that the maximum value Wy, is always achieved
at some strongly connected orientation.

(* But it is not so! )

v v

@ Maybe, the minimum value Wy,;, is always achieved at some acyclic
orientation.
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Acyclic orientations

For the minimum value, the following may hold:

Conjecture (Acyclic orientation conjecture)

For every graph G, the value Wy, (G) is achieved for some acyclic
orientation of G.




5. Wiener index for directed graphs

Acyclic orientations

For the minimum value, the following may hold:

Conjecture (Acyclic orientation conjecture)

For every graph G, the value Wy, (G) is achieved for some acyclic
orientation of G.

This conjecture is true for

@ bipartite graphs,
@ unicyclic graphs,
@ the Petersen graph,

@ prismes.
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Problem J

Find an orientation in the grid Gy, ., that has the maximal Wiener index.

T. éumenjak, S. §pacepan, D. Stesel have shown that for ladders, the
optimal orientation looks like:
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5. Wiener index for directed graphs

Grid graphs

Is this an optimal orientation for the 6 x 4 grid

\ N \ \ \
00— ———)—0—
AN N N N N

L L
oH—r—O——0——O0—C—0—>
Y Y
A ¥ N A
oH—r 00— —0——0——0—>
Y Y
A ¥ N A
L L Vi
O—s—0——O0—€C—0——0—<¢
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Szeged index

Another popular topological index is the Szeged index

Sz(G) = Y ne(u) ne(v),

e=uvel

where n.(u) is the number of vertices strictly closer to u than v, and
analogously, n.(v) is the number of vertices strictly closer to v.
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Szeged index

Another popular topological index is the Szeged index

Sz(G) = Y ne(u) ne(v),

e=uvel

where n.(u) is the number of vertices strictly closer to u than v, and
analogously, n.(v) is the number of vertices strictly closer to v.

This is well known:

Theorem (A. Dobrynin, |. Gutman, S. Klavzar, A. Rajapakse)
For every graph G we have

S2(G) = W(G) (3)

and equality holds if and only if every block of G is a complete graph.
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Definition
The variable Wiener index of a graph G
W G) = Z d(u,v)®.

{u,v}CV(G)

Definition
The variable Szeged index of a graph G
S2(@) = Y [ne(w) - ne(®)].

e=uwveE(G)
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Variable variations

Definition
The variable Wiener index of a graph G
W G) = Z d(u,v)®.

{u,v}CV(G)

Definition
The variable Szeged index of a graph G
S2(@) = Y [ne(w) - ne(®)].

e=uwveE(G)

Problem
When
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Using Karamata's inequality, one can show the following statement:
Theorem (M. Knor, K. Hrifidkov3, RS.)
Let T be a tree on n vertices. Then

Q@ W(T) <Sz*(T) ifa> 1,

Q@ W) >Sz%(T) if0<a< 1.
Moreover, equalities hold if and only if n = 2.
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The case of trees

For trees we have
W(T) = Sz(T).
Using Karamata's inequality, one can show the following statement:
Theorem (M. Knor, K. Hrifidkov3, RS.)
Let T be a tree on n vertices. Then
Q@ W(T) <Sz*(T) ifa> 1,
Q@ W) >Sz%(T) if0<a< 1.

Moreover, equalities hold if and only if n = 2.

Theorem (M. Knor, K. Hrilidkovd, R.S.)

Let G be a bipartite graph on n vertices and o« > 1. Then
W(G) < Sz%(@G)

with equality if and only if n = 2.
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Proposition

Let G be a non-complete graph. Then for every o < 0 we have

S2%(G) < W*(G).

Proof.

Let m be the number of edges of G.
Then W*(G) has m terms equal to 1 and (%) — m other positive terms
which are smaller than 1.

While Sz(G) has exactly m terms all of which are at most 1, since
ne(u) and n(v) are at least 1 as mentioned above.
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Negative a's

Negative a's are easy. ©

Proposition
Let G be a non-complete graph. Then for every o < 0 we have

S2%(G) < W*(G).

Proof.

Let m be the number of edges of G.

Then W*(G) has m terms equal to 1 and (%) — m other positive terms
which are smaller than 1.

While Sz*(G) has exactly m terms all of which are at most 1, since
ne(u) and n(v) are at least 1 as mentioned above.

Hence, if a < 0,
Sz%(G) < m < W*(G).
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The stronger and the weaker conjectures
Conjecture (M. Knor, K. Hrifidkova, R.S.)

For every non-complete graph G there is a constant ag € (0, 1] such that

Sz (G) > W%(Q) if > ag
Sz*(G) = W9G) if « = ag
Sz9(G) < W%G) if o < ag.
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For every non-complete graph G and « > 1 we have Sz%(G) > W<(G).
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The stronger and the weaker conjectures
Conjecture (M. Knor, K. Hrifidkova, R.S.)

For every non-complete graph G there is a constant ag € (0, 1] such that

Sz (G) > W%(Q) if > ag
Sz*¥(G) = WG) if « = ag
Sz9(G) < W%G) if o < ag.

It may be easier to prove the following weaker version of conjecture.

Conjecture
For every non-complete graph G and « > 1 we have Sz%(G) > W<(G).

y

The weaker conjecture was solved by Kovijani¢ Vukiéevi¢ and Bulatovié
and simulationously and independently by Cambie and Haslegrave.
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The stronger conjecture

Cambie and Haslegrave showed that the stronger conjecture is true for:

@ bipartite graphs

@ edge-transitive graphs

graphs of diameter 2

graphs with diameter 3 and n vertices and m edges satisfying
m < 3(3)

@ almost every graph in Gy, (or Gp )

@ but in general this conjecture is false!
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o take a complete graph K} and connected all its vertices with an
end-vertex of a path P;,; and

@ remove the edges of a Hamiltonian cycle from Kj;



6. Variable Wiener vs. Variable Szeged

The stronger conjectue

Cambie and Haslegrave disproved the stronger conjecture with the
following graph G, ¢

o take a complete graph K} and connected all its vertices with an
end-vertex of a path P;,; and

@ remove the edges of a Hamiltonian cycle from Kj;

Example Gg 3:




6. Variable Wiener vs. Variable Szeged

Problem

Is the last conjecture true for traingle-free graphs?










THE END ©



