ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

Iztok Peterin

Joint work with Sergio Bermudo, Cong X. Kang, Aleksander Kelenc, Jelena Sedlar, Riste Škrekovski and Eunjeong Yi

CALDAM Indo-Slovenia Pre-Conference School on Algorithms and Combinatorics February 2024

 G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446–457.

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446–457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. H 180 (1972) 203–239. (In German.)

- ► G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. H 180 (1972) 203–239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277–281.

- ► G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. H 180 (1972) 203–239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277–281.
- ► W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley & Sons, New York, 2000.

- ► G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. H 180 (1972) 203–239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277–281.
- W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley & Sons, New York, 2000.
- R. Hamack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.

 S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.
- A. Kelenc, I.P., On some metric properties of direct-co-direct product, Appl. Math, Comput. 457 (2023) 128152.

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.
- A. Kelenc, I.P., On some metric properties of direct-co-direct product, Appl. Math, Comput. 457 (2023) 128152.
- A. Kelenc, I.P., Distance formula for direct-co-direct product in the case of disconnected factors, Art Discrete Appl. Math. 6(2) (2023) p2.13 (21p).

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges:

▶ projection to one factor is a vertex and to the other induces an edge (V_G - E_H and E_G - V_H);

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

- ▶ projection to one factor is a vertex and to the other induces an edge (V_G E_H and E_G V_H);
- ▶ projection to one factor is a vertex and to the other is not an edge (V_G - E_H and E_G - V_H);

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

- ▶ projection to one factor is a vertex and to the other induces an edge (V_G E_H and E_G V_H);
- ▶ projection to one factor is a vertex and to the other is not an edge (V_G - E_H and E_G - V_H);
- ▶ projection to both factors induce edges $(E_G E_H)$;

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

- ▶ projection to one factor is a vertex and to the other induces an edge (V_G E_H and E_G V_H);
- ▶ projection to one factor is a vertex and to the other is not an edge (V_G - E_H and E_G - V_H);
- ▶ projection to both factors induce edges $(E_G E_H)$;
- ▶ projection to one factor induce an edge and to the other is not an edge $(E_G E_{\overline{H}} \text{ and } E_{\overline{G}} E_H)$;

Let G and H be graphs. Their **graph product** G * H is a graph on vertex set $V(G) \times V(H)$.

- ▶ projection to one factor is a vertex and to the other induces an edge (V_G E_H and E_G V_H);
- ▶ projection to one factor is a vertex and to the other is not an edge (V_G - E_H and E_G - V_H);
- ▶ projection to both factors induce edges $(E_G E_H)$;
- ▶ projection to one factor induce an edge and to the other is not an edge $(E_G E_{\overline{H}} \text{ and } E_{\overline{G}} E_H)$;
- ▶ projection to both factors are not edges $(E_{\overline{G}} E_{\overline{H}})$.

Graph \overline{G} is the **complement graph** of graph G with

•
$$V(\overline{G}) = V(G)$$
 and

Graph \overline{G} is the **complement graph** of graph G with

•
$$V(\overline{G}) = V(G)$$
 and

►
$$E(\overline{G}) = \{uv : uv \notin E(G)\}.$$

Graph \overline{G} is the **complement graph** of graph G with

•
$$V(\overline{G}) = V(G)$$
 and

•
$$E(\overline{G}) = \{uv : uv \notin E(G)\}.$$

Definition

For a graph product G * H we define its **complementary graph product** $\bar{*}$ by the operation

$$G\overline{*}H = \overline{\overline{G} * \overline{H}}.$$

Graph \overline{G} is the **complement graph** of graph G with

•
$$V(\overline{G}) = V(G)$$
 and

►
$$E(\overline{G}) = \{uv : uv \notin E(G)\}.$$

Definition

For a graph product G * H we define its **complementary graph product** $\bar{*}$ by the operation

$$G\overline{*}H = \overline{\overline{G} * \overline{H}}.$$

► The distance between u and v is the minimum number d_G(u, v) of edges on a u, v-path in graph G.

There are 10 associative and commutative graph products. They are

• Cartesian product and his complementary product.

- Cartesian product and his complementary product.
- Direct product and his complementary product.

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.
- Empty product and his complementary product.

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.
- Empty product and his complementary product.
- Modular product and his complementary product.

On graph products Domination in modular product Distance in modular product Distance in DcD product Strong metric di

Example of Cartesian product

 $P_5 \Box K_{1,3}$

∃ >

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

Examples of direct product

900

< 17 ►

Example of strong product

Distance formulas for products

$$d_{G\square H}((g,h),(g',h')) = d_G(g,g') + d_H(h,h')$$

Distance formulas for products

$$d_{G\Box H}((g,h),(g',h'))=d_G(g,g')+d_H(h,h')$$

$d_{G \times H}((g, h), (g', h')) =$ $\min\{\max\{d^e_G(g, g'), d^e_H(h, h')\}, \max\{d^o_G(g, g'), d^o_H(h, h')\}\}.$

Distance formulas for products

$$d_{G\Box H}((g,h),(g',h')) = d_G(g,g') + d_H(h,h')$$

$d_{G \times H}((g, h), (g', h')) =$ min{max{d_G^e(g, g'), d_H^e(h, h')}, max{d_G^o(g, g'), d_H^o(h, h')}}.

$$d_{G \boxtimes H}((g, h), (g', h')) = \max\{d_G(g, g'), d_H(h, h')\}.$$

ペロト 4 団 ト 4 三 ト 4 三 ト 9 へ ()

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

Modular product and his complementary product

Two vertices (g, h) and (g', h') are adjacent in $G \diamond H$ if

• $(gg' \in E(G) \text{ and } h = h') \text{ or } (g = g' \text{ and } hh' \in E(H)) \dots$ Cartesian edges; or

Modular product and his complementary product

Two vertices (g, h) and (g', h') are adjacent in $G \diamond H$ if

- $(gg' \in E(G) \text{ and } h = h') \text{ or } (g = g' \text{ and } hh' \in E(H)) \dots$ Cartesian edges; or
- ▶ $gg' \in E(G)$ and $hh' \in E(H)$... direct edges; or

Modular product and his complementary product

Two vertices (g, h) and (g', h') are adjacent in $G \diamond H$ if

- $(gg' \in E(G) \text{ and } h = h') \text{ or } (g = g' \text{ and } hh' \in E(H)) \dots$ Cartesian edges; or
- ▶ $gg' \in E(G)$ and $hh' \in E(H)$... direct edges; or
- ▶ $gg' \notin E(G)$ and $hh' \notin E(H)$... co-direct edges.

Modular product and his complementary product

Two vertices (g, h) and (g', h') are adjacent in $G \diamond H$ if

- $(gg' \in E(G) \text{ and } h = h') \text{ or } (g = g' \text{ and } hh' \in E(H)) \dots$ Cartesian edges; or
- ▶ $gg' \in E(G)$ and $hh' \in E(H)$... direct edges; or
- ▶ $gg' \notin E(G)$ and $hh' \notin E(H)$... co-direct edges.
- We have $E(G \diamond H) = E(G \Box H) \cup E(G \times H) \cup E(\overline{G} \times \overline{H}) = E(G \boxtimes H) \cup E(\overline{G} \times \overline{H}).$
Modular product and his complementary product

Two vertices (g, h) and (g', h') are adjacent in $G \diamond H$ if

- $(gg' \in E(G) \text{ and } h = h') \text{ or } (g = g' \text{ and } hh' \in E(H)) \dots$ Cartesian edges; or
- ▶ $gg' \in E(G)$ and $hh' \in E(H)$... direct edges; or
- $gg' \notin E(G)$ and $hh' \notin E(H)$... co-direct edges.
- We have $E(G \diamond H) = E(G \Box H) \cup E(G \times H) \cup E(\overline{G} \times \overline{H}) = E(G \Box H) \cup E(\overline{G} \times \overline{H}).$

Theorem

The modular product $G \diamond H$ is disconnected if and only if one factor is complete and the other is disconnected or both factors are disjoint union of two complete graphs.

From strong product $K_{1,3} \boxtimes P_3$ to modular product $K_{1,3} \diamond P_3$

DQ P

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

From strong product $K_{1,3} \boxtimes P_3$ to modular product $K_{1,3} \diamond P_3$

DQ P

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

From strong product $K_{1,3} \boxtimes P_3$ to modular product $K_{1,3} \diamond P_3$

There are ten more associative products which are not commutative.

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- ► One example is weakly modular product or direct-co-direct product (or DcD product for short) G ⊛ H with one (1!) publication.

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- ► One example is weakly modular product or direct-co-direct product (or DcD product for short) G ⊛ H with one (1!) publication.
- $E(G \circledast H) = E(G \times H) \cup E(\overline{G} \times \overline{H})$

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- ► One example is weakly modular product or direct-co-direct product (or DcD product for short) G ⊛ H with one (1!) publication.
- ► $E(G \circledast H) = E(G \times H) \cup E(\overline{G} \times \overline{H}) = E(G \diamond H) E(G \Box H).$

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- ► One example is weakly modular product or direct-co-direct product (or DcD product for short) G ⊛ H with one (1!) publication.
- ► $E(G \circledast H) = E(G \times H) \cup E(\overline{G} \times \overline{H}) = E(G \diamond H) E(G \Box H).$
- Many graph products can be expressed with the introduced graph products.

From direct product $K_{1,3} \times P_3$ to DcD product $K_{1,3} \circledast P_3$

From direct product $K_{1,3} \times P_3$ to DcD product $K_{1,3} \circledast P_3$

From direct product $K_{1,3} \times P_3$ to DcD product $K_{1,3} \circledast P_3$

• One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_1 * \cdots * G_k$.

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_1 * \cdots * G_k$.
- ► Is this decomposition of *G* to the factors unique?

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_1 * \cdots * G_k$.
- ► Is this decomposition of *G* to the factors unique?
- ► For which classes of graphs is this decomposition unique?

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_1 * \cdots * G_k$.
- ► Is this decomposition of *G* to the factors unique?
- ► For which classes of graphs is this decomposition unique?
- Can this decomposition be found by a polynomial algorithm?

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_1 * \cdots * G_k$.
- ► Is this decomposition of *G* to the factors unique?
- ► For which classes of graphs is this decomposition unique?
- Can this decomposition be found by a polynomial algorithm?
- This is well understood for Cartesian, direct and strong product, but not for modular and DcD product.

► Can one describe (some) properties of G with respect to some (maybe other) properties of G₁,..., G_k for a product G ≅ G₁ * · · · * G_k.

- Can one describe (some) properties of G with respect to some (maybe other) properties of G₁,..., G_k for a product G ≅ G₁ *··· * G_k.
- ► There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G₁,..., G_k than with big graph G.

- Can one describe (some) properties of G with respect to some (maybe other) properties of G₁,..., G_k for a product G ≃ G₁ *···* G_k.
- ► There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G₁,..., G_k than with big graph G.
- We already observed distance formulas for Cartesian, direct and strong products.

- Can one describe (some) properties of G with respect to some (maybe other) properties of G₁,..., G_k for a product G ≅ G₁ *··· * G_k.
- ► There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G₁,..., G_k than with big graph G.
- We already observed distance formulas for Cartesian, direct and strong products.
- We continue with some examples for modular (domination number, distance, strong metric dimension) and DcD product (distance).

A set D ⊆ V(G) is a dominating set of G if every vertex v ∈ V(G) − D has a neighbor in D.

- A set D ⊆ V(G) is a **dominating set** of G if every vertex v ∈ V(G) − D has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the **domination number** $\gamma(G)$ of G.

- A set D ⊆ V(G) is a dominating set of G if every vertex v ∈ V(G) − D has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the **domination number** $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the total domination number γ_t(G) of G.

- A set D ⊆ V(G) is a dominating set of G if every vertex v ∈ V(G) − D has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the **domination number** $\gamma(G)$ of G.
- ► The minimum cardinality of a total dominating set of G is called the total domination number γ_t(G) of G.
- A set D ⊆ V(G) is a total dominating set of G if every vertex v ∈ V(G) has a neighbor in D.

- A set D ⊆ V(G) is a dominating set of G if every vertex v ∈ V(G) − D has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the **domination number** $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the **total domination number** $\gamma_t(G)$ of G.
- A set D ⊆ V(G) is a total dominating set of G if every vertex v ∈ V(G) has a neighbor in D.
- A graph G with an isolated vertex has no total domination set and we set γ_t(G) = ∞.

- A set D ⊆ V(G) is a dominating set of G if every vertex v ∈ V(G) − D has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the **domination number** $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the **total domination number** $\gamma_t(G)$ of G.
- A set D ⊆ V(G) is a total dominating set of G if every vertex v ∈ V(G) has a neighbor in D.
- A graph G with an isolated vertex has no total domination set and we set γ_t(G) = ∞.
- What can we say about $\gamma(G \diamond H)$?

Conjecture (Vizing 1968)

$$\gamma(G\Box H) \geq \gamma(G)\gamma(H)$$

Proposition

Let G and H be two graphs. If $D = \{(g_1, h_1), \dots, (g_k, h_k)\}$ is a dominating set in $G \diamond H$, then $\{g_1, \dots, g_k\}$ is a dominating set in G or $\{h_1, \dots, h_k\}$ is a total dominating set in \overline{H} .

Proposition

Let G and H be two graphs. If $D = \{(g_1, h_1), \dots, (g_k, h_k)\}$ is a dominating set in $G \diamond H$, then $\{g_1, \dots, g_k\}$ is a dominating set in G or $\{h_1, \dots, h_k\}$ is a total dominating set in \overline{H} .

► This yields

 $\max\{\min\{\gamma(\mathcal{G}), \gamma_t(\overline{H})\}, \min\{\gamma(\mathcal{H}), \gamma_t(\overline{\mathcal{G}})\}\} \leq \gamma(\mathcal{G} \diamond \mathcal{H}).$

Proposition

Let G and H be two graphs. If $D = \{(g_1, h_1), \dots, (g_k, h_k)\}$ is a dominating set in $G \diamond H$, then $\{g_1, \dots, g_k\}$ is a dominating set in G or $\{h_1, \dots, h_k\}$ is a total dominating set in \overline{H} .

This yields

 $\max\{\min\{\gamma(\mathcal{G}), \gamma_t(\overline{\mathcal{H}})\}, \min\{\gamma(\mathcal{H}), \gamma_t(\overline{\mathcal{G}})\}\} \leq \gamma(\mathcal{G} \diamond \mathcal{H}).$

Proposition

For any graph H, diam(H) \geq 3 if and only if $\gamma_t(\overline{H}) = 2$.

Proposition

Let G and H be two graphs. If $D = \{(g_1, h_1), \dots, (g_k, h_k)\}$ is a dominating set in $G \diamond H$, then $\{g_1, \dots, g_k\}$ is a dominating set in G or $\{h_1, \dots, h_k\}$ is a total dominating set in \overline{H} .

This yields

 $\max\{\min\{\gamma(\mathcal{G}), \gamma_t(\overline{\mathcal{H}})\}, \min\{\gamma(\mathcal{H}), \gamma_t(\overline{\mathcal{G}})\}\} \leq \gamma(\mathcal{G} \diamond \mathcal{H}).$

<ロト < 同ト < ヨト < ヨト

Proposition

For any graph H, diam(H) \geq 3 if and only if $\gamma_t(\overline{H}) = 2$.

• If diam(H) = 2, then min
$$\{\gamma(G), 3\} \leq \gamma(G \diamond H)$$
.

Upper bounds

If G and H are graphs, then

$$\blacktriangleright \gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

Upper bounds

If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

$$\blacktriangleright \gamma(G \diamond H) \leq \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1.$$

Upper bounds

If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

•
$$\gamma(G \diamond H) \leq \min\{\gamma(G) + \gamma(H) - 1, \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1\}.$$
If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

•
$$\gamma(G \diamond H) \leq \min\{\gamma(G) + \gamma(H) - 1, \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1\}.$$

If D_G is a γ(G)-set and h a universal vertex of H, then D = D_G × {h} is a dominating set of G ◊ H.

If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

$$\qquad \qquad \bullet \ \gamma(G \diamond H) \leq \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1.$$

•
$$\gamma(G \diamond H) \leq \min\{\gamma(G) + \gamma(H) - 1, \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1\}.$$

- If D_G is a γ(G)-set and h a universal vertex of H, then D = D_G × {h} is a dominating set of G ◊ H.
- If H has a universal vertex, then $\gamma(G \diamond H) = \gamma(G)$.

If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

•
$$\gamma(G \diamond H) \leq \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1.$$

•
$$\gamma(G \diamond H) \leq \min\{\gamma(G) + \gamma(H) - 1, \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1\}.$$

- If D_G is a γ(G)-set and h a universal vertex of H, then D = D_G × {h} is a dominating set of G ◊ H.
- If *H* has a universal vertex, then $\gamma(G \diamond H) = \gamma(G)$.

$$\blacktriangleright \ \gamma(G \diamond K_n) = \gamma(G).$$

If G and H are graphs, then

►
$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1.$$

•
$$\gamma(G \diamond H) \leq \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1.$$

•
$$\gamma(G \diamond H) \leq \min\{\gamma(G) + \gamma(H) - 1, \gamma_t(\overline{G}) + \gamma_t(\overline{H}) - 1\}.$$

- If D_G is a γ(G)-set and h a universal vertex of H, then D = D_G × {h} is a dominating set of G ◊ H.
- If H has a universal vertex, then $\gamma(G \diamond H) = \gamma(G)$.

$$\blacktriangleright \ \gamma(G \diamond K_n) = \gamma(G).$$

$$\blacktriangleright \gamma(G \diamond K_{1,n}) = \gamma(G).$$

► Let D be at the same time a dominating set of G and a total dominating set of G.

- ► Let D be at the same time a dominating set of G and a total dominating set of G.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.

- ► Let D be at the same time a dominating set of G and a total dominating set of G.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the **SDCTD number** of G.

- ► Let D be at the same time a dominating set of G and a total dominating set of G.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the **SDCTD number** of G.
- $\bar{\gamma}(G)$ exists if there are no isolated vertices in \overline{G} , which means no universal vertices of G.

- ► Let D be at the same time a dominating set of G and a total dominating set of G.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the **SDCTD number** of G.
- $\overline{\gamma}(G)$ exists if there are no isolated vertices in \overline{G} , which means no universal vertices of G.

イロト イボト イヨト

Proposition

If G and H are two graphs, then $\gamma(G \diamond H) \leq \min\{\bar{\gamma}(G), \bar{\gamma}(H)\}.$

• If diam(G)
$$\geq$$
 3, then $\gamma(G \diamond H) \leq \gamma(G) + 2$.

- If diam(G) \geq 3, then $\gamma(G \diamond H) \leq \gamma(G) + 2$.
- ▶ If D_G is a $\gamma(G)$ -set in G and there exist $g_1, g_2 \in D_G$ such that $d_G(g_1, g_2) \ge 3$, then $\gamma(G \diamond H) \le \gamma(G)$.

- If diam(G) \geq 3, then $\gamma(G \diamond H) \leq \gamma(G) + 2$.
- If D_G is a γ(G)-set in G and there exist g₁, g₂ ∈ D_G such that d_G(g₁, g₂) ≥ 3, then γ(G ◊ H) ≤ γ(G).
- ▶ If G is an *ECD* graph with $\gamma(G) \ge 2$, then $\gamma(G \diamond H) \le \gamma(G)$.

- If diam(G) \geq 3, then $\gamma(G \diamond H) \leq \gamma(G) + 2$.
- ▶ If D_G is a $\gamma(G)$ -set in G and there exist $g_1, g_2 \in D_G$ such that $d_G(g_1, g_2) \ge 3$, then $\gamma(G \diamond H) \le \gamma(G)$.
- ▶ If G is an *ECD* graph with $\gamma(G) \ge 2$, then $\gamma(G \diamond H) \le \gamma(G)$.
- If diam(G) \geq 5, then $\gamma(G \diamond H) \leq \gamma(G)$.

$$\blacktriangleright \ \gamma(G \diamond Q_3) = 2,$$

<ロ> < 団 > < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\blacktriangleright \ \gamma(G \diamond Q_3) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond C_k) \leq 3$$
 for $k \in \{4, 5\}$,

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond C_k) \leq 3$$
 for $k \in \{4, 5\}$,

•
$$\gamma(G \diamond C_6) = 2$$
,

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond C_k) \leq 3$$
 for $k \in \{4, 5\}$,

•
$$\gamma(G \diamond C_6) = 2$$
,

•
$$\gamma(G \diamond C_k) \leq \left\lceil \frac{k}{3} \right\rceil$$
 for $k \geq 7$,

•
$$\gamma(G \diamond Q_3) = 2$$
,

$$\blacktriangleright \ \gamma(G \diamond Q_3^-) = 2,$$

$$\blacktriangleright \ \gamma(G \diamond K_{m,n}^{-}) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond C_k) \leq 3$$
 for $k \in \{4, 5\}$,

•
$$\gamma(G \diamond C_6) = 2$$
,

•
$$\gamma(G \diamond C_k) \leq \left\lceil \frac{k}{3} \right\rceil$$
 for $k \geq 7$,

•
$$\gamma(G \diamond P) \leq 4;$$

$$\gamma(G \diamond Q_3) = 2,$$

•
$$\gamma(G \diamond C_{3k}) \leq k$$
,

•
$$\gamma(G \diamond P_t) \leq \left\lceil \frac{t}{3} \right\rceil$$
,

•
$$\gamma(G \diamond C_k) \leq 3 \text{ for } k \in \{4,5\},\$$

$$\blacktriangleright \ \gamma(G \diamond C_6) = 2,$$

•
$$\gamma(G \diamond C_k) \leq \left\lceil \frac{k}{3} \right\rceil$$
 for $k \geq 7$,

•
$$\gamma(G \diamond P) \leq 4;$$

•
$$\gamma(K_{2k}^- \diamond P_{6k}) = 2k$$
 for any $k \ge 3$;

<ロト < 同ト < ヨト < ヨト

$$\gamma(G \diamond Q_3) = 2,$$
 $\gamma(G \diamond Q_3^-) = 2,$
 $\gamma(G \diamond K_{m,n}^-) = 2,$
 $\gamma(G \diamond C_{3k}) \leq k,$
 $\gamma(G \diamond C_k) \leq \left\lceil \frac{t}{3} \right\rceil,$
 $\gamma(G \diamond C_k) \leq 3 \text{ for } k \in \{4,5\},$
 $\gamma(G \diamond C_6) = 2,$
 $\gamma(G \diamond C_6) \leq \left\lceil \frac{k}{3} \right\rceil \text{ for } k \geq 7,$
 $\gamma(G \diamond P) \leq 4;$
 $\gamma(K_{2k}^- \diamond P_{6k}) = 2k \text{ for any } k \geq 3;$
 $\gamma(P_{6k} \diamond \overline{P_{4k}}) = 2k \text{ for any } k \geq 2.$

Proposition

For any graphs G and H, $\gamma(G \diamond H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Proposition

For any graphs G and H, $\gamma(G \diamond H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Theorem

For any graphs G and H, $\gamma(G \diamond H) = 2$ if and only if one of the following conditions holds

Proposition

For any graphs G and H, $\gamma(G \diamond H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Theorem

For any graphs G and H, $\gamma(G \diamond H) = 2$ if and only if one of the following conditions holds

(*i*) $\gamma(G) + \gamma(H) = 3;$

Proposition

For any graphs G and H, $\gamma(G \diamond H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Theorem

For any graphs G and H, $\gamma(G \diamond H) = 2$ if and only if one of the following conditions holds

(i)
$$\gamma(G) + \gamma(H) = 3;$$

(ii) $D_G = \{g_1, g_2\}$ is an ECD set of G;

Proposition

For any graphs G and H, $\gamma(G \diamond H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Theorem

For any graphs G and H, $\gamma(G \diamond H) = 2$ if and only if one of the following conditions holds

(i)
$$\gamma(G) + \gamma(H) = 3;$$

(ii) $D_G = \{g_1, g_2\}$ is an ECD set of G;
(iii) $D_H = \{h_1, h_2\}$ is an ECD set of H.

$$\gamma(G\diamond H)=3$$

$$\gamma(G\diamond H)=3$$

(*i*)
$$\gamma(G) + \gamma(H) = 4;$$

$$\gamma(G\diamond H)=3$$

(i)
$$\gamma(G) + \gamma(H) = 4;$$

(ii) $\bar{\gamma}(G) = 3 \text{ or } \bar{\gamma}(H) = 3;$

$$\gamma(G\diamond H)=3$$

(i)
$$\gamma(G) + \gamma(H) = 4;$$

(ii) $\overline{\gamma}(G) = 3 \text{ or } \overline{\gamma}(H) = 3;$
(iii) diam $(G) \ge 3$ and diam $(H) \ge 3;$

$$\gamma(G\diamond H)=3$$

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H) = 3$ if and only if at least one of the following conditions holds

DQ P

$$\gamma(G\diamond H)=3$$

(v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:

$$\gamma(G\diamond H)=3$$

- (v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:
 - (a) if $N_G[g_1] \cap N_G[g_2] \cap N_G[g_3] \neq \emptyset$, then D_H is a dominating set in H, or the mirror condition;
$$\gamma(G\diamond H)=3$$

- (v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:
 - (a) if $N_G[g_1] \cap N_G[g_2] \cap N_G[g_3] \neq \emptyset$, then D_H is a dominating set in H, or the mirror condition;
 - (b) $a(D_G) + b(D_H) \le 3$ and $b(D_G) + a(D_H) \le 3$;

$$\gamma(G\diamond H)=3$$

- (v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:
 - (a) if $N_G[g_1] \cap N_G[g_2] \cap N_G[g_3] \neq \emptyset$, then D_H is a dominating set in H, or the mirror condition;
 - (b) $a(D_G) + b(D_H) \le 3$ and $b(D_G) + a(D_H) \le 3$;
 - (c) for any $i \in [3]$ such that $\operatorname{pr}[g_i, D_G] \neq \emptyset$ and $(N_G[g_j] \cap N_G[g_k]) \setminus N_G[g_i] \neq \emptyset$, there exists $r_i \in [3]$ such that $\operatorname{pr}[h_{r_i}, D_H] = \emptyset$ and $(N_H[h_s] \cap N_H[h_t]) \setminus N_H[h_{r_i}] = \emptyset$ with $\{s, t, r_i\} = [3]$, or the mirror condition.

$$\gamma(G\diamond H)=3$$

- (v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:
 - (a) if $N_G[g_1] \cap N_G[g_2] \cap N_G[g_3] \neq \emptyset$, then D_H is a dominating set in H, or the mirror condition;
 - (b) $a(D_G) + b(D_H) \le 3$ and $b(D_G) + a(D_H) \le 3$;
 - (c) for any $i \in [3]$ such that $\operatorname{pr}[g_i, D_G] \neq \emptyset$ and $(N_G[g_j] \cap N_G[g_k]) \setminus N_G[g_i] \neq \emptyset$, there exists $r_i \in [3]$ such that $\operatorname{pr}[h_{r_i}, D_H] = \emptyset$ and $(N_H[h_s] \cap N_H[h_t]) \setminus N_H[h_{r_i}] = \emptyset$ with $\{s, t, r_i\} = [3]$, or the mirror condition.

$$a(D_X) = |\{i : \operatorname{pr}[x_i, D_X] \neq \emptyset, i \in [3]\}|,$$

$$\gamma(G\diamond H)=3$$

- (v) there exist two sets $D_G = \{g_1, g_2, g_3\} \subseteq V(G)$ and $D_H = \{h_1, h_2, h_3\} \subseteq V(H)$ such that the following conditions hold:
 - (a) if $N_G[g_1] \cap N_G[g_2] \cap N_G[g_3] \neq \emptyset$, then D_H is a dominating set in H, or the mirror condition;
 - (b) $a(D_G) + b(D_H) \le 3$ and $b(D_G) + a(D_H) \le 3$;
 - (c) for any $i \in [3]$ such that $\operatorname{pr}[g_i, D_G] \neq \emptyset$ and $(N_G[g_j] \cap N_G[g_k]) \setminus N_G[g_i] \neq \emptyset$, there exists $r_i \in [3]$ such that $\operatorname{pr}[h_{r_i}, D_H] = \emptyset$ and $(N_H[h_s] \cap N_H[h_t]) \setminus N_H[h_{r_i}] = \emptyset$ with $\{s, t, r_i\} = [3]$, or the mirror condition.

$$a(D_X) = |\{i : \operatorname{pr}[x_i, D_X] \neq \emptyset, i \in [3]\}|,$$

$$b(D_X) = |\{i : (N_X[x_j] \cap N_X[x_k]) \setminus N_X[x_i] \neq \emptyset, \{i, j, k\} = [3]\}|.$$

• What about $\gamma(G \circledast H)$?

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- ▶ total domination,
- different Roman dominations,

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- ▶ total domination,
- different Roman dominations,
- ▶ signed domination,

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- ▶ total domination,
- different Roman dominations,
- ▶ signed domination,
- double domination,

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,
- double domination,
- ▶ and more.

- What about $\gamma(G \otimes H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,
- double domination,
- ▶ and more.
- It seems an interesting problem to study $\gamma(\overline{G})$.

・ 同 ト ・ ヨ ト ・ ヨ ト -

DQ P

Distance in modular product for \overline{K}_n

$$\blacktriangleright \overline{K}_p \diamond \overline{K}_r \cong K_p \times K_r.$$

Distance in modular product for \overline{K}_n

$$\blacktriangleright \overline{K}_p \diamond \overline{K}_r \cong K_p \times K_r.$$

• If
$$p, r \geq 3$$
, then

$$d_{\overline{K}_p \diamond \overline{K}_r}((g,h),(g',h')) = \left\{egin{array}{ccc} 0 & \colon & g=g' \land h=h' \ 1 & \colon & g
eq g' \land h
eq h' \ 2 & \colon & g=g' & h=h' \end{array}
ight.$$

Distance in modular product for \overline{K}_n

$$\blacktriangleright \ \overline{K}_p \diamond \overline{K}_r \cong K_p \times K_r.$$

• If
$$p, r \geq 3$$
, then

$$d_{\overline{K}_p \diamond \overline{K}_r}((g,h),(g',h')) = \left\{egin{array}{ccc} 0 & : & g=g' \wedge h=h' \ 1 & : & g
eq g' \wedge h
eq h' \ 2 & : & g=g' & h=h' \end{array}
ight.$$

• If $p \geq 3$, then

$$d_{\overline{K}_p \diamond \overline{K}_2}((g,h),(g',h')) = \begin{cases} 0 : g = g' \land h = h' \\ 1 : g \neq g' \land h \neq h' \\ 2 : g \neq g' \land h = h' \\ 3 : g = g' \land h \neq h' \end{cases}$$

Distance in modular product for K_n

$$\blacktriangleright K_p \diamond K_r \cong K_{p+r}.$$

イロト イポト イヨト イヨト DQ P

Distance in modular product for K_n

•
$$K_p \diamond K_r \cong K_{p+r}$$
.
• $G \diamond K_r \cong G \boxtimes K_r \cong G \circ K_r$ and we get

$$d_{G \diamond K_r}((g,h),(g',h')) = \max\{d_G(g,g'),d_H(h,h')\}.$$

Distance in modular product for K_n

•
$$K_p \diamond K_r \cong K_{p+r}$$
.
• $G \diamond K_r \cong G \boxtimes K_r \cong G \circ K_r$ and we get

$$d_{G \diamond K_r}((g,h),(g',h')) = \max\{d_G(g,g'), d_H(h,h')\}.$$

• The above formula holds also when G is not connected and also $G \diamond K_r$ is not connected.

General case

Theorem

If G and H are not complete graphs, then either

▶ $d_{G \diamond H}((g, h), (g', h')) = \infty$ when G and H both contain two complete components and (either $g' \in N_G[g]$ or $h' \in N_H[h]$) or

General case

Theorem

If G and H are not complete graphs, then either

▶ $d_{G \diamond H}((g, h), (g', h')) = \infty$ when G and H both contain two complete components and (either $g' \in N_G[g]$ or $h' \in N_H[h]$) or

▶ For the first part $(K_p \cup K_r) \diamond (K_s \cup K_t) \cong K_{ps+rt} \cup K_{pt+rs}$.

General case

Theorem

If G and H are not complete graphs, then either

▶ $d_{G \diamond H}((g, h), (g', h')) = \infty$ when G and H both contain two complete components and (either $g' \in N_G[g]$ or $h' \in N_H[h]$) or

•
$$d_{G\diamond H}((g,h),(g',h')) \leq 3$$
 otherwise.

- ▶ For the first part $(K_p \cup K_r) \diamond (K_s \cup K_t) \cong K_{ps+rt} \cup K_{pt+rs}$.
- For the second part we need to find a path of length at most three.

Second part of the proof

* ロ ト * 同 ト * 三 ト *

5900

 $\exists \rightarrow$

Overview

Overview

- ► We know which vertices are adjacent.
- If we can describe which vertices are at distance 2, then we have the distance formula.

Overview

- We know which vertices are adjacent.
- If we can describe which vertices are at distance 2, then we have the distance formula.
- If we can describe which vertices are at distance 3, then we have the distance formula.

Cartesian product: paths

Theorem

Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_s \cup K_t$. The distance $d_{G \diamond H}((g, h), (g', h')) = 3$ if and only if one of the two possibilities holds true

Cartesian product: paths

Theorem

Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_s \cup K_t$. The distance $d_{G \diamond H}((g, h), (g', h')) = 3$ if and only if one of the two possibilities holds true

$$N_G[g] = N_G[g'] \wedge d_H(h, h') \ge 3 \wedge \tag{1}$$

 $(N_G[g] = V(G) \lor (N_G[g] \neq V(G) \land \{h, h'\} \text{ is } \gamma(H) - set))$

$$N_H[h] = N_H[h'] \wedge d_G(g,g') \ge 3 \wedge \tag{2}$$

$$(N_H[h] = V(H) \lor (N_H[h] \neq V(H) \land \{g, g'\} \text{ is } \gamma(G) - set))$$

On graph products Domination in modular product Distance in modular product Distance in DcD product Strong metric di

Distance formula

$$d_{G \diamond H}((g, h), (g', h')) = \begin{cases} 0 : g = g' \land h = h' \\ 1 : (g, h)(g', h') \in E(G \diamond H) \\ 2 : otherwise \\ 3 : (g, h), (g', h') \text{ fulfills (1) or (2)} \end{cases}$$

- * ロ > * 母 > * 画 > * 画 > * の < @ >

On graph products	Domination in modular product	Distance in modular product	Distance in DcD product	Strong metric di
000000000000000000000000000000000000000	000000000	00000000000	000000000000	000000000

Schematic overview

5900

3

A

Motivation

Corollary

Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_s \cup K_t$. We have $\operatorname{diam}(G \diamond H) = 2$ if and only if (no factor contains a universal vertex and no factor is an efficient closed domination graph with domination number two) or both factors have diameter two.

• One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;
- different dimensions (metric, edge metric, mixed metric, and more),

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;
- different dimensions (metric, edge metric, mixed metric, and more),
- topological indices related to the distance (Wiener and similar).

History

The only known publication on direct-co-direct product (under name weakly modular graph) is

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50–52.
History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- ▶ D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50–52.
- ► The main result is

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- ▶ D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50–52.
- ► The main result is

Theorem

Let G and H be graphs of order n. The problem of finding clique of order n in $G \circledast H$ is equivalent to isomorphism problem. Moreover, the problem of determining whether $G \circledast H$ has a clique of order $n(1 - \epsilon)$ is NP complete.

▶ By the definition is direct-co-direct product commutative.

- ▶ By the definition is direct-co-direct product commutative.
- ► To see that it is not associative let G, H, F be three graphs (without loops) and let gg' ∈ E(G), h ∈ V(H) and ff' ∉ E(F).

- By the definition is direct-co-direct product commutative.
- ► To see that it is not associative let G, H, F be three graphs (without loops) and let gg' ∈ E(G), h ∈ V(H) and ff' ∉ E(F).
- ▶ $(g,h)(g',h) \notin E(G \circledast H)$ and with this $((g,h),f)((g',h),f') \in E((G \circledast H) \circledast F).$

- By the definition is direct-co-direct product commutative.
- ► To see that it is not associative let G, H, F be three graphs (without loops) and let gg' ∈ E(G), h ∈ V(H) and ff' ∉ E(F).
- ► $(g,h)(g',h) \notin E(G \circledast H)$ and with this $((g,h),f)((g',h),f') \in E((G \circledast H) \circledast F).$
- ► $(h, f)(h, f') \notin E(G \circledast H)$ and with this $(g, (h, f))(g', (h, f')) \notin E(G \circledast (H \circledast F)).$

Distance in direct-co-direct product for K_n

• $K_n \circledast H \cong K_n \times H$.

Distance in direct-co-direct product for K_n

 $\blacktriangleright K_n \circledast H \cong K_n \times H.$

From the distance formula for the direct product we get

$$d_{\mathcal{K}_2 \circledast \mathcal{H}}((g,h),(g',h')) = \left\{egin{array}{cc} d^o_{\mathcal{H}}(h,h') & : & g
eq g' \ d^o_{\mathcal{H}}(h,h') & : & g = g' \end{array}
ight.$$

Distance in direct-co-direct product for K_n

• $K_n \circledast H \cong K_n \times H$.

From the distance formula for the direct product we get

$$d_{\mathcal{K}_2 \circledast \mathcal{H}}((g,h),(g',h')) = \left\{egin{array}{cc} d^o_{\mathcal{H}}(h,h') & : & g
eq g' \ d^e_{\mathcal{H}}(h,h') & : & g = g' \end{array}
ight.$$

▶ For $n \ge 3$ we similarly get $d_{K_n \circledast H}((g, h), (g', h')) =$

$$\left\{ \begin{array}{ll} \min\{d^{o}_{H}(h,h'), \max\{2, d^{e}_{H}(h,h')\}\} & : & g \neq g' \\ \min\{d^{e}_{H}(h,h'), \max\{3, d^{o}_{H}(h,h')\}\} & : & g = g' \end{array} \right.$$

Eccentricity approach

► Eccentricity of a vertex is ecc_G(g) = max{d_G(g, v) : v ∈ V(G)}.

Eccentricity approach

► Eccentricity of a vertex is ecc_G(g) = max{d_G(g, v) : v ∈ V(G)}.

Theorem

Let G and H be two connected graphs at most one isomorphic to $K_{1,t}$ and let $g \in V(G)$ and $h \in V(H)$ such that they are different from a central vertex of a star if G or H, respectively, is isomorphic to a star. If $ecc_G(g) \ge 3$ or $ecc_H(h) \ge 3$, then $ecc_{G \circledast H}((g, h)) \le 3$.

On graph products	Domination in modular product	Distance in modular product	Distance in DcD product	Strong metric di
000000000000000000000000000000000000000	000000000	000000000	000000000000	000000000

Sketch of a proof

5900

Problem with a star 1

Problem with a star 2

• Let
$$H = K_{s,t} - e$$
 where $e = hh'$.

Problem with a star 2

• Let
$$H = K_{s,t} - e$$
 where $e = hh'$.

▶ If g is a universal vertex of $K_{1,t}$, then $d_{K_{1,t} \otimes H}((g, h), (g, h')) = 5.$

Eccentricity 2

Theorem

Let G and H be two connected graphs at least one different from $K_{1,t}$ and let $g \in V(G)$ and $h \in V(H)$. If $ecc_G(g) = 2$ and $ecc_H(h) = 2$ and at least one of g and h belongs to C_3 , then $ecc_{G \circledast H}((g, h)) \leq 3$.

Sketch of a proof

Distance 2

Theorem

Let graphs G and H be graphs different from the complete graphs and empty graphs (minus disconected case). The distance $d_{G \otimes H}((g, h), (g', h')) = 2$ if and only if at least one of the following possibilities holds

$$(d_{H}(h, h') = 2 \land g = g' \land N_{G}(g) \neq \emptyset) \lor (d_{G}(g, g') = 2 \land h = h' \land N_{H}(h) \neq \emptyset)$$
$$(d_{\overline{H}}(h, h') = 2 \land g = g' \land N_{\overline{G}}(g) \neq \emptyset) \lor (d_{\overline{G}}(g, g') = 2 \land h = h' \land N_{\overline{H}}(h) \neq \emptyset)$$
$$g'gg'' \text{ is induced in } G \text{ and } hh'h'' \text{ is induced in } \overline{H}$$

g'gg'' is induced in \overline{G} and hh'h'' is induced in H

Image: A test in te

gʻggʻ

On graph products	Domination in modular product	Distance in modular product	Distance in DcD product	Strong metric di
000000000000000000000000000000000000000	000000000	000000000	00000000000000	000000000

Theorem

$$d_{G \circledast H}((g, h), (g', h')) = \begin{cases} 0 : g = g' \land h = h' \\ 1 : (g, h)(g', h') \in E(G \diamond H) \\ 2 : (g, h), (g', h') \text{ fulfills previous theorem} \\ 3 : otherwise \\ 4 : condition (A) \\ 5 : condition (B) \end{cases}$$

On graph products	Domination in modular product	Distance in modular product	Distance in DcD product	Strong metric di
000000000000000000000000000000000000000	000000000	000000000	00000000000000	000000000

Theorem

$$d_{G \circledast H}((g, h), (g', h')) = \begin{cases} 0 : g = g' \land h = h' \\ 1 : (g, h)(g', h') \in E(G \diamond H) \\ 2 : (g, h), (g', h') \text{ fulfills previous theorem} \\ 3 : otherwise \\ 4 : condition (A) \\ 5 : condition (B) \end{cases}$$

 Condition (A) consists of 10 different conditions where one factor is always K_{1,t}

On graph products	Domination in modular product	Distance in modular product	Distance in DcD product	Strong metric di
000000000000000000000000000000000000000	000000000	000000000	00000000000000	000000000

Theorem

$$d_{G \circledast H}((g, h), (g', h')) = \begin{cases} 0 : g = g' \land h = h' \\ 1 : (g, h)(g', h') \in E(G \diamond H) \\ 2 : (g, h), (g', h') \text{ fulfills previous theorem} \\ 3 : otherwise \\ 4 : condition (A) \\ 5 : condition (B) \end{cases}$$

 Condition (A) consists of 10 different conditions where one factor is always K_{1,t}

For Condition (B) let G ≅ K_{1,t}, t ≥ 2 where g = g' is universal in G and ecc_H(h) = 3, h' is an isolated vertex of H[C_H], H[A_H] and H[N_H(h')] are without edges, every vertex of A_H is adjacent to every vertex of B_H and C_H ⊂ N_H(h₀) for every h₀ ∈ N_H(h') (or symmetric).

Theorem

Direct-co-direct product is not connected if and only if

one factor has a universal and the other an isolated vertex;

Theorem

- one factor has a universal and the other an isolated vertex;
- ▶ one factor is K₂ and the other is bipartite;

Theorem

- one factor has a universal and the other an isolated vertex;
- one factor is K₂ and the other is bipartite;
- ▶ one factor is K₂ and the other is bipartite;

Theorem

- one factor has a universal and the other an isolated vertex;
- one factor is K₂ and the other is bipartite;
- one factor is \overline{K}_2 and the other is bipartite;
- one factor is K_t and the other is not connected;

Theorem

- one factor has a universal and the other an isolated vertex;
- one factor is K₂ and the other is bipartite;
- one factor is K₂ and the other is bipartite;
- one factor is K_t and the other is not connected;
- ► one factor is K
 t and the complement of the other is not connected;

Theorem

- one factor has a universal and the other an isolated vertex;
- one factor is K₂ and the other is bipartite;
- one factor is K₂ and the other is bipartite;
- one factor is K_t and the other is not connected;
- ► one factor is K_t and the complement of the other is not connected;
- both factors are complete bipartite graphs;

Theorem

- one factor has a universal and the other an isolated vertex;
- one factor is K₂ and the other is bipartite;
- one factor is K₂ and the other is bipartite;
- one factor is K_t and the other is not connected;
- one factor is K_t and the complement of the other is not connected;
- both factors are complete bipartite graphs;
- both factors are disjoint union of two complete graphs.

▶ One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like

- ▶ One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;

- ▶ One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;
- different dimensions (metric, strong metric, edge metric, mixed metric, and more),

- One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;
- different dimensions (metric, strong metric, edge metric, mixed metric, and more),
- topological indices related to the distance (Wiener and similar).

A vertex z ∈ V(G) strongly resolves two different vertices
 x, y ∈ V(G) if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.

- A vertex z ∈ V(G) strongly resolves two different vertices x, y ∈ V(G) if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- ▶ By distance this means $d_G(y, z) = d_G(y, x) + d_G(x, z)$ or $d_G(x, z) = d_G(x, y) + d_G(y, z)$.

- A vertex z ∈ V(G) strongly resolves two different vertices x, y ∈ V(G) if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- ▶ By distance this means $d_G(y,z) = d_G(y,x) + d_G(x,z)$ or $d_G(x,z) = d_G(x,y) + d_G(y,z)$.
- A strong metric generator in a connected graph G is a set S ⊆ V(G) such that every two vertices of G are strongly resolved by a vertex of S.

- A vertex z ∈ V(G) strongly resolves two different vertices x, y ∈ V(G) if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- ▶ By distance this means $d_G(y,z) = d_G(y,x) + d_G(x,z)$ or $d_G(x,z) = d_G(x,y) + d_G(y,z)$.
- A strong metric generator in a connected graph G is a set S ⊆ V(G) such that every two vertices of G are strongly resolved by a vertex of S.
- ▶ By dim_s(G) we denote the smallest cardinality of a strong metric generator for G and we call it the strong metric dimension of G.
• We obtain strong resolving graph G_{SR} from G as follows.

- We obtain strong resolving graph G_{SR} from G as follows.
- ► A *u*, *v*-geodesic *P* is *maximal* if *P* is not contained in any other geodesic different than *P*.

- We obtain strong resolving graph G_{SR} from G as follows.
- ► A *u*, *v*-geodesic *P* is *maximal* if *P* is not contained in any other geodesic different than *P*.
- Vertices of G_{SR} are all the end-vertices of all maximal geodesics in G.

- We obtain strong resolving graph G_{SR} from G as follows.
- ► A *u*, *v*-geodesic *P* is *maximal* if *P* is not contained in any other geodesic different than *P*.
- ► Vertices of G_{SR} are all the end-vertices of all maximal geodesics in G.
- Moreover, uv ∈ E(G_{SR}) if there exists a maximal u, v-geodesic in G.

- We obtain strong resolving graph G_{SR} from G as follows.
- ► A *u*, *v*-geodesic *P* is *maximal* if *P* is not contained in any other geodesic different than *P*.

イロト イポト イヨト

- ► Vertices of G_{SR} are all the end-vertices of all maximal geodesics in G.
- Moreover, uv ∈ E(G_{SR}) if there exists a maximal u, v-geodesic in G.

Theorem (Oellermann and Peters-Fransen)

For any connected graph G, $\dim_s(G) = \beta(G_{SR})$.

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

• (g, h) and (g', h') are different twins of $G \diamond H$,

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

- (g, h) and (g', h') are different twins of $G \diamond H$, or
- $d_{G \diamond H}((g, h), (g', h')) = 2$ and both (g, h) and (g', h') are not 3-diametrical vertices in $G \diamond H$,

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

- ▶ (g, h) and (g', h') are different twins of $G \diamond H$, or
- d_{G◊H}((g, h), (g', h')) = 2 and both (g, h) and (g', h') are not 3-diametrical vertices in G ◊ H, or

•
$$d_{G\diamond H}((g,h),(g',h'))=3$$

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

- ▶ (g, h) and (g', h') are different twins of $G \diamond H$, or
- d_{G◊H}((g, h), (g', h')) = 2 and both (g, h) and (g', h') are not 3-diametrical vertices in G ◊ H, or

►
$$d_{G \diamond H}((g, h), (g', h')) = 3$$
, or

• (g, h) or (g', h') is a 3-diametrical vertex where $\{x, x'\}$ are universal in X and $d_Y(y, y') = 2$ and $yy' \in E(Y_{SR})$ for $\{X, Y\} = \{G, H\}$ and $\{x, x', y, y'\} = \{g, g', h, h'\}$,

Theorem

For non-complete graphs G and H where at least one is different than $K_m \cup K_n$ we have $(g, h)(g', h') \in E((G \diamond H)_{SR})$ if and only if

- ▶ (g, h) and (g', h') are different twins of $G \diamond H$, or
- d_{G◊H}((g, h), (g', h')) = 2 and both (g, h) and (g', h') are not 3-diametrical vertices in G ◊ H, or

•
$$d_{G \diamond H}((g, h), (g', h')) = 3$$
, or

- (g, h) or (g', h') is a 3-diametrical vertex where $\{x, x'\}$ are universal in X and $d_Y(y, y') = 2$ and $yy' \in E(Y_{SR})$ for $\{X, Y\} = \{G, H\}$ and $\{x, x', y, y'\} = \{g, g', h, h'\}$, or
- (g, h) is a 3-diametrical vertex where x is universal and x' is not universal in X and d_Y(y, y') = 2 and d_Y(y, y₀) ≤ 2 for every y₀ ∈ N_Y(y') for {X, Y} = {G, H} and {x, x', y, y'} = {g, g', h, h'}.

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

$\operatorname{diam}(G\diamond H)\leq 2$

Theorem

Let G and H be graphs. If diam $(G \diamond H) \leq 2$, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(\overline{G} \Box \overline{H}) \cup E(G \times \overline{H}) \cup E(\overline{G} \times H).$

$$\operatorname{diam}(G\diamond H)\leq 2$$

Theorem

Let G and H be graphs. If diam $(G \diamond H) \leq 2$, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(\overline{G} \Box \overline{H}) \cup E(G \times \overline{H}) \cup E(\overline{G} \times H).$

Proposition

For integers $s \ge t \ge 2$ we have $\dim_s(K_{1,s} \diamond K_{1,t}) = st + s - 1$.

$$\operatorname{diam}(G\diamond H)\leq 2$$

Theorem

Let G and H be graphs. If diam $(G \diamond H) \leq 2$, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(\overline{G} \Box \overline{H}) \cup E(G \times \overline{H}) \cup E(\overline{G} \times H).$

Proposition

For integers $s \ge t \ge 2$ we have $\dim_s(K_{1,s} \diamond K_{1,t}) = st + s - 1$.

Proposition

For integers $s, t \ge 5$, $\max\{s, t\} \ge 6$, we have $\dim_s(\overline{C}_s \diamond \overline{C}_t) = st - \lfloor \frac{s}{2} \rfloor \lfloor \frac{t}{2} \rfloor$. In addition, $\dim_s(\overline{C}_5 \diamond \overline{C}_5) = 20$.

イロト イポト イヨト イヨト

DQ P

Another familly

Proposition

For integers $s, t \ge 7$ we have $\dim_s(C_s \diamond C_t) = st - 4\min\{\lfloor \frac{s}{3} \rfloor, \lfloor \frac{t}{3} \rfloor\} - r, \text{ where}$ $r = \begin{cases} 0 : \min\{s, t\} \equiv \{0, 1\} \pmod{3} \\ 1 : s = t \land \min\{s, t\} \equiv 2 \pmod{3} \end{cases}.$

$$\begin{array}{ccc} 2 & : & s \neq t \land \min\{s,t\} \equiv 2 \pmod{3} \end{array}$$

One factor has a $\gamma\text{-pair}$ and the other has no universal vertex

Theorem

If a graph G has a γ_G -pair and a graph H is without a universal vertex, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(GP(G) \Box GP(H)) \cup E(\overline{G}^{-} \Box \overline{H}^{-}) \cup E(\overline{G}^{-} \times \overline{H}^{-}) \cup E(\overline{G}^{-} \times H^{-})$

One factor has a $\gamma\text{-pair}$ and the other has no universal vertex

Theorem

If a graph G has a γ_G -pair and a graph H is without a universal vertex, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(GP(G) \Box GP(H)) \cup E(\overline{G}^{-} \Box \overline{H}^{-}) \cup E(\overline{G}^{-} \times \overline{H}^{-}) \cup E(\overline{G}^{-} \times H^{-})$

Proposition

For integers $n, p \ge 3$ we have $\dim_s(K_{n,n}^{-M} \diamond K_{p,p}^{-M}) = 3np$.

One factor has a $\gamma\text{-pair}$ and the other has no universal vertex

Theorem

If a graph G has a γ_G -pair and a graph H is without a universal vertex, then $E((G \diamond H)_{SR})$ equals to

 $TW(G \diamond H) \cup E(GP(G) \Box GP(H)) \cup E(\overline{G}^{-} \Box \overline{H}^{-}) \cup E(\overline{G}^{-} \times \overline{H}^{-}) \cup E(\overline{G}^{-} \times H^{-})$

Proposition

For integers $n, p \ge 3$ we have $\dim_s(K_{n,n}^{-M} \diamond K_{p,p}^{-M}) = 3np$.

Proposition

For integer $r \ge 7$ we have $\dim_s(P_5 \diamond P_r) = \dim_s(P_5 \diamond C_r) = 3r - 2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

One factor has a universal vertex and the other is arbitrary

DQ C

One factor has a universal vertex and the other is arbitrary

Proposition

For integers $r, q \ge 3$, $s, t \ge 4$, $m_q = \min\{r, q\}$, $m_t = \min\{t - 1, r - q\}$, $m_s = \min\{s, r - q\}$ and

$$b = \begin{cases} r+2 : & r \leq q+1 \\ r+1 : & r = q+2 \lor (r \geq q+3 \land \max\{s+1,t\} \geq r) \\ q+m_s : & r \geq q+3 \land t \leq s < r-1 \\ q+m_t : & r \geq q+3 \land s < t < r \end{cases},$$

we have $\dim_s(K_{1,r} \diamond H(s,t,q)) = (s+t+q-1)r - b + r + q + s + t.$

イロト イポト イヨト イヨト

Thank you for your attention!

- イロト (日) (注) (注) (注) (の)()

ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS