ON PROPERTIES OF MODULAR AND DIRECT-CO-DIRECT PRODUCTS

Iztok Peterin

Joint work with Sergio Bermudo, Cong X. Kang, Aleksander Kelenc, Jelena Sedlar, Riste Škrekovski and Eunjeong Yi

CALDAM Indo-Slovenia Pre-Conference School on Algorithms and Combinatorics February 2024

Literature 1

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.

Literature 1

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. KI. S.-B. H 180 (1972) 203-239. (In German.)

Literature 1

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. KI. S.-B. H 180 (1972) 203-239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277-281.

Literature 1

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. KI. S.-B. H 180 (1972) 203-239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277-281.
- W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.

Literature 1

- G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457.
- W. Imrich, Assoziative Produkte von Graphen, Osterreich. Akad. Wiss. Math.-Natur. KI. S.-B. H 180 (1972) 203-239. (In German.)
- W. Imrich, H. Izbicki, Associative products of graphs, Monatsh. Math. 80 (1975) 277-281.
- W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.
- R. Hamack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.

Literature 2

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.

Literature 2

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.

Literature 2

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.
- A. Kelenc, I.P., On some metric properties of direct-co-direct product, Appl. Math, Comput. 457 (2023) 128152.

Literature 2

- S. Bermudo, I.P., J. Sedlar, R. Škrekovski, Domination number of modular product graphs, in preparation.
- C.X. Kang, A. Kelenc, I.P., E. Yi, On Distance and Strong Metric Dimension of the Modular Product, in preparation.
- A. Kelenc, I.P., On some metric properties of direct-co-direct product, Appl. Math, Comput. 457 (2023) 128152.
- A. Kelenc, I.P., Distance formula for direct-co-direct product in the case of disconnected factors, Art Discrete Appl. Math. 6(2) (2023) p2.13 (21p).

Definition 1

Let G and H be graphs. Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$.

Definition 1

Let G and H be graphs. Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$.
Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges:

- projection to one factor is a vertex and to the other induces an edge $\left(V_{G}-E_{H}\right.$ and $\left.E_{G}-V_{H}\right)$;

Definition 1

Let G and H be graphs．Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$ ．

Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges：
－projection to one factor is a vertex and to the other induces an edge $\left(V_{G}-E_{H}\right.$ and $\left.E_{G}-V_{H}\right)$ ；
－projection to one factor is a vertex and to the other is not an edge $\left(V_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-V_{H}\right)$ ；

Definition 1

Let G and H be graphs．Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$ ．

Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges：
－projection to one factor is a vertex and to the other induces an edge $\left(V_{G}-E_{H}\right.$ and $\left.E_{G}-V_{H}\right)$ ；
－projection to one factor is a vertex and to the other is not an edge $\left(V_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-V_{H}\right)$ ；
－projection to both factors induce edges $\left(E_{G}-E_{H}\right)$ ；

Definition 1

Let G and H be graphs．Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$ ．

Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges：
－projection to one factor is a vertex and to the other induces an edge（ $V_{G}-E_{H}$ and $\left.E_{G}-V_{H}\right)$ ；
－projection to one factor is a vertex and to the other is not an edge $\left(V_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-V_{H}\right)$ ；
－projection to both factors induce edges $\left(E_{G}-E_{H}\right)$ ；
－projection to one factor induce an edge and to the other is not an edge $\left(E_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-E_{H}\right)$ ；

Definition 1

Let G and H be graphs. Their graph product $G * H$ is a graph on vertex set $V(G) \times V(H)$.

Edge set can be defined differently but with unique rules over whole vertex set with respect to projections of edges:

- projection to one factor is a vertex and to the other induces an edge ($V_{G}-E_{H}$ and $\left.E_{G}-V_{H}\right)$;
- projection to one factor is a vertex and to the other is not an edge $\left(V_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-V_{H}\right)$;
- projection to both factors induce edges $\left(E_{G}-E_{H}\right)$;
- projection to one factor induce an edge and to the other is not an edge $\left(E_{G}-E_{\bar{H}}\right.$ and $\left.E_{\bar{G}}-E_{H}\right)$;
- projection to both factors are not edges $\left(E_{\bar{G}}-E_{\bar{H}}\right)$.

Complementary product

Graph \bar{G} is the complement graph of graph G with

- $V(\bar{G})=V(G)$ and

Complementary product

Graph \bar{G} is the complement graph of graph G with

- $V(\bar{G})=V(G)$ and
- $E(\bar{G})=\{u v$: uv $\notin E(G)\}$.

Complementary product

Graph \bar{G} is the complement graph of graph G with

- $V(\bar{G})=V(G)$ and
- $E(\bar{G})=\{u v$: uv $\notin E(G)\}$.

Definition

For a graph product $G * H$ we define its complementary graph product $\bar{*}$ by the operation

$$
G \bar{*} H=\overline{\bar{G} * \bar{H}} .
$$

Complementary product

Graph \bar{G} is the complement graph of graph G with

- $V(\bar{G})=V(G)$ and
- $E(\bar{G})=\{u v$: uv $\notin E(G)\}$.

Definition

For a graph product $G * H$ we define its complementary graph product $\bar{*}$ by the operation

$$
G \bar{*} H=\overline{\bar{G} * \bar{H}} .
$$

- The distance between u and v is the minimum number $d_{G}(u, v)$ of edges on a u, v-path in graph G.

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

- Cartesian product and his complementary product.

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

- Cartesian product and his complementary product.
- Direct product and his complementary product.

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.
- Empty product and his complementary product.

Associative and commutative graph products

There are 10 associative and commutative graph products. They are

- Cartesian product and his complementary product.
- Direct product and his complementary product.
- Strong product and his complementary product called disjunctive product.
- Empty product and his complementary product.
- Modular product and his complementary product.

Example of Cartesian product

$$
P_{5} \square K_{1,3}
$$

P_{5}

Examples of direct product

$$
P_{5} \boxtimes K_{1,3}
$$

Example of strong product

$$
P_{5} \boxtimes K_{1,3}
$$

Distance formulas for products

$$
d_{G \square H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=d_{G}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right)
$$

Distance formulas for products

$$
d_{G \square H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=d_{G}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right)
$$

$$
\begin{gathered}
d_{G \times H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)= \\
\min \left\{\max \left\{d_{G}^{e}\left(g, g^{\prime}\right), d_{H}^{e}\left(h, h^{\prime}\right)\right\}, \max \left\{d_{G}^{o}\left(g, g^{\prime}\right), d_{H}^{o}\left(h, h^{\prime}\right)\right\}\right\} .
\end{gathered}
$$

Distance formulas for products

$$
d_{G \square H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=d_{G}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right)
$$

$$
d_{G \times H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=
$$

$\min \left\{\max \left\{d_{G}^{e}\left(g, g^{\prime}\right), d_{H}^{e}\left(h, h^{\prime}\right)\right\}, \max \left\{d_{G}^{\circ}\left(g, g^{\prime}\right), d_{H}^{o}\left(h, h^{\prime}\right)\right\}\right\}$.

$$
d_{G \boxtimes H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\max \left\{d_{G}\left(g, g^{\prime}\right), d_{H}\left(h, h^{\prime}\right)\right\} .
$$

Modular product and his complementary product

Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \diamond H$ if

- $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right) \ldots$ Cartesian edges; or

Modular product and his complementary product

Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \diamond H$ if

- $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right) \ldots$ Cartesian edges; or
- $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$... direct edges; or

Modular product and his complementary product

Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \diamond H$ if

- $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right) \ldots$ Cartesian edges; or
- $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$... direct edges; or
- $g g^{\prime} \notin E(G)$ and $h h^{\prime} \notin E(H)$... co-direct edges.

Modular product and his complementary product

Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \diamond H$ if

- $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right) \ldots$ Cartesian edges; or
- $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$... direct edges; or
- $g g^{\prime} \notin E(G)$ and $h h^{\prime} \notin E(H) \ldots$ co-direct edges.
- We have $E(G \diamond H)=E(G \square H) \cup E(G \times H) \cup E(\bar{G} \times \bar{H})=$ $E(G \boxtimes H) \cup E(\bar{G} \times \bar{H})$.

Modular product and his complementary product

Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \diamond H$ if

- $\left(g g^{\prime} \in E(G)\right.$ and $\left.h=h^{\prime}\right)$ or $\left(g=g^{\prime}\right.$ and $\left.h h^{\prime} \in E(H)\right) \ldots$ Cartesian edges; or
- $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$... direct edges; or
- $g g^{\prime} \notin E(G)$ and $h h^{\prime} \notin E(H)$... co-direct edges.
- We have $E(G \diamond H)=E(G \square H) \cup E(G \times H) \cup E(\bar{G} \times \bar{H})=$ $E(G \boxtimes H) \cup E(\bar{G} \times \bar{H})$.

Theorem

The modular product $G \diamond H$ is disconnected if and only if one factor is complete and the other is disconnected or both factors are disjoint union of two complete graphs.

From strong product $K_{1,3} \boxtimes P_{3}$ to modular product $K_{1,3} \diamond P_{3}$

From strong product $K_{1,3} \boxtimes P_{3}$ to modular product $K_{1,3} \diamond P_{3}$

From strong product $K_{1,3} \boxtimes P_{3}$ to modular product $K_{1,3} \diamond P_{3}$

Other products

- There are ten more associative products which are not commutative.

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- One example is weakly modular product or direct-co-direct product (or DcD product for short) $G \circledast H$ with one (1!) publication.

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- One example is weakly modular product or direct-co-direct product (or DcD product for short) $G \circledast H$ with one (1!) publication.
- $E(G \circledast H)=E(G \times H) \cup E(\bar{G} \times \bar{H})$

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- One example is weakly modular product or direct-co-direct product (or DcD product for short) $G \circledast H$ with one (1!) publication.
- $E(G \circledast H)=E(G \times H) \cup E(\bar{G} \times \bar{H})=E(G \diamond H)-E(G \square H)$.

Other products

- There are ten more associative products which are not commutative.
- The most known among them is lexicographic product $G \circ H$.
- The other graph products are non-associative and there are almost no publications on them.
- One example is weakly modular product or direct-co-direct product (or DcD product for short) $G \circledast H$ with one (1!) publication.
- $E(G \circledast H)=E(G \times H) \cup E(\bar{G} \times \bar{H})=E(G \diamond H)-E(G \square H)$.
- Many graph products can be expressed with the introduced graph products.

From direct product $K_{1,3} \times P_{3}$ to DcD product $K_{1,3} \circledast P_{3}$

$$
P_{5} \times K_{1,3}
$$

From direct product $K_{1,3} \times P_{3}$ to DcD product $K_{1,3} \circledast P_{3}$

From direct product $K_{1,3} \times P_{3}$ to DcD product $K_{1,3} \circledast P_{3}$

First approach to products

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_{1} * \cdots * G_{k}$.

First approach to products

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_{1} * \cdots * G_{k}$.
- Is this decomposition of G to the factors unique?

First approach to products

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_{1} * \cdots * G_{k}$.
- Is this decomposition of G to the factors unique?
- For which classes of graphs is this decomposition unique?

First approach to products

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_{1} * \cdots * G_{k}$.
- Is this decomposition of G to the factors unique?
- For which classes of graphs is this decomposition unique?
- Can this decomposition be found by a polynomial algorithm?

First approach to products

- One can ask if a (big) graph G is a product of smaller graphs: $G \cong G_{1} * \cdots * G_{k}$.
- Is this decomposition of G to the factors unique?
- For which classes of graphs is this decomposition unique?
- Can this decomposition be found by a polynomial algorithm?
- This is well understood for Cartesian, direct and strong product, but not for modular and DcD product.

Second approach to products

- Can one describe (some) properties of G with respect to some (maybe other) properties of G_{1}, \ldots, G_{k} for a product $G \cong G_{1} * \cdots * G_{k}$.

Second approach to products

- Can one describe (some) properties of G with respect to some (maybe other) properties of G_{1}, \ldots, G_{k} for a product $G \cong G_{1} * \cdots * G_{k}$.
- There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G_{1}, \ldots, G_{k} than with big graph G.

Second approach to products

- Can one describe (some) properties of G with respect to some (maybe other) properties of G_{1}, \ldots, G_{k} for a product $G \cong G_{1} * \cdots * G_{k}$.
- There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G_{1}, \ldots, G_{k} than with big graph G.
- We already observed distance formulas for Cartesian, direct and strong products.

Second approach to products

- Can one describe (some) properties of G with respect to some (maybe other) properties of G_{1}, \ldots, G_{k} for a product $G \cong G_{1} * \cdots * G_{k}$.
- There are no fast algorithms for many graph properties and it is algorithmically easier to deal with smaller factors G_{1}, \ldots, G_{k} than with big graph G.
- We already observed distance formulas for Cartesian, direct and strong products.
- We continue with some examples for modular (domination number, distance, strong metric dimension) and DcD product (distance).

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the domination number $\gamma(G)$ of G.

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the domination number $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the total domination number $\gamma_{t}(G)$ of G.

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the domination number $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the total domination number $\gamma_{t}(G)$ of G.
- A set $D \subseteq V(G)$ is a total dominating set of G if every vertex $v \in V(G)$ has a neighbor in D.

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the domination number $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the total domination number $\gamma_{t}(G)$ of G.
- A set $D \subseteq V(G)$ is a total dominating set of G if every vertex $v \in V(G)$ has a neighbor in D.
- A graph G with an isolated vertex has no total domination set and we set $\gamma_{t}(G)=\infty$.

Domination-definitions

- A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G)-D$ has a neighbor in D.
- The minimum cardinality of a dominating set of G is called the domination number $\gamma(G)$ of G.
- The minimum cardinality of a total dominating set of G is called the total domination number $\gamma_{t}(G)$ of G.
- A set $D \subseteq V(G)$ is a total dominating set of G if every vertex $v \in V(G)$ has a neighbor in D.
- A graph G with an isolated vertex has no total domination set and we set $\gamma_{t}(G)=\infty$.
- What can we say about $\gamma(G \diamond H)$?

Conjecture (Vizing 1968)

$$
\gamma(G \square H) \geq \gamma(G) \gamma(H)
$$

Lower bounds for $\gamma(G \diamond H)$

Proposition

Let G and H be two graphs. If $D=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)\right\}$ is a dominating set in $G \diamond H$, then $\left\{g_{1}, \ldots, g_{k}\right\}$ is a dominating set in G or $\left\{h_{1}, \ldots, h_{k}\right\}$ is a total dominating set in \bar{H}.

Lower bounds for $\gamma(G \diamond H)$

Proposition

Let G and H be two graphs. If $D=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)\right\}$ is a dominating set in $G \diamond H$, then $\left\{g_{1}, \ldots, g_{k}\right\}$ is a dominating set in G or $\left\{h_{1}, \ldots, h_{k}\right\}$ is a total dominating set in \bar{H}.

- This yields

$$
\max \left\{\min \left\{\gamma(G), \gamma_{t}(\bar{H})\right\}, \min \left\{\gamma(H), \gamma_{t}(\bar{G})\right\}\right\} \leq \gamma(G \diamond H)
$$

Lower bounds for $\gamma(G \diamond H)$

Proposition

Let G and H be two graphs. If $D=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)\right\}$ is a dominating set in $G \diamond H$, then $\left\{g_{1}, \ldots, g_{k}\right\}$ is a dominating set in G or $\left\{h_{1}, \ldots, h_{k}\right\}$ is a total dominating set in \bar{H}.

- This yields

$$
\max \left\{\min \left\{\gamma(G), \gamma_{t}(\bar{H})\right\}, \min \left\{\gamma(H), \gamma_{t}(\bar{G})\right\}\right\} \leq \gamma(G \diamond H)
$$

Proposition

For any graph $H, \operatorname{diam}(H) \geq 3$ if and only if $\gamma_{t}(\bar{H})=2$.

Lower bounds for $\gamma(G \diamond H)$

Proposition

Let G and H be two graphs. If $D=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)\right\}$ is a dominating set in $G \diamond H$, then $\left\{g_{1}, \ldots, g_{k}\right\}$ is a dominating set in G or $\left\{h_{1}, \ldots, h_{k}\right\}$ is a total dominating set in \bar{H}.

- This yields

$$
\max \left\{\min \left\{\gamma(G), \gamma_{t}(\bar{H})\right\}, \min \left\{\gamma(H), \gamma_{t}(\bar{G})\right\}\right\} \leq \gamma(G \diamond H)
$$

Proposition

For any graph $H, \operatorname{diam}(H) \geq 3$ if and only if $\gamma_{t}(\bar{H})=2$.

- If $\operatorname{diam}(H)=2$, then $\min \{\gamma(G), 3\} \leq \gamma(G \diamond H)$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.
- $\gamma(G \diamond H) \leq \min \left\{\gamma(G)+\gamma(H)-1, \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1\right\}$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.
- $\gamma(G \diamond H) \leq \min \left\{\gamma(G)+\gamma(H)-1, \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1\right\}$.
- If D_{G} is a $\gamma(G)$-set and h a universal vertex of H, then $D=D_{G} \times\{h\}$ is a dominating set of $G \diamond H$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.
- $\gamma(G \diamond H) \leq \min \left\{\gamma(G)+\gamma(H)-1, \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1\right\}$.
- If D_{G} is a $\gamma(G)$-set and h a universal vertex of H, then $D=D_{G} \times\{h\}$ is a dominating set of $G \diamond H$.
- If H has a universal vertex, then $\gamma(G \diamond H)=\gamma(G)$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.
- $\gamma(G \diamond H) \leq \min \left\{\gamma(G)+\gamma(H)-1, \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1\right\}$.
- If D_{G} is a $\gamma(G)$-set and h a universal vertex of H, then $D=D_{G} \times\{h\}$ is a dominating set of $G \diamond H$.
- If H has a universal vertex, then $\gamma(G \diamond H)=\gamma(G)$.
- $\gamma\left(G \diamond K_{n}\right)=\gamma(G)$.

Upper bounds

If G and H are graphs, then

- $\gamma(G \diamond H) \leq \gamma(G)+\gamma(H)-1$.
- $\gamma(G \diamond H) \leq \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1$.
- $\gamma(G \diamond H) \leq \min \left\{\gamma(G)+\gamma(H)-1, \gamma_{t}(\bar{G})+\gamma_{t}(\bar{H})-1\right\}$.
- If D_{G} is a $\gamma(G)$-set and h a universal vertex of H, then $D=D_{G} \times\{h\}$ is a dominating set of $G \diamond H$.
- If H has a universal vertex, then $\gamma(G \diamond H)=\gamma(G)$.
- $\gamma\left(G \diamond K_{n}\right)=\gamma(G)$.
- $\gamma\left(G \diamond K_{1, n}\right)=\gamma(G)$.

SDCTD set

- Let D be at the same time a dominating set of G and a total dominating set of \bar{G}.

SDCTD set

- Let D be at the same time a dominating set of G and a total dominating set of \bar{G}.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.

SDCTD set

- Let D be at the same time a dominating set of G and a total dominating set of \bar{G}.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the SDCTD number of G.

SDCTD set

- Let D be at the same time a dominating set of G and a total dominating set of \bar{G}.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the SDCTD number of G.
- $\bar{\gamma}(G)$ exists if there are no isolated vertices in \bar{G}, which means no universal vertices of G.

SDCTD set

- Let D be at the same time a dominating set of G and a total dominating set of \bar{G}.
- We say that D is a simultaneously dominating and complement total dominating set (SDCTD set for short) of G.
- The minimum cardinality of SDCTD set of G is denoted by $\bar{\gamma}(G)$ and is called the SDCTD number of G.
- $\bar{\gamma}(G)$ exists if there are no isolated vertices in \bar{G}, which means no universal vertices of G.

Proposition

If G and H are two graphs, then $\gamma(G \diamond H) \leq \min \{\bar{\gamma}(G), \bar{\gamma}(H)\}$.

More simple results

- If $\operatorname{diam}(G) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)+2$.

More simple results

- If $\operatorname{diam}(G) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)+2$.
- If D_{G} is a $\gamma(G)$-set in G and there exist $g_{1}, g_{2} \in D_{G}$ such that $d_{G}\left(g_{1}, g_{2}\right) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)$.

More simple results

- If $\operatorname{diam}(G) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)+2$.
- If D_{G} is a $\gamma(G)$-set in G and there exist $g_{1}, g_{2} \in D_{G}$ such that $d_{G}\left(g_{1}, g_{2}\right) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)$.
- If G is an $E C D$ graph with $\gamma(G) \geq 2$, then $\gamma(G \diamond H) \leq \gamma(G)$.

More simple results

- If $\operatorname{diam}(G) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)+2$.
- If D_{G} is a $\gamma(G)$-set in G and there exist $g_{1}, g_{2} \in D_{G}$ such that $d_{G}\left(g_{1}, g_{2}\right) \geq 3$, then $\gamma(G \diamond H) \leq \gamma(G)$.
- If G is an $E C D$ graph with $\gamma(G) \geq 2$, then $\gamma(G \diamond H) \leq \gamma(G)$.
- If $\operatorname{diam}(G) \geq 5$, then $\gamma(G \diamond H) \leq \gamma(G)$.

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,
- $\gamma\left(G \diamond C_{6}\right)=2$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,
- $\gamma\left(G \diamond C_{6}\right)=2$,
- $\gamma\left(G \diamond C_{k}\right) \leq\left\lceil\frac{k}{3}\right\rceil$ for $k \geq 7$,

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,
- $\gamma\left(G \diamond C_{6}\right)=2$,
- $\gamma\left(G \diamond C_{k}\right) \leq\left\lceil\frac{k}{3}\right\rceil$ for $k \geq 7$,
- $\gamma(G \diamond P) \leq 4$;

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,
- $\gamma\left(G \diamond C_{6}\right)=2$,
- $\gamma\left(G \diamond C_{k}\right) \leq\left\lceil\frac{k}{3}\right\rceil$ for $k \geq 7$,
- $\gamma(G \diamond P) \leq 4$;
- $\gamma\left(K_{2 k}^{-} \diamond P_{6 k}\right)=2 k$ for any $k \geq 3$;

Corollaries for fixed graphs or families

- $\gamma\left(G \diamond Q_{3}\right)=2$,
- $\gamma\left(G \diamond Q_{3}^{-}\right)=2$,
- $\gamma\left(G \diamond K_{m, n}^{-}\right)=2$,
- $\gamma\left(G \diamond C_{3 k}\right) \leq k$,
- $\gamma\left(G \diamond P_{t}\right) \leq\left\lceil\frac{t}{3}\right\rceil$,
- $\gamma\left(G \diamond C_{k}\right) \leq 3$ for $k \in\{4,5\}$,
- $\gamma\left(G \diamond C_{6}\right)=2$,
- $\gamma\left(G \diamond C_{k}\right) \leq\left\lceil\frac{k}{3}\right\rceil$ for $k \geq 7$,
- $\gamma(G \diamond P) \leq 4$;
- $\gamma\left(K_{2 k}^{-} \diamond P_{6 k}\right)=2 k$ for any $k \geq 3$;
- $\gamma\left(P_{6 k} \diamond \overline{P_{4 k}}\right)=2 k$ for any $k \geq 2$.

Graphs with small $\gamma(G \diamond H)$

Proposition

For any graphs G and $H, \gamma(G \diamond H)=1$ if and only if $\gamma(G)=1=\gamma(H)$.

Graphs with small $\gamma(G \diamond H)$

Proposition

For any graphs G and $H, \gamma(G \diamond H)=1$ if and only if $\gamma(G)=1=\gamma(H)$.

Theorem
For any graphs G and $H, \gamma(G \diamond H)=2$ if and only if one of the following conditions holds

Graphs with small $\gamma(G \diamond H)$

Proposition

For any graphs G and $H, \gamma(G \diamond H)=1$ if and only if $\gamma(G)=1=\gamma(H)$.

Theorem

For any graphs G and $H, \gamma(G \diamond H)=2$ if and only if one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=3$;

Graphs with small $\gamma(G \diamond H)$

Proposition

For any graphs G and $H, \gamma(G \diamond H)=1$ if and only if $\gamma(G)=1=\gamma(H)$.

Theorem
For any graphs G and $H, \gamma(G \diamond H)=2$ if and only if one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=3$;
(ii) $D_{G}=\left\{g_{1}, g_{2}\right\}$ is an ECD set of G;

Graphs with small $\gamma(G \diamond H)$

Proposition

For any graphs G and $H, \gamma(G \diamond H)=1$ if and only if $\gamma(G)=1=\gamma(H)$.

Theorem

For any graphs G and $H, \gamma(G \diamond H)=2$ if and only if one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=3$;
(ii) $D_{G}=\left\{g_{1}, g_{2}\right\}$ is an ECD set of G;
(iii) $D_{H}=\left\{h_{1}, h_{2}\right\}$ is an ECD set of H.

$\gamma(G \diamond H)=3$

Theorem

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H)=3$ if and only if at least one of the following conditions holds

$\gamma(G \diamond H)=3$

Theorem

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H)=3$ if and only if at least one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=4$;
$\gamma(G \diamond H)=3$

Theorem

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H)=3$ if and only if at least one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=4$;
(ii) $\bar{\gamma}(G)=3$ or $\bar{\gamma}(H)=3$;
$\gamma(G \diamond H)=3$

Theorem

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H)=3$ if and only if at least one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=4$;
(ii) $\bar{\gamma}(G)=3$ or $\bar{\gamma}(H)=3$;
(iii) $\operatorname{diam}(G) \geq 3$ and $\operatorname{diam}(H) \geq 3$;
$\gamma(G \diamond H)=3$

Theorem

Let G and H be two graphs with $\gamma(G \diamond H) \geq 3$. Then, $\gamma(G \diamond H)=3$ if and only if at least one of the following conditions holds
(i) $\gamma(G)+\gamma(H)=4$;
(ii) $\bar{\gamma}(G)=3$ or $\bar{\gamma}(H)=3$;
(iii) $\operatorname{diam}(G) \geq 3$ and $\operatorname{diam}(H) \geq 3$;
(iv) $\operatorname{diam}(H) \geq 3$ and there exists a set $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ such that $\operatorname{pr}\left[g_{3}, D_{G}\right]=\emptyset$ and $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right]=\emptyset$, or the mirror condition;

$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:

$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:
(a) if $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right] \cap N_{G}\left[g_{3}\right] \neq \emptyset$, then D_{H} is a dominating set in H , or the mirror condition;
$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:
(a) if $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right] \cap N_{G}\left[g_{3}\right] \neq \emptyset$, then D_{H} is a dominating set in H, or the mirror condition;
(b) $a\left(D_{G}\right)+b\left(D_{H}\right) \leq 3$ and $b\left(D_{G}\right)+a\left(D_{H}\right) \leq 3$;
$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:
(a) if $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right] \cap N_{G}\left[g_{3}\right] \neq \emptyset$, then D_{H} is a dominating set in H, or the mirror condition;
(b) $a\left(D_{G}\right)+b\left(D_{H}\right) \leq 3$ and $b\left(D_{G}\right)+a\left(D_{H}\right) \leq 3$;
(c) for any $i \in[3]$ such that $\operatorname{pr}\left[g_{i}, D_{G}\right] \neq \emptyset$ and $\left(N_{G}\left[g_{j}\right] \cap N_{G}\left[g_{k}\right]\right) \backslash N_{G}\left[g_{i}\right] \neq \emptyset$, there exists $r_{i} \in[3]$ such that $\operatorname{pr}\left[h_{r_{i}}, D_{H}\right]=\emptyset$ and $\left(N_{H}\left[h_{s}\right] \cap N_{H}\left[h_{t}\right]\right) \backslash N_{H}\left[h_{r_{i}}\right]=\emptyset$ with $\left\{s, t, r_{i}\right\}=[3]$, or the mirror condition.
$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:
(a) if $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right] \cap N_{G}\left[g_{3}\right] \neq \emptyset$, then D_{H} is a dominating set in H, or the mirror condition;
(b) $a\left(D_{G}\right)+b\left(D_{H}\right) \leq 3$ and $b\left(D_{G}\right)+a\left(D_{H}\right) \leq 3$;
(c) for any $i \in[3]$ such that $\operatorname{pr}\left[g_{i}, D_{G}\right] \neq \emptyset$ and $\left(N_{G}\left[g_{j}\right] \cap N_{G}\left[g_{k}\right]\right) \backslash N_{G}\left[g_{i}\right] \neq \emptyset$, there exists $r_{i} \in[3]$ such that $\operatorname{pr}\left[h_{r_{i}}, D_{H}\right]=\emptyset$ and $\left(N_{H}\left[h_{s}\right] \cap N_{H}\left[h_{t}\right]\right) \backslash N_{H}\left[h_{r_{i}}\right]=\emptyset$ with $\left\{s, t, r_{i}\right\}=[3]$, or the mirror condition.

$$
a\left(D_{X}\right)=\left|\left\{i: \operatorname{pr}\left[x_{i}, D_{X}\right] \neq \emptyset, i \in[3]\right\}\right|,
$$

$\gamma(G \diamond H)=3$

Theorem

(v) there exist two sets $D_{G}=\left\{g_{1}, g_{2}, g_{3}\right\} \subseteq V(G)$ and $D_{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \subseteq V(H)$ such that the following conditions hold:
(a) if $N_{G}\left[g_{1}\right] \cap N_{G}\left[g_{2}\right] \cap N_{G}\left[g_{3}\right] \neq \emptyset$, then D_{H} is a dominating set in H, or the mirror condition;
(b) $a\left(D_{G}\right)+b\left(D_{H}\right) \leq 3$ and $b\left(D_{G}\right)+a\left(D_{H}\right) \leq 3$;
(c) for any $i \in[3]$ such that $\operatorname{pr}\left[g_{i}, D_{G}\right] \neq \emptyset$ and $\left(N_{G}\left[g_{j}\right] \cap N_{G}\left[g_{k}\right]\right) \backslash N_{G}\left[g_{i}\right] \neq \emptyset$, there exists $r_{i} \in[3]$ such that $\operatorname{pr}\left[h_{r_{i}}, D_{H}\right]=\emptyset$ and $\left(N_{H}\left[h_{s}\right] \cap N_{H}\left[h_{t}\right]\right) \backslash N_{H}\left[h_{r_{i}}\right]=\emptyset$ with $\left\{s, t, r_{i}\right\}=[3]$, or the mirror condition.

$$
\begin{gathered}
a\left(D_{X}\right)=\left|\left\{i: \operatorname{pr}\left[x_{i}, D_{X}\right] \neq \emptyset, i \in[3]\right\}\right| \\
b\left(D_{X}\right)=\left|\left\{i:\left(N_{X}\left[x_{j}\right] \cap N_{X}\left[x_{k}\right]\right) \backslash N_{X}\left[x_{i}\right] \neq \emptyset,\{i, j, k\}=[3]\right\}\right| .
\end{gathered}
$$

Questions and open problems

- What about $\gamma(G \circledast H)$?

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,
- double domination,

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,
- double domination,
- and more.

Questions and open problems

- What about $\gamma(G \circledast H)$?
- What can we say about modular and DcD product for different domination parameters like
- total domination,
- different Roman dominations,
- signed domination,
- double domination,
- and more.
- It seems an interesting problem to study $\gamma(\overline{(G)}$.

Distance in modular product for \bar{K}_{n}

- $\bar{K}_{p} \diamond \bar{K}_{r} \cong K_{p} \times K_{r}$.

Distance in modular product for \bar{K}_{n}

- $\bar{K}_{p} \diamond \bar{K}_{r} \cong K_{p} \times K_{r}$.
- If $p, r \geq 3$, then

$$
d_{\bar{K}_{\rho} \diamond \bar{K}_{r}}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{lll}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & g \neq g^{\prime} \wedge h \neq h^{\prime} \\
2 & : & g=g^{\prime} \underline{\vee} h=h^{\prime}
\end{array}\right.
$$

Distance in modular product for \bar{K}_{n}

- $\bar{K}_{p} \diamond \bar{K}_{r} \cong K_{p} \times K_{r}$.
- If $p, r \geq 3$, then

$$
d_{\bar{K}_{\triangleright} \diamond \bar{K}_{r}}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{lll}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & g \neq g^{\prime} \wedge h \neq h^{\prime} \\
2 & : & g=g^{\prime} \underline{\vee} h=h^{\prime}
\end{array}\right.
$$

- If $p \geq 3$, then

$$
d_{\bar{K}_{\rho} \diamond \bar{K}_{2}}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{lll}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & g \neq g^{\prime} \wedge h \neq h^{\prime} \\
2 & : & g \neq g^{\prime} \wedge h=h^{\prime} \\
3 & : & g=g^{\prime} \wedge h \neq h^{\prime}
\end{array}\right.
$$

Distance in modular product for K_{n}

- $K_{p} \diamond K_{r} \cong K_{p+r}$.

Distance in modular product for K_{n}

- $K_{p} \diamond K_{r} \cong K_{p+r}$.
- $G \diamond K_{r} \cong G \boxtimes K_{r} \cong G \circ K_{r}$ and we get

$$
d_{G \diamond K_{r}}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\max \left\{d_{G}\left(g, g^{\prime}\right), d_{H}\left(h, h^{\prime}\right)\right\} .
$$

Distance in modular product for K_{n}

- $K_{p} \diamond K_{r} \cong K_{p+r}$.
- $G \diamond K_{r} \cong G \boxtimes K_{r} \cong G \circ K_{r}$ and we get

$$
d_{G \diamond K_{r}}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\max \left\{d_{G}\left(g, g^{\prime}\right), d_{H}\left(h, h^{\prime}\right)\right\} .
$$

- The above formula holds also when G is not connected and also $G \diamond K_{r}$ is not connected.

General case

Theorem
If G and H are not complete graphs, then either

- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\infty$ when G and H both contain two complete components and (either $g^{\prime} \in N_{G}[g]$ or $h^{\prime} \in N_{H}[h]$) or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \leq 3$ otherwise.

General case

Theorem
If G and H are not complete graphs, then either

- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\infty$ when G and H both contain two complete components and (either $g^{\prime} \in N_{G}[g]$ or $h^{\prime} \in N_{H}[h]$) or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \leq 3$ otherwise.
- For the first part $\left(K_{p} \cup K_{r}\right) \diamond\left(K_{s} \cup K_{t}\right) \cong K_{p s+r t} \cup K_{p t+r s}$.

General case

Theorem

If G and H are not complete graphs, then either

- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\infty$ when G and H both contain two complete components and (either $g^{\prime} \in N_{G}[g]$ or $h^{\prime} \in N_{H}[h]$) or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \leq 3$ otherwise.
- For the first part $\left(K_{p} \cup K_{r}\right) \diamond\left(K_{s} \cup K_{t}\right) \cong K_{p s+r t} \cup K_{p t+r s}$.
- For the second part we need to find a path of length at most three.

Second part of the proof

Overview

- We know which vertices are adjacent.

Overview

- We know which vertices are adjacent.
- If we can describe which vertices are at distance 2 , then we have the distance formula.

Overview

- We know which vertices are adjacent.
- If we can describe which vertices are at distance 2 , then we have the distance formula.
- If we can describe which vertices are at distance 3, then we have the distance formula.

Cartesian product: paths

Theorem
Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_{s} \cup K_{t}$. The distance $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=3$ if and only if one of the two possibilities holds true

Cartesian product: paths

Theorem

Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_{s} \cup K_{t}$. The distance $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=3$ if and only if one of the two possibilities holds true

$$
\begin{gather*}
N_{G}[g]=N_{G}\left[g^{\prime}\right] \wedge d_{H}\left(h, h^{\prime}\right) \geq 3 \wedge \tag{1}\\
\left(N_{G}[g]=V(G) \vee\left(N_{G}[g] \neq V(G) \wedge\left\{h, h^{\prime}\right\} \text { is } \gamma(H)-\text { set }\right)\right) \\
N_{H}[h]=N_{H}\left[h^{\prime}\right] \wedge d_{G}\left(g, g^{\prime}\right) \geq 3 \wedge \tag{2}\\
\left(N_{H}[h]=V(H) \vee\left(N_{H}[h] \neq V(H) \wedge\left\{g, g^{\prime}\right\} \text { is } \gamma(G)-\text { set }\right)\right)
\end{gather*}
$$

Distance formula

$$
d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ccc}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & (g, h)\left(g^{\prime}, h^{\prime}\right) \in E(G \diamond H) \\
2 & : & \text { otherwise } \\
3 & : & (g, h),\left(g^{\prime}, h^{\prime}\right) \text { fulfills (1) or (2) }
\end{array}\right.
$$

Schematic overview

Motivation

Corollary

Let graphs G and H be graphs different from the complete graphs and at least one is different than $K_{s} \cup K_{t}$. We have $\operatorname{diam}(\mathrm{G} \diamond \mathrm{H})=2$ if and only if (no factor contains a universal vertex and no factor is an efficient closed domination graph with domination number two) or both factors have diameter two.

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;
- different dimensions (metric, edge metric, mixed metric, and more),

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \diamond H$ like
- different convexity's;
- different dimensions (metric, edge metric, mixed metric, and more),
- topological indices related to the distance (Wiener and similar).

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50-52.

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50-52.
- The main result is

History

- The only known publication on direct-co-direct product (under name weakly modular graph) is
- D. Kozen, A clique problem equivalent to graph isomorphism problem, SIGACT News 10 (1978) 50-52.
- The main result is

Theorem

Let G and H be graphs of order n. The problem of finding clique of order n in $G \circledast H$ is equivalent to isomorphism problem. Moreover, the problem of determining whether $G \circledast H$ has a clique of order $n(1-\epsilon)$ is NP complete.

Non-associativity

- By the definition is direct-co-direct product commutative.

Non-associativity

- By the definition is direct-co-direct product commutative.
- To see that it is not associative let G, H, F be three graphs (without loops) and let $g g^{\prime} \in E(G), h \in V(H)$ and $f f^{\prime} \notin E(F)$.

Non-associativity

- By the definition is direct-co-direct product commutative.
- To see that it is not associative let G, H, F be three graphs (without loops) and let $g g^{\prime} \in E(G), h \in V(H)$ and $f f^{\prime} \notin E(F)$.
- $(g, h)\left(g^{\prime}, h\right) \notin E(G \circledast H)$ and with this $((g, h), f)\left(\left(g^{\prime}, h\right), f^{\prime}\right) \in E((G \circledast H) \circledast F)$.

Non-associativity

- By the definition is direct-co-direct product commutative.
- To see that it is not associative let G, H, F be three graphs (without loops) and let $g g^{\prime} \in E(G), h \in V(H)$ and $f f^{\prime} \notin E(F)$.
- $(g, h)\left(g^{\prime}, h\right) \notin E(G \circledast H)$ and with this $((g, h), f)\left(\left(g^{\prime}, h\right), f^{\prime}\right) \in E((G \circledast H) \circledast F)$.
- $(h, f)\left(h, f^{\prime}\right) \notin E(G \circledast H)$ and with this $(g,(h, f))\left(g^{\prime},\left(h, f^{\prime}\right)\right) \notin E(G \circledast(H \circledast F))$.

Distance in direct-co-direct product for K_{n}

- $K_{n} \circledast H \cong K_{n} \times H$.

Distance in direct-co-direct product for K_{n}

- $K_{n} \circledast H \cong K_{n} \times H$.
- From the distance formula for the direct product we get

$$
d_{K_{2} \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ll}
d_{H}^{o}\left(h, h^{\prime}\right) & : g \neq g^{\prime} \\
d_{H}^{e}\left(h, h^{\prime}\right) & : g=g^{\prime}
\end{array} .\right.
$$

Distance in direct-co-direct product for K_{n}

- $K_{n} \circledast H \cong K_{n} \times H$.
- From the distance formula for the direct product we get

$$
d_{K_{2} \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ll}
d_{H}^{o}\left(h, h^{\prime}\right) & : g \neq g^{\prime} \\
d_{H}^{e}\left(h, h^{\prime}\right) & : g=g^{\prime}
\end{array} .\right.
$$

- For $n \geq 3$ we similarly get $d_{K_{n} \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=$

$$
\begin{cases}\min \left\{d_{H}^{o}\left(h, h^{\prime}\right), \max \left\{2, d_{H}^{e}\left(h, h^{\prime}\right)\right\}\right\} & : g \neq g^{\prime} \\ \min \left\{d_{H}^{e}\left(h, h^{\prime}\right), \max \left\{3, d_{H}^{o}\left(h, h^{\prime}\right)\right\}\right\} & : g=g^{\prime} .\end{cases}
$$

Eccentricity approach

- Eccentricity of a vertex is $\operatorname{ecc}_{G}(g)=\max \left\{d_{G}(g, v): v \in V(G)\right\}$.

Eccentricity approach

- Eccentricity of a vertex is $\operatorname{ecc}_{G}(g)=\max \left\{d_{G}(g, v): v \in V(G)\right\}$.

Theorem

Let G and H be two connected graphs at most one isomorphic to $K_{1, t}$ and let $g \in V(G)$ and $h \in V(H)$ such that they are different from a central vertex of a star if G or H, respectively, is isomorphic to a star. If $\operatorname{ecc}_{G}(g) \geq 3$ or $\operatorname{ecc}_{H}(h) \geq 3$, then $\operatorname{ecc}_{G \circledast H}((g, h)) \leq 3$.

Sketch of a proof

Problem with a star 1

Problem with a star 2

- Let $H=K_{s, t}-e$ where $e=h h^{\prime}$.

Problem with a star 2

- Let $H=K_{s, t}-e$ where $e=h h^{\prime}$.
- If g is a universal vertex of $K_{1, t}$, then $d_{K_{1, t} \circledast H}\left((g, h),\left(g, h^{\prime}\right)\right)=5$.

Eccentricity 2

Theorem

Let G and H be two connected graphs at least one different from $K_{1, t}$ and let $g \in V(G)$ and $h \in V(H)$. If $\operatorname{ecc}_{G}(g)=2$ and $\operatorname{ecc}_{H}(h)=2$ and at least one of g and h belongs to C_{3}, then $\operatorname{ecc}_{G \circledast H}((g, h)) \leq 3$.

Sketch of a proof

Distance 2

Theorem

Let graphs G and H be graphs different from the complete graphs and empty graphs (minus disconected case). The distance $d_{G \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=2$ if and only if at least one of the following possibilities holds

$$
\begin{gathered}
\left(d_{H}\left(h, h^{\prime}\right)=2 \wedge g=g^{\prime} \wedge N_{G}(g) \neq \emptyset\right) \vee\left(d_{G}\left(g, g^{\prime}\right)=2 \wedge h=h^{\prime} \wedge N_{H}(h) \neq \emptyset\right) \\
\left(d_{\bar{H}}\left(h, h^{\prime}\right)=2 \wedge g=g^{\prime} \wedge N_{\bar{G}}(g) \neq \emptyset\right) \vee\left(d_{\bar{G}}\left(g, g^{\prime}\right)=2 \wedge h=h^{\prime} \wedge N_{\bar{H}}(h) \neq \emptyset\right) \\
g^{\prime} g g^{\prime \prime} \text { is induced in } G \text { and } h h^{\prime} h^{\prime \prime} \text { is induced in } \bar{H} \\
g^{\prime} g g^{\prime \prime} \text { is induced in } \bar{G} \text { and } h h^{\prime} h^{\prime \prime} \text { is induced in } H
\end{gathered}
$$

Theorem

$$
d_{G \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ccc}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & (g, h)\left(g^{\prime}, h^{\prime}\right) \in E(G \diamond H) \\
2 & : & (g, h),\left(g^{\prime}, h^{\prime}\right) \text { fulfills previous theorem } \\
3 & : & \text { otherwise } \\
4 & : & \text { condition (A) } \\
5 & : & \text { condition (B) }
\end{array}\right.
$$

Theorem

$$
d_{G \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ccc}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & (g, h)\left(g^{\prime}, h^{\prime}\right) \in E(G \diamond H) \\
2 & : & (g, h),\left(g^{\prime}, h^{\prime}\right) \text { fulfills previous theorem } \\
3 & : & \text { otherwise } \\
4 & : & \text { condition (A) } \\
5 & : & \text { condition (B) }
\end{array}\right.
$$

- Condition (A) consists of 10 different conditions where one factor is always $K_{1, t}$

Theorem

$$
d_{G \circledast H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{ccc}
0 & : & g=g^{\prime} \wedge h=h^{\prime} \\
1 & : & (g, h)\left(g^{\prime}, h^{\prime}\right) \in E(G \diamond H) \\
2 & : & (g, h),\left(g^{\prime}, h^{\prime}\right) \text { fulfills previous theorem } \\
3 & : & \text { otherwise } \\
4 & : & \text { condition (A) } \\
5 & : & \text { condition (B) }
\end{array}\right.
$$

- Condition (A) consists of 10 different conditions where one factor is always $K_{1, t}$
- For Condition (B) let $G \cong K_{1, t}, t \geq 2$ where $g=g^{\prime}$ is universal in G and $\operatorname{ecc}_{H}(h)=3, h^{\prime}$ is an isolated vertex of $H\left[C_{H}\right], H\left[A_{H}\right]$ and $H\left[N_{H}\left(h^{\prime}\right)\right]$ are without edges, every vertex of A_{H} is adjacent to every vertex of B_{H} and $C_{H} \subset N_{H}\left(h_{0}\right)$ for every $h_{0} \in N_{H}\left(h^{\prime}\right)$ (or symmetric).

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;
- one factor is \bar{K}_{2} and the other is bipartite;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;
- one factor is \bar{K}_{2} and the other is bipartite;
- one factor is K_{t} and the other is not connected;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;
- one factor is \bar{K}_{2} and the other is bipartite;
- one factor is K_{t} and the other is not connected;
- one factor is \bar{K}_{t} and the complement of the other is not connected;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;
- one factor is \bar{K}_{2} and the other is bipartite;
- one factor is K_{t} and the other is not connected;
- one factor is \bar{K}_{t} and the complement of the other is not connected;
- both factors are complete bipartite graphs;

Connectivity

Theorem

Direct-co-direct product is not connected if and only if

- one factor has a universal and the other an isolated vertex;
- one factor is K_{2} and the other is bipartite;
- one factor is \bar{K}_{2} and the other is bipartite;
- one factor is K_{t} and the other is not connected;
- one factor is \bar{K}_{t} and the complement of the other is not connected;
- both factors are complete bipartite graphs;
- both factors are disjoint union of two complete graphs.

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;
- different dimensions (metric, strong metric, edge metric, mixed metric, and more),

Questions and open problems

- One can study different distance related graph properties and invariants and they behaviour on $G \circledast H$ like
- different convexity's;
- different dimensions (metric, strong metric, edge metric, mixed metric, and more),
- topological indices related to the distance (Wiener and similar).

Strong metric dimension

- A vertex $z \in V(G)$ strongly resolves two different vertices $x, y \in V(G)$ if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.

Strong metric dimension

- A vertex $z \in V(G)$ strongly resolves two different vertices $x, y \in V(G)$ if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- By distance this means $d_{G}(y, z)=d_{G}(y, x)+d_{G}(x, z)$ or $d_{G}(x, z)=d_{G}(x, y)+d_{G}(y, z)$.

Strong metric dimension

- A vertex $z \in V(G)$ strongly resolves two different vertices $x, y \in V(G)$ if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- By distance this means $d_{G}(y, z)=d_{G}(y, x)+d_{G}(x, z)$ or $d_{G}(x, z)=d_{G}(x, y)+d_{G}(y, z)$.
- A strong metric generator in a connected graph G is a set $S \subseteq V(G)$ such that every two vertices of G are strongly resolved by a vertex of S.

Strong metric dimension

- A vertex $z \in V(G)$ strongly resolves two different vertices $x, y \in V(G)$ if x belongs to a y, z-geodesic, or y belongs to a x, z-geodesic.
- By distance this means $d_{G}(y, z)=d_{G}(y, x)+d_{G}(x, z)$ or $d_{G}(x, z)=d_{G}(x, y)+d_{G}(y, z)$.
- A strong metric generator in a connected graph G is a set $S \subseteq V(G)$ such that every two vertices of G are strongly resolved by a vertex of S.
- By $\operatorname{dim}_{s}(G)$ we denote the smallest cardinality of a strong metric generator for G and we call it the strong metric dimension of G.

Bypass to strong metric dimension

- We obtain strong resolving graph $G_{S R}$ from G as follows.

Bypass to strong metric dimension

- We obtain strong resolving graph $G_{S R}$ from G as follows.
- A u, v-geodesic P is maximal if P is not contained in any other geodesic different than P.

Bypass to strong metric dimension

- We obtain strong resolving graph $G_{S R}$ from G as follows.
- A u, v-geodesic P is maximal if P is not contained in any other geodesic different than P.
- Vertices of $G_{S R}$ are all the end-vertices of all maximal geodesics in G.

Bypass to strong metric dimension

- We obtain strong resolving graph $G_{S R}$ from G as follows.
- A u, v-geodesic P is maximal if P is not contained in any other geodesic different than P.
- Vertices of $G_{S R}$ are all the end-vertices of all maximal geodesics in G.
- Moreover, $u v \in E\left(G_{S R}\right)$ if there exists a maximal u, v-geodesic in G.

Bypass to strong metric dimension

- We obtain strong resolving graph $G_{S R}$ from G as follows.
- A u, v-geodesic P is maximal if P is not contained in any other geodesic different than P.
- Vertices of $G_{S R}$ are all the end-vertices of all maximal geodesics in G.
- Moreover, $u v \in E\left(G_{S R}\right)$ if there exists a maximal u, v-geodesic in G.

Theorem (Oellermann and Peters-Fransen)
For any connected graph $G, \operatorname{dim}_{s}(G)=\beta\left(G_{S R}\right)$.

Strong resolving graph of $G \diamond H$

Theorem
For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

Strong resolving graph of $G \diamond H$

Theorem
For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

- (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are different twins of $G \diamond H$,

Strong resolving graph of $G \diamond H$

Theorem

For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

- (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are different twins of $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=2$ and both (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are not 3-diametrical vertices in $G \diamond H$,

Strong resolving graph of $G \diamond H$

Theorem

For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

- (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are different twins of $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=2$ and both (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are not 3-diametrical vertices in $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=3$,

Strong resolving graph of $G \diamond H$

Theorem

For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

- (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are different twins of $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=2$ and both (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are not 3-diametrical vertices in $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=3$, or
- (g, h) or $\left(g^{\prime}, h^{\prime}\right)$ is a 3-diametrical vertex where $\left\{x, x^{\prime}\right\}$ are universal in X and $d_{Y}\left(y, y^{\prime}\right)=2$ and $y y^{\prime} \in E\left(Y_{S R}\right)$ for $\{X, Y\}=\{G, H\}$ and $\left\{x, x^{\prime}, y, y^{\prime}\right\}=\left\{g, g^{\prime}, h, h^{\prime}\right\}$,

Strong resolving graph of $G \diamond H$

Theorem

For non-complete graphs G and H where at least one is different than $K_{m} \cup K_{n}$ we have $(g, h)\left(g^{\prime}, h^{\prime}\right) \in E\left((G \diamond H)_{S R}\right)$ if and only if

- (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are different twins of $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=2$ and both (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are not 3-diametrical vertices in $G \diamond H$, or
- $d_{G \diamond H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=3$, or
- (g, h) or $\left(g^{\prime}, h^{\prime}\right)$ is a 3-diametrical vertex where $\left\{x, x^{\prime}\right\}$ are universal in X and $d_{Y}\left(y, y^{\prime}\right)=2$ and $y y^{\prime} \in E\left(Y_{S R}\right)$ for $\{X, Y\}=\{G, H\}$ and $\left\{x, x^{\prime}, y, y^{\prime}\right\}=\left\{g, g^{\prime}, h, h^{\prime}\right\}$, or
- (g, h) is a 3-diametrical vertex where x is universal and x^{\prime} is not universal in X and $d_{Y}\left(y, y^{\prime}\right)=2$ and $d_{Y}\left(y, y_{0}\right) \leq 2$ for every $y_{0} \in N_{Y}\left(y^{\prime}\right)$ for $\{X, Y\}=\{G, H\}$ and $\left\{x, x^{\prime}, y, y^{\prime}\right\}=\left\{g, g^{\prime}, h, h^{\prime}\right\}$.

$\operatorname{diam}(G \diamond H) \leq 2$

Theorem

Let G and H be graphs. If $\operatorname{diam}(G \diamond H) \leq 2$, then $E\left((G \diamond H)_{S R}\right)$ equals to

$$
T W(G \diamond H) \cup E(\bar{G} \square \bar{H}) \cup E(G \times \bar{H}) \cup E(\bar{G} \times H) .
$$

$\operatorname{diam}(G \diamond H) \leq 2$

Theorem

Let G and H be graphs. If $\operatorname{diam}(G \diamond H) \leq 2$, then $E\left((G \diamond H)_{S R}\right)$ equals to

$$
T W(G \diamond H) \cup E(\bar{G} \square \bar{H}) \cup E(G \times \bar{H}) \cup E(\bar{G} \times H) .
$$

Proposition

For integers $s \geq t \geq 2$ we have $\operatorname{dim}_{s}\left(K_{1, s} \diamond K_{1, t}\right)=s t+s-1$.

$\operatorname{diam}(G \diamond H) \leq 2$

Theorem

Let G and H be graphs. If $\operatorname{diam}(G \diamond H) \leq 2$, then $E\left((G \diamond H)_{S R}\right)$ equals to

$$
T W(G \diamond H) \cup E(\bar{G} \square \bar{H}) \cup E(G \times \bar{H}) \cup E(\bar{G} \times H) .
$$

Proposition

For integers $s \geq t \geq 2$ we have $\operatorname{dim}_{s}\left(K_{1, s} \diamond K_{1, t}\right)=s t+s-1$.

Proposition

For integers $s, t \geq 5$, $\max \{s, t\} \geq 6$, we have $\operatorname{dim}_{s}\left(\bar{C}_{s} \diamond \bar{C}_{t}\right)=s t-\left\lfloor\frac{s}{2}\right\rfloor\left\lfloor\frac{t}{2}\right\rfloor$. In addition, $\operatorname{dim}_{s}\left(\bar{C}_{5} \diamond \bar{C}_{5}\right)=20$.

Another familly

Proposition

For integers $s, t \geq 7$ we have $\operatorname{dim}_{s}\left(C_{s} \diamond C_{t}\right)=s t-4 \min \left\{\left\lfloor\frac{s}{3}\right\rfloor,\left\lfloor\frac{t}{3}\right\rfloor\right\}-r$, where

$$
r=\left\{\begin{array}{ccc}
0 & : & \min \{s, t\} \equiv\{0,1\}(\bmod 3) \\
1 & : & s=t \wedge \min \{s, t\} \equiv 2(\bmod 3) \\
2 & : & s \neq t \wedge \min \{s, t\} \equiv 2(\bmod 3)
\end{array}\right.
$$

One factor has a γ-pair and the other has no universal vertex

Theorem
If a graph G has a γ_{G}-pair and a graph H is without a universal vertex, then $E\left((G \diamond H)_{S R}\right)$ equals to
$T W(G \diamond H) \cup E(G P(G) \square G P(H)) \cup E\left(\bar{G}^{-} \square \bar{H}^{-}\right) \cup E\left(G^{-} \times \bar{H}^{-}\right) \cup E\left(\bar{G}^{-} \times H^{-}\right)$

One factor has a γ-pair and the other has no universal vertex

Theorem
If a graph G has a γ_{G}-pair and a graph H is without a universal vertex, then $E\left((G \diamond H)_{S R}\right)$ equals to
$T W(G \diamond H) \cup E(G P(G) \square G P(H)) \cup E\left(\bar{G}^{-} \square \bar{H}^{-}\right) \cup E\left(G^{-} \times \bar{H}^{-}\right) \cup E\left(\bar{G}^{-} \times H^{-}\right)$

Proposition

For integers $n, p \geq 3$ we have $\operatorname{dim}_{s}\left(K_{n, n}^{-M} \diamond K_{p, p}^{-M}\right)=3 n p$.

One factor has a γ-pair and the other has no universal vertex

Theorem

If a graph G has a γ_{G}-pair and a graph H is without a universal vertex, then $E\left((G \diamond H)_{S R}\right)$ equals to
$T W(G \diamond H) \cup E(G P(G) \square G P(H)) \cup E\left(\bar{G}^{-} \square \bar{H}^{-}\right) \cup E\left(G^{-} \times \bar{H}^{-}\right) \cup E\left(\bar{G}^{-} \times H^{-}\right)$

Proposition

For integers $n, p \geq 3$ we have $\operatorname{dim}_{s}\left(K_{n, n}^{-M} \diamond K_{p, p}^{-M}\right)=3 n p$.

Proposition

For integer $r \geq 7$ we have $\operatorname{dim}_{s}\left(P_{5} \diamond P_{r}\right)=\operatorname{dim}_{s}\left(P_{5} \diamond C_{r}\right)=3 r-2$.

One factor has a universal vertex and the other is arbitrary

One factor has a universal vertex and the other is arbitrary

Proposition

For integers $r, q \geq 3, s, t \geq 4, m_{q}=\min \{r, q\}$, $m_{t}=\min \{t-1, r-q\}, m_{s}=\min \{s, r-q\}$ and
$b=\left\{\begin{array}{ccc}r+2 & : & r \leq q+1 \\ r+1 & : & r=q+2 \vee(r \geq q+3 \wedge \max \{s+1, t\} \geq r) \\ q+m_{s}: & r \geq q+3 \wedge t \leq s<r-1 \\ q+m_{t} & : & r \geq q+3 \wedge s<t<r\end{array}\right.$,
we have $\operatorname{dim}_{s}\left(K_{1, r} \diamond H(s, t, q)\right)=(s+t+q-1) r-b+r+q+s+t$.

Thank you for your attention!

