Frobenius Problem for the Proth numbers

Joint work with Dhara Thakkar (IIT Gandhinagar)

Pranjal Srivastava
Indian Institute of Science Education and Research Bhopal, India.
$16^{\text {th }}$ February, 2024
10th Annual International Conference on Algorithms and Discrete Applied Mathematics (CALDAM) 2024
Indian Institute of Technology Bhilai

Plan for the Talk

* Frobenius Problem
* Frobenius Problem for special numbers
* Wilf Conjecture

Frobenius Problem

The Frobenius Problem:

Given: A set $L=\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ with $\operatorname{gcd}\left(I_{1}, \ldots, I_{m}\right)=1$, and $I_{i} \geq 2$.
Question: Find the largest natural number that is not expressible as a non-negative linear combination of $I_{1}, l_{2}, \ldots, I_{m}$.

Frobenius Problem

The Frobenius Problem:

Given: A set $L=\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ with $\operatorname{gcd}\left(I_{1}, \ldots, I_{m}\right)=1$, and $I_{i} \geq 2$.
Question: Find the largest natural number that is not expressible as a non-negative linear combination of $l_{1}, l_{2}, \ldots, l_{m}$.

Other Names:

- The Money Exchange Problem
- The Chicken Nuggets Problem

The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:
Chicken nuggets come in boxes of 6, 9, and 20.

The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:
Chicken nuggets come in boxes of 6, 9, and 20.

Answer: 43.

The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:
Chicken nuggets come in boxes of 6, 9, and 20.

6

9

20
What is the largest number of nuggets that you CANNOT buy when combining various boxes?

I'm sorry, but that's not possible.
I'll take 11 chicken
I'll take 11 chicken
nuggets, please!
nuggets, please!

Answer: 43.
Claim: 43 is not expressible using $6,9,20$

- We can choose ≤ 2 packs of 20 .
- If we choose 0 or 1 packs, then we have to represent 43 or 23 as a linear combination of 6 and 9 . Not Possible!
- If we choose two packs of 20 then we can not represent 3 using of 6 and 9. Again Not Possible!

To see that every larger number is expressible, note that

$$
\begin{aligned}
& 44=1 \cdot 20+0 \cdot 9+4 \cdot 6 \\
& 45=0 \cdot 20+3 \cdot 9+3 \cdot 6 \\
& 46=2 \cdot 20+0 \cdot 9+1 \cdot 6 \\
& 47=1 \cdot 20+3 \cdot 9+0 \cdot 6 \\
& 48=0 \cdot 20+0 \cdot 9+8 \cdot 6 \\
& 49=2 \cdot 20+1 \cdot 9+0 \cdot 6
\end{aligned}
$$

and every larger number can be written as a multiple of 6 plus one of these numbers.

History of the Frobenius Problem

* Problem discussed by Frobenius (1849-1917) in his lectures in the late 1800's - but Frobenius never published anything.

History of the Frobenius Problem

* Problem discussed by Frobenius (1849-1917) in his lectures in the late 1800's - but Frobenius never published anything.
* A related problem discussed by Sylvester: Compute $h\left(I_{1}, I_{2}, \ldots, I_{n}\right):=$ The total number of non-negative integers that are not expressible as a linear combination of the I_{i}.
* Problem discussed by Frobenius (1849-1917) in his lectures in the late 1800's - but Frobenius never published anything.
* A related problem discussed by Sylvester: Compute $h\left(I_{1}, I_{2}, \ldots, I_{n}\right):=$ The total number of non-negative integers that are not expressible as a linear combination of the I_{i}.
* Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].

History of the Frobenius Problem

* Problem discussed by Frobenius (1849-1917) in his lectures in the late 1800's - but Frobenius never published anything.
* A related problem discussed by Sylvester: Compute $h\left(I_{1}, I_{2}, \ldots, I_{n}\right):=$ The total number of non-negative integers that are not expressible as a linear combination of the l_{i}.
* Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].
* The Frobenius problem has been studied for
* Several special cases, e.g., numbers in a geometric sequence, arithmetic sequence, Pythagorean triples, three consecutive squares or cubes, and many more!

History of the Frobenius Problem

* Problem discussed by Frobenius (1849-1917) in his lectures in the late 1800's - but Frobenius never published anything.
* A related problem discussed by Sylvester: Compute $h\left(I_{1}, I_{2}, \ldots, I_{n}\right):=$ The total number of non-negative integers that are not expressible as a linear combination of the l_{i}.
* Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].
* The Frobenius problem has been studied for
* Several special cases, e.g., numbers in a geometric sequence, arithmetic sequence, Pythagorean triples, three consecutive squares or cubes, and many more!
* The Frobenius problem has been studied for several special numerical semigroups that naturally arises from special prime like Fibonacci, Mersenne, Thabit, and Repunit.

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.
Example: $S=\{6,9,12,15,18,20,24, \ldots, 42,44 \rightarrow\}$ and $\mathbb{N} \backslash S=$ $\{1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43\}$.

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.
Example: $S=\{6,9,12,15,18,20,24, \ldots, 42,44 \rightarrow\}$ and $\mathbb{N} \backslash S=$ $\{1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43\}$.

Definition: If S is a numerical semigroup and $S=\langle B\rangle$, then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.
Example: $S=\{6,9,12,15,18,20,24, \ldots, 42,44 \rightarrow\}$ and $\mathbb{N} \backslash S=$ $\{1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43\}$.

Definition: If S is a numerical semigroup and $S=\langle B\rangle$, then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.
Example: $S=\langle 6,9,20\rangle$.

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.

Example: $S=\{6,9,12,15,18,20,24, \ldots, 42,44 \rightarrow\}$ and $\mathbb{N} \backslash S=$ $\{1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43\}$.

Definition: If S is a numerical semigroup and $S=\langle B\rangle$, then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.
Example: $S=\langle 6,9,20\rangle$.
Definition: The cardinality of a minimal system of generators of S is called the embedding dimension of S denoted by e(S).

Numerical Semigroups and The Frobenius Problem

Definition: A subset S of \mathbb{N} containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in \mathbb{N}.
Example: $S=\{6,9,12,15,18,20,24, \ldots, 42,44 \rightarrow\}$ and $\mathbb{N} \backslash S=$ $\{1,2,3,4,5,7,8,10,11,13,14,16,17,19,22,23,25,28,31,34,37,43\}$.

Definition: If S is a numerical semigroup and $S=\langle B\rangle$, then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.
Example: $S=\langle 6,9,20\rangle$.
Definition: The cardinality of a minimal system of generators of S is called the embedding dimension of S denoted by $\mathrm{e}(S)$.

Definition: The Frobenius number $(\mathrm{F}(S))$ of a numerical semigroup $S=\left\langle\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right\rangle$ is the largest integer that cannot be expressed as a $\operatorname{sum} \sum_{i=1}^{n} t_{i} a_{i}$, where $t_{1}, \ldots, t_{n} \in \mathbb{N}$.

Some Known Results

Some Known Results

* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.

Some Known Results

* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.
* For $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the exact but a bit complicated formula is known [Tripathi17].

Some Known Results

* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.
* For $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the exact but a bit complicated formula is known [Tripathi17].
* Surprisingly, No general result is known for $\mathrm{e}(S) \geq 4$.

Some Known Results

* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.
* For $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the exact but a bit complicated formula is known [Tripathi17].
* Surprisingly, No general result is known for $\mathrm{e}(S) \geq 4$.
* The Frobenius problem for special classes of numerical semigroups is widely studied.
* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.
* For $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the exact but a bit complicated formula is known [Tripathi17].
* Surprisingly, No general result is known for $\mathrm{e}(S) \geq 4$.
* The Frobenius problem for special classes of numerical semigroups is widely studied.
E.g., The Frobenius problem for
* The Fibonacci numerical semigroup [MRR07],
* The Mersenne numerical semigroup [RBT17],
* The Thabit numerical semigroup [RBT 15],
* The repunit numerical semigroup [RBT 16].
* For $S=\left\langle a_{1}, a_{2}\right\rangle, F(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.
* For $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the exact but a bit complicated formula is known [Tripathi17].
* Surprisingly, No general result is known for $\mathrm{e}(S) \geq 4$.
* The Frobenius problem for special classes of numerical semigroups is widely studied.
E.g., The Frobenius problem for
* The Fibonacci numerical semigroup [MRR07],
* The Mersenne numerical semigroup [RBT17],
* The Thabit numerical semigroup [RBT 15],
* The repunit numerical semigroup [RBT 16].

The Proth Numerical semigroups

The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form $k 2^{n}+1$, where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number. E.g., $3,5,9,13,17,25$, 33, 41, 49.

The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form $k 2^{n}+1$, where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number. E.g., $3,5,9,13,17,25$, 33, 41, 49.

Definition: A Proth number is a Proth prime if it is prime. E.g., 3, 5, 13, 17, 41, 97.

The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form $k 2^{n}+1$, where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number. E.g., $3,5,9,13,17,25$, 33, 41, 49.

Definition: A Proth number is a Proth prime if it is prime. E.g., 3, 5, 13, 17, 41, 97.

Definition: A numerical semigroup S is the Proth numerical semigroup if $n \in \mathbb{N}$ such that

$$
S=\left\langle\left\{k 2^{n+i}+1 \mid i \in \mathbb{N}\right\}\right\rangle,
$$

where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number.
We denote the Proth numerical semigroup by $P_{k}(n)$.

The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form $k 2^{n}+1$, where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number. E.g., $3,5,9,13,17,25$, 33, 41, 49.

Definition: A Proth number is a Proth prime if it is prime. E.g., 3, 5, 13, 17, 41, 97.

Definition: A numerical semigroup S is the Proth numerical semigroup if $n \in \mathbb{N}$ such that

$$
S=\left\langle\left\{k 2^{n+i}+1 \mid i \in \mathbb{N}\right\}\right\rangle,
$$

where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number.
We denote the Proth numerical semigroup by $P_{k}(n)$.
Why Proth Numerical Semigroup?

The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form $k 2^{n}+1$, where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number. E.g., $3,5,9,13,17,25$, 33, 41, 49.

Definition: A Proth number is a Proth prime if it is prime. E.g., 3, 5, 13, 17, 41, 97.

Definition: A numerical semigroup S is the Proth numerical semigroup if $n \in \mathbb{N}$ such that

$$
S=\left\langle\left\{k 2^{n+i}+1 \mid i \in \mathbb{N}\right\}\right\rangle,
$$

where $n, k \in \mathbb{Z}^{+}$and $k<2^{n}$ is an odd number.
We denote the Proth numerical semigroup by $P_{k}(n)$.
Why Proth Numerical Semigroup?
Surprisingly, the methods that has been used to study the Frobenius Problem for the Fibonacci, Mersenne, Thabit, Repunit numerical semigroup is not directly applicable to the Proth Numerical semigroup.

Embedding Dimension of the Proth Numerical Semigroup

Embedding Dimension of the Proth Numerical Semigroup

Theorem 1 [S,Thakkar]
Let $n>2$ be an integer then

$$
\mathrm{e}\left(P_{k}(n)\right)=n+r+1 .
$$

Moreover, $\left\{k 2^{n+i}+1 \mid i \in\{0,1, \ldots, n+r\}\right\}$ is the minimal system of generators of $P_{k}(n)$.

Embedding Dimension of the Proth Numerical Semigroup

Theorem 1 [S,Thakkar]

Let $n>2$ be an integer then

$$
\mathrm{e}\left(P_{k}(n)\right)=n+r+1 .
$$

Moreover, $\left\{k 2^{n+i}+1 \mid i \in\{0,1, \ldots, n+r\}\right\}$ is the minimal system of generators of $P_{k}(n)$.

Notation: We now take $s_{i}=k 2^{n+i}+1$ for all $i \in \mathbb{N}$. Thus, with this notation, $\left\{s_{0}, s_{1}, \ldots, s_{n+r}\right\}$ is the minimal system of generators of $P_{k}(n)$.

Towards the Frobenius number of the Proth Numerical Semigroups

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

E.g., Let $S=\left\langle a_{1}, a_{2}\right\rangle$. We have

$$
\operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
$$

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

$$
\begin{aligned}
\text { E.g., Let } S= & \left\langle a_{1}, a_{2}\right\rangle . \text { We have } \\
& \operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
\end{aligned}
$$

* $\operatorname{Ap}(S, t)=\{w(0), w(1), \ldots, w(t-1)\}$, where $w(i)$ is the least element of S congruent with i modulo t, for all $i \in\{0, \ldots, t-1\}$.

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

E.g., Let $S=\left\langle a_{1}, a_{2}\right\rangle$. We have

$$
\operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
$$

* $\operatorname{Ap}(S, t)=\{w(0), w(1), \ldots, w(t-1)\}$, where $w(i)$ is the least element of S congruent with i modulo t, for all $i \in\{0, \ldots, t-1\}$.
* $|\operatorname{Ap}(S, t)|=t$.

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

$$
\begin{aligned}
\text { E.g., Let } S= & \left\langle a_{1}, a_{2}\right\rangle . \text { We have } \\
& \operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
\end{aligned}
$$

* $\operatorname{Ap}(S, t)=\{w(0), w(1), \ldots, w(t-1)\}$, where $w(i)$ is the least element of S congruent with i modulo t, for all $i \in\{0, \ldots, t-1\}$.
* $|\operatorname{Ap}(S, t)|=t$.

Why Apéry set?

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

$$
\begin{aligned}
\text { E.g., Let } S= & \left\langle a_{1}, a_{2}\right\rangle . \text { We have } \\
& \operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
\end{aligned}
$$

* $\operatorname{Ap}(S, t)=\{w(0), w(1), \ldots, w(t-1)\}$, where $w(i)$ is the least element of S congruent with i modulo t, for all $i \in\{0, \ldots, t-1\}$.
* $|\operatorname{Ap}(S, t)|=t$.

Why Apéry set?
Lemma [Selmer77] Let S be a numerical semigroup and let s^{\prime} be a non-zero element of S. Then

$$
\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}
$$

Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and $t \in S \backslash\{0\}$.

* The Apéry set of S with respect to t is

$$
\operatorname{Ap}(S, t)=\{s \in S \mid s-t \notin S\}
$$

$$
\begin{aligned}
\text { E.g., Let } S= & \left\langle a_{1}, a_{2}\right\rangle . \text { We have } \\
& \operatorname{Ap}\left(S, a_{1}\right)=\left\{0, a_{2}, 2 a_{2}, \ldots,\left(a_{1}-1\right) a_{2}\right\} .
\end{aligned}
$$

* $\operatorname{Ap}(S, t)=\{w(0), w(1), \ldots, w(t-1)\}$, where $w(i)$ is the least element of S congruent with i modulo t, for all $i \in\{0, \ldots, t-1\}$.
* $|\operatorname{Ap}(S, t)|=t$.

Why Apéry set?
Lemma [Selmer77] Let S be a numerical semigroup and let s^{\prime} be a non-zero element of S. Then

$$
\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}
$$

E.g., $\mathrm{F}(S)=\left(a_{1}-1\right) a_{2}-a_{1}$.

Continue...

Continue...

Let $P(r, n)$ denotes the set of all $n+r$-tuple $\left(a_{1}, \ldots, a_{n+r}\right)$ that satisfies the following conditions:

* for every $i \in\{1, \ldots, n+r\}, a_{i} \in\{0,1,2\}$;
* if $a_{j}=2$ for some $j=2, \ldots, n+r$ then $a_{i}=0$ for $i<j$.

Continue...

Let $P(r, n)$ denotes the set of all $n+r$-tuple $\left(a_{1}, \ldots, a_{n+r}\right)$ that satisfies the following conditions:

* for every $i \in\{1, \ldots, n+r\}, a_{i} \in\{0,1,2\}$;
* if $a_{j}=2$ for some $j=2, \ldots, n+r$ then $a_{i}=0$ for $i<j$.

We take $\hat{P}(r, n)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\}$

Continue...

Let $P(r, n)$ denotes the set of all $n+r$-tuple $\left(a_{1}, \ldots, a_{n+r}\right)$ that satisfies the following conditions:

* for every $i \in\{1, \ldots, n+r\}, a_{i} \in\{0,1,2\}$;
* if $a_{j}=2$ for some $j=2, \ldots, n+r$ then $a_{i}=0$ for $i<j$.

We take $\hat{P}(r, n)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\}$
Lemma [S, Thakkar]
Let $P_{2^{r}+1}(n)=\left\langle\left\{s_{0}, s_{1}, \ldots, s_{n+r}\right\}\right\rangle$. If $s \in \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)$ then there exist $\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)$ such that $s=a_{1} s_{1}+\cdots+a_{n+r} s_{n+r}$.

Continue...

Let $P(r, n)$ denotes the set of all $n+r$-tuple $\left(a_{1}, \ldots, a_{n+r}\right)$ that satisfies the following conditions:

* for every $i \in\{1, \ldots, n+r\}, a_{i} \in\{0,1,2\}$;
* if $a_{j}=2$ for some $j=2, \ldots, n+r$ then $a_{i}=0$ for $i<j$.

We take $\hat{P}(r, n)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\}$
Lemma [S, Thakkar]
Let $P_{2^{r}+1}(n)=\left\langle\left\{s_{0}, s_{1}, \ldots, s_{n+r}\right\}\right\rangle$. If $s \in \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)$ then there exist $\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)$ such that $s=a_{1} s_{1}+\cdots+a_{n+r} s_{n+r}$.

Elements that are Not in the Apéry set

Lemma [S, Thakkar] Let $n>2$ be an integer. Then

$$
F \cap \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\emptyset,
$$

where $F=F_{1} \cup F_{2}$, and
$F_{1}=\left\{a_{1} s_{1}+\cdots+a_{n+r-1} s_{n+r-1}+s_{n+r} \mid a_{i} \in\{0,1,2\}\right.$ for $1 \leq i \leq n+$ $r-2, a_{n+r-1} \in\{1,2\}$ and if $a_{j}=2$ for some j then $a_{i}=0$ for $\left.i<j\right\}$;
$F_{2}=\left(\bigcup_{l=0}^{r-2} E_{l} \cup\left\{2 s_{n+r}\right\}\right) \backslash\left\{s_{1}+s_{n}+s_{n+r}, 2 s_{1}+s_{n}+s_{n+r}, s_{n}+s_{n+r}\right\}$, where $E_{I}=\left\{a_{1} s_{1}+\cdots+a_{n+I} s_{n+I}+s_{n+r} \mid a_{i} \in\{0,1,2\}\right.$ for $1 \leq i \leq$ $n+I-1, a_{n+I} \in\{1,2\}$ and if $a_{j}=2$ then $a_{i}=0$ for $\left.i<j\right\}$.

Elements that are Not in the Apéry set

Lemma [S, Thakkar] Let $n>2$ be an integer. Then

$$
F \cap \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\emptyset,
$$

where $F=F_{1} \cup F_{2}$, and
$F_{1}=\left\{a_{1} s_{1}+\cdots+a_{n+r-1} s_{n+r-1}+s_{n+r} \mid a_{i} \in\{0,1,2\}\right.$ for $1 \leq i \leq n+$ $r-2, a_{n+r-1} \in\{1,2\}$ and if $a_{j}=2$ for some j then $a_{i}=0$ for $\left.i<j\right\}$;
$F_{2}=\left(\bigcup_{l=0}^{r-2} E_{l} \cup\left\{2 s_{n+r}\right\}\right) \backslash\left\{s_{1}+s_{n}+s_{n+r}, 2 s_{1}+s_{n}+s_{n+r}, s_{n}+s_{n+r}\right\}$,
where $E_{I}=\left\{a_{1} s_{1}+\cdots+a_{n+\mid} s_{n+1}+s_{n+r} \mid a_{i} \in\{0,1,2\}\right.$ for $1 \leq i \leq$ $n+I-1, a_{n+I} \in\{1,2\}$ and if $a_{j}=2$ then $a_{i}=0$ for $\left.i<j\right\}$.

Theorem: [S, Thakkar] Let $n>2$ be an integer. Then

$$
\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\} \backslash F
$$

Proof Idea:

Theorem: [S, Thakkar] Let $n>2$ be an integer. Then

$$
\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\} \backslash F
$$

Proof Idea:

* $\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right) \subseteq \hat{P}(r, n)$.

Theorem: [S, Thakkar] Let $n>2$ be an integer. Then

$$
\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\} \backslash F
$$

Proof Idea:

* $\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right) \subseteq \hat{P}(r, n)$.
* $F \cap \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\emptyset$.

Theorem: [S, Thakkar] Let $n>2$ be an integer. Then

$$
\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\} \backslash F
$$

Proof Idea:

$$
\begin{aligned}
& * \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right) \subseteq \hat{P}(r, n) . \\
& * F \cap \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\emptyset . \\
& *\left|\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)\right|=s_{0}, \\
& |F|=2^{n+r}-2^{n}-2, \text { and } \\
& \\
& |\hat{P}(r, n)|=2^{n+r+1}-1 .
\end{aligned}
$$

Theorem: [S, Thakkar] Let $n>2$ be an integer. Then

$$
\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in P(r, n)\right\} \backslash F
$$

Proof Idea:

$$
\begin{array}{rl}
* & \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right) \subseteq \hat{P}(r, n) . \\
* & F \cap \operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)=\emptyset . \\
* & \left|\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)\right|=s_{0}, \\
& |F|=2^{n+r}-2^{n}-2, \text { and } \\
& |\hat{P}(r, n)|=2^{n+r+1}-1 . \\
* & \operatorname{Ap}\left(P_{2 r+1}(n), s_{0}\right)=\left\{a_{1} s_{1}+\cdots+a_{n+r} s_{n+r} \mid\left(a_{1}, \ldots, a_{n+r}\right) \in\right. \\
& P(r, n)\} \backslash F .
\end{array}
$$

The Frobenius Number

Recall that, $\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}$.

The Frobenius Number

Recall that, $\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}$.
Note that $w(i)$ is the least element of $P_{2^{r}+1}(n)$ congruent with i modulo s_{0}, for all $i \in\left\{0, \ldots, s_{0}-1\right\}$.

The Frobenius Number

Recall that, $\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}$.
Note that $w(i)$ is the least element of $P_{2^{r}+1}(n)$ congruent with i modulo s_{0}, for all $i \in\left\{0, \ldots, s_{0}-1\right\}$.

What is the Maximum Element of the Apéry set?

The Frobenius Number

Recall that, $\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}$.
Note that $w(i)$ is the least element of $P_{2^{r}+1}(n)$ congruent with i modulo s_{0}, for all $i \in\left\{0, \ldots, s_{0}-1\right\}$.

What is the Maximum Element of the Apéry set?

Lemma [S , Thakkar]

Let $s \in P_{2^{r}+1}(n)$ such that $s \not \equiv 0\left(\bmod s_{0}\right)$, then $s+1 \in P_{2^{r}+1}(n)$. Moreover,

$$
\begin{aligned}
& \text { * } w(i+1) \leq w(i)+1 \text { for } 1 \leq i \leq s_{0}-1 . \\
& * w(2)=s_{1}+s_{n}+s_{n+r} ; \\
& * w(1)=2 s_{1}+s_{n}+s_{n+r}=\max \left(\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)\right) \text {. } \\
& * w(1)-w(2)=s_{1} .
\end{aligned}
$$

The Frobenius Number

Recall that, $\mathrm{F}(S)=\max \left(\operatorname{Ap}\left(S, s^{\prime}\right)\right)-s^{\prime}$.
Note that $w(i)$ is the least element of $P_{2^{r}+1}(n)$ congruent with i modulo s_{0}, for all $i \in\left\{0, \ldots, s_{0}-1\right\}$.

What is the Maximum Element of the Apéry set?

Lemma [S , Thakkar]

Let $s \in P_{2^{r}+1}(n)$ such that $s \not \equiv 0\left(\bmod s_{0}\right)$, then $s+1 \in P_{2^{r}+1}(n)$. Moreover,

$$
\begin{aligned}
& * w(i+1) \leq w(i)+1 \text { for } 1 \leq i \leq s_{0}-1 . \\
& * w(2)=s_{1}+s_{n}+s_{n+r} ; \\
& * w(1)=2 s_{1}+s_{n}+s_{n+r}=\max \left(\operatorname{Ap}\left(P_{2^{r}+1}(n), s_{0}\right)\right) \text {. } \\
& * w(1)-w(2)=s_{1} .
\end{aligned}
$$

Theorem [S, Thakkar]
Let $n>2$ be a positive integer. Then the Frobenius number of the Proth numerical semigroup is given by

$$
\mathrm{F}\left(P_{2^{r}+1}(n)\right)=2 s_{1}+s_{n}+s_{n+r}-s_{0} .
$$

Wilf Conjecture

Wilf Conjecture

Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and $\nu(S)=|\{s \in S \mid s \leq \mathrm{F}(S)\}|$, then

$$
\mathrm{F}(S)+1 \leq \mathrm{e}(S) \nu(S)
$$

where $\mathrm{e}(S)$ is the embedding dimension of S and $\mathrm{F}(S)$ is the Frobenius number of S.

Wilf Conjecture

Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and $\nu(S)=|\{s \in S \mid s \leq \mathrm{F}(S)\}|$, then

$$
\mathrm{F}(S)+1 \leq \mathrm{e}(S) \nu(S)
$$

where $\mathrm{e}(S)$ is the embedding dimension of S and $\mathrm{F}(S)$ is the Frobenius number of S.
This conjecture is true for only few families! E.g.,

* Almost arithmetic sequence.
* Numerical semigroup with genus less than 60.
* Repunit numerical semigroup etc.

For arbitrary numerical Semigroup, it is still Open!

Wilf Conjecture

Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and $\nu(S)=|\{s \in S \mid s \leq \mathrm{F}(S)\}|$, then

$$
\mathrm{F}(S)+1 \leq \mathrm{e}(S) \nu(S),
$$

where $\mathrm{e}(S)$ is the embedding dimension of S and $\mathrm{F}(S)$ is the Frobenius number of S.
This conjecture is true for only few families! E.g.,

* Almost arithmetic sequence.
* Numerical semigroup with genus less than 60 .
* Repunit numerical semigroup etc.

For arbitrary numerical Semigroup, it is still Open!
Theorem [S, Thakkar]
The Proth numerical semigroup $P_{2^{r}+1}(n)$ satisfies Wilf's conjecture.

Towards the Proof

Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$.

Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$.

Definition: $\operatorname{PF}(S)$ is the set of pseudo-Frobenius numbers of S.

Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$.

Definition: $\operatorname{PF}(S)$ is the set of pseudo-Frobenius numbers of S.
Consider the relation on \mathbb{Z} : $a \leq_{s} b$ if $b-a \in S$. Then \leq_{s} is is an order relation.

$$
\operatorname{PF}(S)=\left\{w-s^{\prime} \mid w \in \text { maximals }_{\leq}\left(\operatorname{Ap}\left(S, s^{\prime}\right)\right\}\right.
$$

Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$.

Definition: $\operatorname{PF}(S)$ is the set of pseudo-Frobenius numbers of S.
Consider the relation on \mathbb{Z} : $a \leq_{s} b$ if $b-a \in S$. Then \leq_{s} is is an order relation.

$$
\operatorname{PF}(S)=\left\{w-s^{\prime} \mid w \in \text { maximals }_{\leq s}\left(\operatorname{Ap}\left(S, s^{\prime}\right)\right\}\right.
$$

Definition: The cardinality of the set $\operatorname{PF}(S)$ is called the type of S denoted by $\mathrm{t}(\mathrm{S})$

Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$.

Definition: $\operatorname{PF}(S)$ is the set of pseudo-Frobenius numbers of S.
Consider the relation on $\mathbb{Z}: a \leq s b$ if $b-a \in S$. Then $\leq s$ is is an order relation.

$$
\operatorname{PF}(S)=\left\{w-s^{\prime} \mid w \in \text { maximals }_{\leq}\left(\operatorname{Ap}\left(S, s^{\prime}\right)\right\}\right.
$$

Definition: The cardinality of the set $\operatorname{PF}(S)$ is called the type of S denoted by $\mathrm{t}(\mathrm{S})$

Theorem [S, Thakkar] Let $n>2$ be an integer and let $P_{2^{r}+1}(n)$ be the Proth numerical semigroup. Then

$$
\begin{aligned}
\operatorname{PF}\left(P_{2^{r+1}}(n)\right) & =\left\{2 s_{i}+s_{i+1}+\cdots+s_{n+r-1}-s_{0} \mid 1 \leq i \leq r\right\} \cup \\
& \left\{2 s_{j}+s_{j+1}+\cdots+s_{n-1}+s_{n+r}-s_{0} \mid 1 \leq j \leq n-2\right\} \\
& \cup\left\{2 s_{1}+s_{n}+s_{n+r}-s_{0}\right\}, \text { and } \\
\mathrm{t}\left(P_{2^{r+1}}(n)\right) & =\mid \operatorname{PF}\left(P_{2^{r}+1}(n) \mid=r+n-1 .\right.
\end{aligned}
$$

Wilf Conjecture for Proth Numerical semigroups

Wilf Conjecture for Proth Numerical semigroups

Lemma [ADG20]) Let S be a numerical semigroup. We have

$$
\mathrm{F}(S)+1 \leq(\mathrm{t}(S)+1) \nu(S)
$$

Wilf Conjecture for Proth Numerical semigroups

Lemma [ADG20]) Let S be a numerical semigroup. We have

$$
\mathrm{F}(S)+1 \leq(\mathrm{t}(S)+1) \nu(S)
$$

Theorem [S, Thakkar]
The Proth numerical semigroup $P_{2^{r}+1}(n)$ satisfies Wilf's conjecture.

Wilf Conjecture for Proth Numerical semigroups

Lemma [ADG20]) Let S be a numerical semigroup. We have

$$
\mathrm{F}(S)+1 \leq(\mathrm{t}(S)+1) \nu(S)
$$

Theorem [S, Thakkar]
The Proth numerical semigroup $P_{2^{r}+1}(n)$ satisfies Wilf's conjecture.
Proof Recall that $\mathrm{e}\left(P_{2^{r}+1}(n)\right)=n+r+1$.

Wilf Conjecture for Proth Numerical semigroups

Lemma [ADG20]) Let S be a numerical semigroup. We have

$$
\mathrm{F}(S)+1 \leq(\mathrm{t}(S)+1) \nu(S)
$$

Theorem [S, Thakkar]
The Proth numerical semigroup $P_{2^{r}+1}(n)$ satisfies Wilf's conjecture.
Proof Recall that $\mathrm{e}\left(P_{2^{r}+1}(n)\right)=n+r+1$.

$$
\begin{aligned}
\mathrm{F}\left(P_{2^{r}+1}(n)\right)+1 & \leq\left(\mathrm{t}\left(P_{2^{r}+1}(n)\right)+1\right) \nu\left(P_{2^{r}+1}(n)\right) \\
& =(n+r) \nu\left(P_{2^{r}+1}(n)\right) \\
& <(n+r+1) \nu\left(P_{2^{r}+1}(n)\right) \\
& =\mathrm{e}\left(P_{2^{r}+1}(n)\right) \nu\left(P_{2^{r}+1}(n)\right.
\end{aligned}
$$

Bibliography

[ST24] Srivastava, Pranjal and Thakkar, Dhara: The Frobenius Problem for the Proth Numbers. Conference on Algorithms and Discrete Applied Mathematics (2024)
[ADG20] Assi, A., D'Anna, M., García-Sánchez, P.A.: Numerical semigroups and applications. Springer Nature (2020)
[MRR07] Marín, J. M., Ramírez- Alfonsín, J. L, Revuelta, M. P.: On the Frobenius number of Fibonacci numerical semigroups. Integers. Electronic Journal of Combinatorial Number Theory (2007)
[Tripathi17] Tripathi, Amitabha. Formulae for the Frobenius number in three variables. J. Number Theory 170 (2017), 368-389.
[RBT17] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for Mersenne numerical semigroups. Mathematische Zeitschrift. 286(1), 741-9 (2017)
[RBT15] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for Thabit numerical semigroups. Journal of Number Theory. 155, 85-99 (2015)
[RBT16] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for repunit numerical semigroups. The Ramanujan Journal. 40(2), 323-34 (2016)
[Selmer77] Selmer, E. S.: On the linear diophantine problem of Frobenius (1977).
[Wilf78] Wilf, H.: A circle-of-lights algorithm for the "money-changing problem. The American Mathematical Monthly. 85, 562-565 (1978)

Thank you!

