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Definitions and examples

Domination

Definition

Let G be a graph. A set D ⊆ V (G ) is a dominating set of G if⋃
u∈D

N[u] = V (G ).

The cardinality of a minimum dominating set of a graph G is called the
domination number of G , denoted γ(G ).
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Definitions and examples

Total domination

Definition

Let G be a graph. A set D ⊆ V (G ) is a total dominating set of G if⋃
u∈D

N(u) = V (G ).

The cardinality of a minimum total dominating set of a graph G is called
the total domination number of G , denoted γt(G ).
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Definitions and examples

Upper total domination

Definition

The maximum cardinality of a minimal total dominating set of a graph G
is called the upper total domination number of G , denoted Γt(G ).

Windmill graph Wd(k , n) is obtained by taking n vertex disjoint copies of
the complete graph Kk , selecting one vertex from each copy, and
identifying these n selected vertices into one new vertex.

Γt(Wd(4, 3)) = 6
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Definitions and examples

Grundy domination number

Let S = (v1, . . . , vk) be a sequence of vertices of a graph G . The
corresponding set of vertices from S will be denoted by by Ŝ .

A sequence S = (v1, . . . , vk) of distinct vertices of a graph G is called
a closed neighborhood sequence if, for each i ∈ {2, . . . , k}

N[vi ] \ ∪i−1
j=1N[vj ] ̸= ∅.

The maximum length of a closed neighborhood sequence in a graph
G is the Grundy domination number of G , denoted by γgr (G ). The
corresponding sequence is called a Grundy dominating sequence of a
graph.

For any graph G , γgr (G ) ≥ γ(G ).

[B,2014] B. Brešar, T. G., M. Milanič, D. F. Rall, R. Rizzi, Dominating
sequences in graphs, Discrete Math. 336 (2014) 22–36.
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Definitions and examples

Grundy dominating sequence

G
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Definitions and examples

Footprinter

Let S = (v1, . . . , vk) be a closed neighborhood sequence. We say that
vertex vi footprints the vertices from N[vi ] \ ∪i−1

j=1N[vj ], and that vi is
their footprinter.

Let fS : V (G ) → Ŝ be a function that maps each vertex to its
footprinter.
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Definitions and examples

Grundy total domination number

A sequence S = (v1, . . . , vk) of vertices of a graph G is an open
neighborhood sequence, if for every i ∈ {2, . . . , k}

N(vi ) \
i−1⋃
j=1

N(vj) ̸= ∅.

The maximum length of an open neighborhood sequence in G is the
Grundy total domination number of G and is denoted by γtgr(G ).

The corresponding sequence is called a Grundy total dominating
sequence of a graph.

If G is a graph without isolated vertices, then γtgr(G ) ≥ γt(G ).

[BHR,2016] B. Brešar, M. A. Henning, D. F. Rall, Total dominating
sequences in graphs, Discrete Math. 339 (2016) 1665–1676.
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Definitions and examples
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Definitions and examples

Two more invariants

A sequence S = (v1, . . . , vk) of vertices of a graph G is a Z-sequence,
if for every i ∈ {2, . . . , k}

N(vi ) \
i−1⋃
j=1

N[vj ] ̸= ∅.

The maximum length of a Z-sequence in G is the Z-Grundy
domination number of G and is denoted by γZgr(G ).

A sequence S = (v1, . . . , vk) of distinct vertices of a graph G is an
L-sequence, if for every i ∈ {2, . . . , k}

N[vi ] \
i−1⋃
j=1

N(vj) ̸= ∅.

The maximum length of an L-sequence in G is the L-Grundy
domination number of G and is denoted by γLgr(G ).
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Definitions and examples

Z-Grundy domination - example

[B,2017] B. Brešar, C. Bujtás, T. G., S. Klavžar, G. Košmrlj, B. Patkós, Z.
Tuza, M. Vizer, Grundy dominating sequences and zero forcing sets,
Discrete Optim. 26 (2017) 66–77.
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Definitions and examples

Zero forcing sets

Color vertices of a graph G white and blue.

Color change rule: If a given blue vertex has exactly one white
neighbor w , then the color of w is changed to blue.

A zero forcing set for G is a subset B of its vertices such that if
initially vertices from B are colored blue and the remaining vertices
are colored white, then by a repeated application of the color change
rule all the vertices of G are turned to blue.

The zero forcing number Z (G ) of a graph G is the size of a
minimum zero forcing set.

[AIM,2008] AIM Minimum Rank-Special Graphs Work Group, Zero-forcing
sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008)
1628–1648.
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Definitions and examples

Minimum rank and maximum nullity

Let G be a simple graph with vertex set V (G ) = {1, . . . , n}. The
minimum rank mr(G ) of G is the smallest possible rank over all
symmetric real matrices whose (i , j)-th entry, i ̸= j , is nonzero
whenever vertices i and j are adjacent in G and is zero otherwise.
(There are no restrictions on the diagonal entries.)

The maximum nullity M(G ) of G is the biggest possible nullity over
all the above matrices.

M(G )+mr(G )= |V (G )|.
Thm. [AIM,2008] For any graph G , |V (G )|−mr(G )=M(G ) ≤ Z (G ).
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Relations between Grundy domination invariants

Z-Grundy domination vs. zero forcing
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Relations between Grundy domination invariants

Connection of γZ
gr(G ) and Z (G )

Theorem (B,2017)

If G is a graph, then

γZgr(G ) + Z (G ) = |V (G )| .

Moreover, the complement of a (minimum) zero forcing set of G is a
(maximum) Z-set of G and vice versa.
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Relations between Grundy domination invariants

Relations between Grundy domination numbers

Proposition (B, 2017)

If G is a graph with no isolated vertices, then

(i) γZgr(G ) ≤ γgr(G ) ≤ γLgr(G )− 1,

(ii) γZgr(G ) ≤ γtgr(G ) ≤ γLgr(G ),

and all the bounds are sharp.

γZgr

γtgr γgr

γLgr

+1
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Relations between Grundy domination invariants

Relations between Grundy domination numbers

Theorem (B,2017)

If G is a graph (without isolated vertices), then

γtgr(G ) ≤ 2γZgr(G ),

γLgr(G ) ≤ 2γgr(G ).

γtgr(Wd(k, n)) = 2n = 2γZgr(Wd(k , n)),

γLgr(Wd(k, n)) = 2n = 2γgr(Wd(k , n)).

Tanja Dravec Grundy domination invariants
Indo-Slovenia Pre-Conference School on Algorithms and Combinatorics, February 2024

20 / 51



Relations between Grundy domination invariants

Relations between domination invariants

γZgr

γtgr γgr

γLgr

γ

γt

+1
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Relations between Grundy domination invariants

Relations between Grundy domination parameters and
domination parameters

Theorem (BCDH,2023+)

If G is a graph with no clique component, then γt(G ) ≤ γZgr(G ) or
equivalently Z (G ) ≤ |V (G )| − γt(G ).

Proof. For a total dominating set D of a graph G we use the following
notations:

let C1, . . . ,Cℓ be the K2 components of G [D], V (Ci ) = {xi , yi},
for each i ∈ [ℓ], let Ai (D) denote the set of vertices that are totally
dominated by V (Ci ) and are not totally dominated by D \ V (Ci ),

For k ≤ ℓ denote by C1, . . . ,Ck K2-components of G [D] with the
property N[xi ] ∩ Ai (D) = N[yi ] ∪ Ai (D) and by Ck+1, . . . ,Cℓ the
components without this property.
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Relations between Grundy domination invariants

Proof

Let D be a γt-set of G such that G [D] has the smallest possible number
of K2-components (among all γt-sets of G ).

For any component C of G [D], not isomorpic to K2, we do the following:

first add to S all vertices u in G [D] such that u is adjacent to a
vertex v ∈ V (C ) with degC (v) = 1;

add to S all the remaining vertices in C .

For any K2 component Ci ∈ {Ck+1, . . . ,Cℓ} (K2 component with the
property N[xi ] ∩ Ai ̸= N[yi ] ∩ Ai ) do the following (we may WLOG assuem
that

(
N(xi ) \ N[yi ]

)
∩ Ai ̸= ∅):
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Relations between Grundy domination invariants

Proof

let ai ∈
(
N(xi ) \ N[yi ]

)
∩ Ai ;

we first add to S the vertex yi , and then the vertex xi .

For each K2 component Ci ∈ {C1, . . . ,Ck} (with the property
N[xi ] ∩ Ai = N[yi ] ∩ Ai ) do the following:

Ai does not induces a complete graph.

For each i ∈ [k], there exists a vertex ai ∈ Ai \ {xi , yi} such that ai is
not adjacent to a vertex bi ∈ Ai \ {xi , yi}.
For each i ∈ [k] and x ∈ V (Ci ), x has no neighbors in V (G )−Ai (D).

For any i ̸= j ∈ {1, . . . , k} there are no edges between Ai (D) and
Aj(D).

For any i ∈ {1, . . . , k} add to S ai (which footprints xi ) and then xi
(which footprints bi ).
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Relations between Grundy domination invariants

Relations between domination invariants

If G is a a graph with no clique component, then:

γZgr

γtgr γgr

γLgr

γ

γt

+1
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Relations between Grundy domination invariants

Relations between Grundy domination parameters and
domination parameters

Theorem (BCDH,2023+)

If G is a graph with no clique component, then γt(G ) ≤ γZgr(G ) or
equivalently Z (G ) ≤ |V (G )| − γt(G ).

The bound is sharp: γZgr(K1,ℓ) = 2 = γt(K1,ℓ);

The ration
γZ
gr(G)

γt(G) can be arbitrary large.

[BCDH,2023+] B. Brešar, M.G. Cornet, T. D., M. Henning, Bounds on
zero forcing using (upper) total domination and minimum degree,
submitted.
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Relations between Grundy domination invariants

Uniform graphs for total dominating sequences

A graph G is total k-uniform if γt(G ) = γtgr (G ) = k .

Proposition (BHR,2016)

A graph G is total 2-uniform if and only if G is complete multipartite
graph.

Theorem (BK,2018)

There exists no graph G such that γtgr(G ) = 3.
For any n ∈ Z+ \ {1, 3} exists a graph Gn with γtgr(Gn) = n.

[BK,2018] B. Brešar, T. Kos, G. Nasini, P. Torres, Total dominating
sequences in trees, split graphs, and under modular decomposition,
Discrete Optim. 28 (2018) 16–30.
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Relations between Grundy domination invariants

Total k-uniform graphs

[GJ,2021] T. G., M. Jakovac, T. Kos, T. Marc, On graphs with equal total
domination and Grundy total domination number, Aequationes Math.
(2021) 1–10.
[BGD,2021] S. Bahadır, D. Gözüpek, O. Doğan, On graphs all of whose
total dominating sequences have the same length, Discrete Math. 344
(2021) 112492

Corollary (GJ,2021)

Let G be a bipartite graph with bipartition A ∪ B. Then the Grundy total
domination number of G is even and for any Grundy total dominating
sequence S = (v1, . . . , v2k) it follows that |A ∩ Ŝ | = |B ∩ Ŝ | = k .

For odd k there is no total k-uniform bipartite graph G .
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Relations between Grundy domination invariants

Total k-uniform graphs

Lemma (BGD,2021)

Let G be a total k-uniform graph with no isolated vertices where k ≥ 3. If
uv ∈ E (G ), then G − (N[u] ∪ N[v ]) is a total (k − 2)-uniform graph with
no isolated vertex.

Theorem (BGD,2021)

There does not exist a total k-uniform graph where k is an odd positive
integer.
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Relations between Grundy domination invariants

Total 4-uniform graphs

Theorem (GJ,2021)

A false twin-free bipartite graph G is total 4-uniform if and only if G is
isomorphic to Kn,n −M, n ≥ 2, where M is a perfect matching of Kn,n.

Conjecture (GJ,2021)

Let G be a connected false twin-free graph. Then γt(G ) = γtgr(G ) = 4 if
and only if G is isomorphic to the graph Kn,n −M, n ≥ 3, where M
denotes an arbitrary perfect matching of Kn,n.

Theorem (GJ,2021)

There is no connected chordal total 4-uniform graph.
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Relations between Grundy domination invariants

Total 4-uniform graphs

The conjecture was disproved.

Proposition (BGD,2021)

The graphs L(K6) is total 4-uniform and non bipartite.

Theorem (BGD,2021)

There is no connected chordal total k-uniform graph for k ≥ 4.
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Relations between Grundy domination invariants

Total k-uniform graphs

Theorem (BGD,2021)

If the graph G is connected, non-bipartite and total k-uniform, then the
direct product G × K2 is a connected total 2k-uniform graph.

Theorem (BGD,2021)

For every positive even integer k , a connected, false twin-free and total
k-uniform graph is regular.

Problem

For even k ≥ 4, characterize all connected total k-uniform graphs.
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Relations between Grundy domination invariants

Total domination vs Z-Grundy domination

Theorem (BCDH,2023+)

Let G be a connected graph not isomorphic to a complete graph. Then
γt(G ) = γZgr(G ) = 2 if and only if N[x ] ∪ N[y ] = V (G ) holds for any
non-twin vertices x , y ∈ V (G ).

Theorem (BCDH,2023+)

If G is a connected graph that contains a simplicial vertex, then γt(G ) ̸= 3
or γZgr(G ) ̸= 3.

Problem (BCDH,2023+)

Is there a connected chordal graph G with γt(G ) = γZgr(G ) = k for k ≥ 4?
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Relations between Grundy domination invariants

Upper total domination vs Z-Grundy domination

There exist graphs such that the upper total domination number is
larger than the Z-Grundy domination number, and the difference can
even be arbitrary large (windmill graphs WD(k, n), where
k ≥ 3, n ≥ 2).

Γt(Wd(k, n)) = 2n

γZgr(Wd(k , n)) = n
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Relations between Grundy domination invariants

Upper total domination vs Z-Grundy domination

Theorem (BCDH,2023+)

If G is an isolate-free graph, then Γt(G ) ≤ 2γZgr(G ).

Proof.

Let D be a Γt-set of G , S = ().

For any component C of G [D] not isomorpic to K2, first add to S all
vertices of C that are neighbors of leaves of C , then add to S all
remaining vertices of S .

For each K2 component C of G [D] add to S one vertex from C .

D is a Z-sequence of cardinality at least Γt(G)
2 .

Problem

Characterize graphs G with Γt(G ) = 2γZgr(G ).
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Relations between Grundy domination invariants

Graphs with Γt(G ) = 2γZ
gr(G )

We already obtained some necessary conditions.

Proposition (BCDH,2023+)

If G is a graph with Γt(G ) = 2γZgr(G ) and D is a Γt-set of G , then the
following properties hold.

(i) each component of G [D] is isomorphic to K2 and so |D| = 2ℓ, for
some integer ℓ;

(ii) N[xi ] ∩ Ai (D) = N[yi ] ∩ Ai (D), for each i ∈ [ℓ];

(iii) Ai (D) induces a clique, for each i ∈ [ℓ];

(iv) there are no edges between Ai (D) and Aj(D), for each {i , j} ⊂ [ℓ];

(v) vertices in Ai (D) are closed twins, for each i ∈ [ℓ];
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Relations between Grundy domination invariants

Upper total domination vs Z-Grundy domination

Every graph H is an induced subgraph of a graph G with
Γt(G ) = 2γZgr(G ).

In many graphs the Z-Grundy domination number is much bigger
than upper total domination number.

The ratio
γZ
gr(G)

Γt(G) can be arbitrary large.
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Bounds for Grundy domination numbers

Trivial bounds

Let G be an arbitrary graph and δ(G ) the minimum degree of G . Then

γZgr(G ) ≤ γgr(G ) ≤ |V (G )| − δ(G ); [B,2014, B,2017]

γtgr(G ) ≤ |V (G )| − δ(G ) + 1; [BHR,2016]

γLgr(G ) ≤ |V (G )| − δ(G ) + 1; [HS,2022]

[HS,2022] R. Herrman, G.Z. Smith, On the length of L-Grundy sequences,
Discrete Optim. 45 (2022) 100725.
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Bounds for Grundy domination numbers

Open problems

Characterize graphs G with γgr(G ) = |V (G )| − δ(G ).

Characterize graphs G with γtgr(G ) = |V (G )| − δ(G ) + 1.

Characterize graphs G with γLgr(G ) = |V (G )| − δ(G ) + 1.

For L-Grundy domination number this characterization is not known even
for graphs with δ(G ) = 1.
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Complexity results

NP-completness

Grundy domination number problem is NP-complete even when
restricted to chordal graphs; [B,2014]

Grundy domination number problem is NP-complete even when
restricted to bipartite and co-bipartite graphs; [BPS,2023]

Grundy total domination number problem is NP-complete even when
restricted to bipartite graphs; [BHR,2016]

Z-Grundy domination number problem is NP-complete; [Aazami,2008]

L-Grundy domination number problem is NP-complete even when
restricted to bipartite graphs; [B,2017]

[BPS,2023] B. Brešar, A. Pandey, G. Sharma, Computation of Grundy
dominating sequences in (co-)bipartite graphs, Comput. Appl. Math. 42
(2023) 359.
Aazami,2008 A. Aazami, Hardness results and approximation algorithms
for some problems on graphs (Ph.D. thesis),University of Waterloo,2008.
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Complexity results

Bipartite graphs

Question: Is there a polynomial time algorithm that computes Z-Grundy
domination number of a bipartite graph?
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Complexity results

Trees, γgr, γ
t
gr

There exists a linear time algorithm for the Grundy domination
number of a tree. [B,2014]

No explicit formula for computing Grundy domination number of a
tree exists.

There exists a linear time algorithm for computing the Grundy total
domination number of a tree. [B,2018]

For any tree T it holds γtgr(T ) = 2β(T ), where β(G ) denotes vertex
cover number of a graph G . [B,2018]

[B,2018] B. Brešar, T. Kos, G. Nasini, P. Torres, Total dominating
sequences in trees, split graphs, and under modular decomposition,
Discrete Optim. 28 (2018) 16–30.
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Complexity results

Trees, γZ
gr, γ

L
gr

For any tree T it holds γLgr(T ) = |V (T )| (which can be shown by

linear time algorithm that finds γLgr-sequence of cardinality |V (T )|).
[BG,2020]

For any tree T it holds Z (T ) = P(T ) (γZgr(T ) = |V (T )| − P(T )),
where P(T ) denotes path cover number of a tree. [Taklimi, 2013]

[BG,2020] B. Brešar, T. G., M.A. Henning and T. Kos. On the L-grundy
domination number of a graph, Filomat, 34(10) (2020) 3205–3215.
[Taklimi, 2013] F.A. Taklimi, Zero forcing sets for graphs (Ph.D. thesis),
University of Regina, 2013.
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Complexity results

Split graphs

A graph G is a split graph, if its vertex set can be partitioned into two
subsets, where one subset is a clique and the other is an independent set.

Grundy domination number of a split graph can be computed in
polynomial time. There exists explicit formula that depends on the
independence number of the graph. [B,2014]

Grundy total domination number problem is NP-complete, even when
restricted to split graphs. [B,2018]

L-Grundy domination number problem is NP-complete, even when
restricted to split graphs. [BG,2020]

Question: Is there a polynomial time algorithm that computes Z-Grundy
domination number of a split graph?
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Complexity results

Interval graphs, definitions

An interval representation of a graph is a family of intervals of the
real line assigned to vertices so that vertices are adjacent if and only
if the corresponding intervals intersect. A graph is an interval graph if
it has an interval representation.

Let G = (V ,E ) be an interval graph with an interval representation
IG : V (G ) → {[a, b]; a, b ∈ R, a ≤ b}, and vertices V = {v1, . . . , vn}
sorted in the non-decreasing order according to the right endpoints of
corresponding intervals.

IG (vi ) = [ai , bi ], and b1 ≤ b2 ≤ . . . ≤ bn.

Let Â = {a1, b1, . . . an, bn} be the (multi)set of interval endpoints.
We will also make use of the non-decreasing sequence AIG of the real

numbers from Â of length 2n, such that all elements of Â are used.
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Complexity results

Example

v1

v2

v3

v4

v5

G IG

v1

v2
v3

v4

v5

AIG = (a2, a1, a3, b1, a4, b2, b3, a5, b4, b5)

S = (v1, v2, v4)

Figure: An interval graph G with interval representation IG , interval endpoints
sequence AIG and Grundy dominating sequence S .
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Complexity results

Interval graphs, γgr

Theorem (BGK,2016)

If G is an interval graph, then γgr (G ) equals the number of consecutive
subsequences of the form (ai , bj) in the interval endpoints sequence AIG

for any interval representation IG of G .

Theorem (BGK,2016)

If G is an interval graph with vertices (v1, v2, . . . , vn), ordered according to
their right end-points, then γgr(G ) can be computed in linear time.

[BGK,2016] B. Brešar, T. G., T. Kos, Dominating sequences under atomic
changes with applications in Sierpiński and interval graphs, Appl. Anal.
Discrete Math. 10 (2016) 518–531.
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Complexity results

Interval graphs, γZ
gr

For Z-Grundy domination number similar results holds for true twins and
simplicial vertices, thus the following problem could be solvable.

Problem

Find an efficient algorithm that returns a γZgr-sequence of an interval graph.
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Open problems

Extremal graphs

Characterize graphs with

γt(G ) = γLgr(G );

γtgr(G ) = 2γgr(G );

γtgr(G ) = 2γZgr(G );

γLgr(G ) = 2γgr(G );

γtgr(G ) = 2β(G ).
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Open problems

Special graph classes

Consider Grundy domination invariants in

co-bipartite graphs;

P4-tidy graphs;

Sierpiński graphs;

Graph products

Conjecture. For any graphs G and H, γgr(G ⊠ H) = γgr(G )γgr(H).
Conjecture. For any graphs G and H, γt

gr(G × H) = γt
gr(G )γt

gr(H).
Both conjectures holds, if G is a tree.

[B,2021] B. Brešar, et al., On Grundy total domination number in product
graphs, Discuss. Math. Graph Theory 41.1 (2021) 225–247.
[BD,2021] K. Bell, K. Driscoll, E. Krop, K. Wolff, Grundy domination of
forests and the strong product conjecture, Electron. J. Comb. 28(2)
(2021) P2.12.
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Open problems

Thank you!
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