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Wiener index
W (G) =

∑
{u,v}⊆V (G)

d(u, v)

was introduced in 1947 by the chemist H. Wiener for its correlation with
the boiling point of alkane molecules CnH2n+2.
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Theorem (Wiener)

For every tree T , it holds

W (T ) =
∑

e=uv∈E(T )

ne(u)ne(v), (1)

where ne(u) is the number of vertices in the component of T − e that
contains u, and similarly define ne(v).
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3 Šoltés Problem

4 Ratio of Wiener index of iterated line graphs

5 Wiener on digraphs

6 Variable Wiener vs. Variable Szeged



Sections

1 Minimum Wiener index for chemical graphs

2 Regular graphs vs. diameter
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1. Minimum Wiener index for chemical graphs
The forgotten problem

It is well known that

Minimum and maximum for all graphs: Kn and Pn;

Minimum and maximum for all trees: Sn and Pn;

Minimum and maximum for all chemical trees: Dendrimers and Pn;

An “overlooked” problem

Problem
Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

We know

G is almost regular with at most three vertices of degree < 4 and
these vertices induce a clique;

Computer experiments are indicating that G is a 4-regular graph.
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1. Minimum Wiener index for chemical graphs
The conjecture

n = 8: There are 1929 such graphs and minimum Wiener index
value is 40, which is attained by only 6 graphs.

Conjecture

Every chemical graphs G on n ≥ 5 vertices with the minimum value of
Wiener index is 4-regular.
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1. Minimum Wiener index for chemical graphs
Going to higher degrees

We propose the following conjectures.

Conjecture (The even case conjecture)

Let k ≥ 3, and let n be large enough with respect to k, say n ≥ nk.
Suppose that G is a graph on n vertices with the maximum degree k,
and with the smallest possible value of Wiener index. If kn is even, then
G is k-regular.

Conjecture (The odd case conjecture)

Let k ≥ 3, and let n be large enough with respect to k, say n ≥ nk.
Suppose that G is a graph on n vertices with the maximum degree k,
and with the smallest possible value of Wiener index. If kn is odd, then
G has a unique vertex of degree smaller than k and in that case this
smaller degree is k − 1.

(Probably, it suffices to choose nk = k + 1 therein.)
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2. Regular graphs vs. diameter
Minumum values

Conjecture

Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Examples: Petersen graph, Flower snark J5, Heawood graph

Problem (The degree-diameter problem)

Determine the largest order n(k, d) of a graph of (a maximum) degree k
and diameter d.
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Maximum values

Conjecture

Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

Figure: Graphs L4k+2 (above) and L4k+4 (below).

Y.-Z. Chen, X. Li, X.-D. Zhang recently confirmed the last conjecture for
r = 3 with extremal graphs being Ln.
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3. Šoltés problem
This is Snježa
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In 1991, L. Šoltés posed the following problem:

Problem
Find all graphs G for which

W (G) =W (G− v) (2)

for every v ∈ V (G).

One such graph is C11, as

W (C11) = 165 =W (P10)

This is the only graph we know §

We say v satisfies Soltés property if (2) holds, i.e.

W (G) =W (G− v).
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3. Šoltés problem
The original problem
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3. Šoltés problem
The weaker version

Theorem (M. Knor, S. Majstorović, R. Š.)

There exist infinitely many graphs G with a particular vertex v such that

W (G) =W (G− v)

holds.

More precisely:

for each n ≥ 9, there is a unicyclic graph G on n vertices containing
a vertex v that satisfies the Šoltés property;

for each c ≥ 5, there is a unicyclic graph G with a cycle of length c
and a vertex that satisfies the Šoltés property;

for every graph G there are infinitely many graphs H such that G is
an induced subgraph of H and W (H) =W (H − v) for some
v ∈ V (H) \ V (G).
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3. Šoltés problem
Graph with more vertices satisfying the Šoltés property

Bok, Jedliková, Maxová in 2019 who showed the existence of graph with
more vertices satisfying the Šoltés property.

More precisely:

infinitely many cactus graphs with exactly k cycles of length at least
7 that contain exactly 2k vertices satisfying the Šoltés property; and

infinitely many cactus graphs with exactly k cycles of length 5 or 6
that contain exactly k vertices satisfying the Šoltés property.
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infinitely many cactus graphs with exactly k cycles of length 5 or 6
that contain exactly k vertices satisfying the Šoltés property.
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3. Šoltés problem

We also proposed the following problem:

Problem
Are there k-regular connected graphs G other than C11 for which the
equality

W (G) =W (G− v)

holds for at least one vertex v ∈ V (G)?

We have observed that there are no such graphs for k ≥ n/2.

We believe the solution to the Šoltés problem should be graphs having all
vertices of the same degree.

Conjecture

If G is a Šoltés graph, then it is regular.
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3. Šoltés problem

For a general (regular) graph G, the values

W (G− u) and W (G− v)

might be significantly different for two different vertices u and v from G.

It may happen that removal of one vertex increases the Wiener index,
while removal of the other vertex descreases it.

However, W (G− u) and W (G− v) are equal if vertices u and v belong
to the same vertex orbit.

This led the authors to believe the following.

Conjecture

If G is a Šoltés graph, then G is vertex-transitive.
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3. Šoltés problem

A computer search on publicly available collections of vertex-transitive
graphs did not reveal any Soltés graph.

There are no Šoltés graphs among vertex-transitivegraphs with less than
48 vertices.

We believe:

Conjecture

The cycle on eleven vertices is the only Šoltés graph.
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There are no Šoltés graphs among vertex-transitivegraphs with less than
48 vertices.

We believe:

Conjecture

The cycle on eleven vertices is the only Šoltés graph.
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Iterated line graph
Lk+1(G) = L(Lk(G))

Figure: Graph, its line graph, and its second iterated line graph
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4. Ratio of Wiener index of its line graphs

A. Dobrynin and L. S. Mel’nikov in 2012 proposed to estimate the
extremal values for the ratio

W (Lk(G))

W (G)
.

and explicitly stated the case k = 1 as a problem.

Notice that

W (L(Sn))

W (Sn)
=

n− 2

2(n+ 1)
,

W (L(Pn))

W (Pn)
=
n− 2

n+ 1
, and

W (L(Kn))

W (Kn)
=

(
n− 1

2

)
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4. Ratio of Wiener index of its line graphs
case k = 1

In 2015 this problem was solved for the minimum and k = 1.

Theorem (M. Knor, R.Š., A. Tepeh)

Among all connected graphs G on n vertices, the fraction

W (L(G))

W (G)

is minimum for the star Sn.

Recently, the same problem was solved for the maximum and k = 1.

Theorem (J. Sedlar & R.Š.)

Among all connected graphs G on n vertices, the fraction

W (L(G))

W (G)

is maximum for Kn.
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4. Ratio of Wiener index of its line graphs
Trees & generalization

Theorem (M. Knor, K. Hriňáková, R.Š.)

Let k ≥ 3. Then the path Pn attains the minimum value of

W (Lk(T ))

W (T )
,

in the class of trees on n vertices.

Conjecture (M. Knor, K. Hriňáková, R.Š.)

Let n be a large number and k ≥ 2. Among all graphs G on n vertices,

W (Lk(G))

W (G)
,

attains the maximum for Kn, and it attains the minimum for Pn.
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5. Wiener index for directed graphs
Defintion

We want to consider the Wiener index of not necessarily strongly
connected digraphs. In order to do so, if no directed path from a to b, we
should assume

d(a, b) = 0

In a digraph D here the distances dD(u, v) and dD(v, u) may be
different. Therefore we sum the distances over ordered pairs of vertices:

W (D) =
∑

(u,v)∈V (D)×V (D)

dD(u, v).
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5. Wiener index for directed graphs
Wiener Theorem - directed style

Wiener Theorem for directed graphs

Theorem

Let T be a directed tree with the arc set A(T ). Then

W (T ) =
∑

ab∈A(T )

t(a)s(b),

where t(a) denotes the number of vertices that reach a, and s(b) denotes
the number of vertices reachable from b.



Wiener index vs. betweenness centrality

The Wiener index - betweenness centrality relation claims that

W (G) =
∑

x∈V (G)

B(x) +

(
n

2

)
.

Directed graph version:

Theorem
For any digraph D of order n

W (D) =
∑

x∈V (D)

B(x) + p(D),

where p(D) denotes the number of ordered pairs (u, v) such that there
exists a directed path from u to v in D.

For strongly connected digraphs, p(D) = 2
(
n
2

)
.



Wiener index vs. betweenness centrality

The Wiener index - betweenness centrality relation claims that

W (G) =
∑

x∈V (G)

B(x) +

(
n

2

)
.

Directed graph version:

Theorem
For any digraph D of order n

W (D) =
∑

x∈V (D)

B(x) + p(D),

where p(D) denotes the number of ordered pairs (u, v) such that there
exists a directed path from u to v in D.

For strongly connected digraphs, p(D) = 2
(
n
2

)
.



5. Wiener index for directed graphs
Basic properties

Some easy facts and results about oriented graphs:

W (D) =W (D−1)

W (
−→
Pn) =W (Pn) =

(
n+1
3

)
W (
−→
Cn) = n

(
n
2

)
has the maximum Wiener index between all digraphs

A directed bipartite graph G with bipartition L,R gets its minimum
Wiener index if all edges are oriented from L to R.
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5. Wiener index for directed graphs
Extremal orientations

Let Wmax(G) and Wmin(G) be the maximum possible and the minimum
possible, respectively, Wiener index among all digraphs obtained by
orienting the edges of a graph G.

Example: G = C6

Wmax = 6 ·
(
6
2

)
= 90 Wmin = 6 · 1 = 6
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5. Wiener index for directed graphs
Extremal orientations

One may expect that the maximum value Wmax is always achieved
at some strongly connected orientation.

(* But it is not so! *)

Maybe, the minimum value Wmin is always achieved at some acyclic
orientation.
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5. Wiener index for directed graphs
Acyclic orientations

For the minimum value, the following may hold:

Conjecture (Acyclic orientation conjecture)

For every graph G, the value Wmin(G) is achieved for some acyclic
orientation of G.

This conjecture is true for

bipartite graphs,

unicyclic graphs,

the Petersen graph,

prismes.
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5. Wiener index for directed graphs
Grid graphs

Problem
Find an orientation in the grid Gn,m that has the maximal Wiener index.

T. Šumenjak, S. Špacepan, D. Štesel have shown that for ladders, the
optimal orientation looks like:
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5. Wiener index for directed graphs
Grid graphs

Is this an optimal orientation for the 6× 4 grid



6. Variable Wiener vs. Variable Szeged
Szeged index

Another popular topological index is the Szeged index

Sz(G) =
∑

e=uv∈E
ne(u) · ne(v),

where ne(u) is the number of vertices strictly closer to u than v, and
analogously, ne(v) is the number of vertices strictly closer to v.

This is well known:

Theorem (A. Dobrynin, I. Gutman, S. Klavžar, A. Rajapakse)

For every graph G we have

Sz(G) ≥W (G) (3)

and equality holds if and only if every block of G is a complete graph.
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6. Variable Wiener vs. Variable Szeged
Variable variations

Definition
The variable Wiener index of a graph G

Wα(G) =
∑

{u,v}⊆V (G)

d(u, v)α.

Definition
The variable Szeged index of a graph G

Szα(G) =
∑

e=uv∈E(G)

[ne(u) · ne(v)]α.

Problem
When

Szα(G) ≥Wα(G)?
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6. Variable Wiener vs. Variable Szeged
The case of trees

For trees we have
W (T ) = Sz(T ).

Using Karamata’s inequality, one can show the following statement:

Theorem (M. Knor, K. Hriňáková, R.Š.)

Let T be a tree on n vertices. Then

1 Wα(T ) ≤ Szα(T ) if α > 1,

2 Wα(T ) ≥ Szα(T ) if 0 ≤ α < 1.

Moreover, equalities hold if and only if n = 2.

Theorem (M. Knor, K. Hriňáková, R.Š.)

Let G be a bipartite graph on n vertices and α > 1. Then

Wα(G) ≤ Szα(G)

with equality if and only if n = 2.
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6. Variable Wiener vs. Variable Szeged
Negative α’s

Negative α’s are easy. ©

Proposition

Let G be a non-complete graph. Then for every α < 0 we have

Szα(G) < Wα(G).

Proof.
Let m be the number of edges of G.

Then Wα(G) has m terms equal to 1 and
(
n
2

)
−m other positive terms

which are smaller than 1.

While Szα(G) has exactly m terms all of which are at most 1, since
ne(u) and ne(v) are at least 1 as mentioned above.

Hence, if α < 0,
Szα(G) ≤ m < Wα(G).
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6. Variable Wiener vs. Variable Szeged
The stronger and the weaker conjectures

Conjecture (M. Knor, K. Hriňáková, R.Š.)

For every non-complete graph G there is a constant αG ∈ (0, 1] such that

Szα(G) > Wα(G) if α > αG

Szα(G) = Wα(G) if α = αG

Szα(G) < Wα(G) if α < αG.

It may be easier to prove the following weaker version of conjecture.

Conjecture

For every non-complete graph G and α > 1 we have Szα(G) > Wα(G).

The weaker conjecture was solved by Kovijanić Vukićević and Bulatović
and simulationously and independently by Cambie and Haslegrave.
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6. Variable Wiener vs. Variable Szeged
The stronger conjecture

Cambie and Haslegrave showed that the stronger conjecture is true for:

bipartite graphs

edge-transitive graphs

graphs of diameter 2

graphs with diameter 3 and n vertices and m edges satisfying
m < 1

2

(
n
2

)
almost every graph in Gn,p (or Gn,m)

but in general this conjecture is false!
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Problem
Is the last conjecture true for traingle-free graphs?







THE END ©


