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Frobenius Problem

The Frobenius Problem:

Given: A set L = {l1, l2, . . . , lm} with gcd(l1, . . . , lm) = 1, and li ≥ 2.

Question: Find the largest natural number that is not expressible as a
non-negative linear combination of l1, l2, ..., lm.

Other Names:

• The Money Exchange Problem
• The Chicken Nuggets Problem
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The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

Answer: 43.
Claim : 43 is not expressible using 6, 9, 20
• We can choose ≤ 2 packs of 20.
• If we choose 0 or 1 packs, then we have to represent 43 or 23 as a
linear combination of 6 and 9. Not Possible!
• If we choose two packs of 20 then we can not represent 3 using of 6
and 9. Again Not Possible!
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I
To see that every larger number is expressible, note that

44 =1 · 20 + 0 · 9 + 4 · 6
45 =0 · 20 + 3 · 9 + 3 · 6
46 =2 · 20 + 0 · 9 + 1 · 6
47 =1 · 20 + 3 · 9 + 0 · 6
48 =0 · 20 + 0 · 9 + 8 · 6
49 =2 · 20 + 1 · 9 + 0 · 6

and every larger number can be written as a multiple of 6 plus one of
these numbers.
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I
History of the Frobenius Problem

I Problem discussed by Frobenius (1849–1917) in his lectures in the
late 1800’s — but Frobenius never published anything.

I A related problem discussed by Sylvester: Compute h(l1, l2, . . . , ln):=
The total number of non-negative integers that are not expressible as
a linear combination of the li .

I Computing the Frobenius Number is known to be NP-Hard
[Ramirez-Alfonsin96].

I The Frobenius problem has been studied for
I Several special cases, e.g., numbers in a geometric sequence,

arithmetic sequence, Pythagorean triples, three consecutive
squares or cubes, and many more!

I The Frobenius problem has been studied for several special
numerical semigroups that naturally arises from special prime
like Fibonacci, Mersenne, Thabit, and Repunit.
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Numerical Semigroups and The Frobenius Problem

Definition: A subset S of N containing 0 is a numerical semigroup if S
is closed under addition and has a finite complement in N.

Example: S = {6, 9, 12, 15, 18, 20, 24, . . . , 42, 44 →} and N \ S =
{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43}.

Definition: If S is a numerical semigroup and S = ⟨B⟩, then B is a
system of generators of S . A system of generators B of S is minimal if
no proper subset of B generates S .

Example: S = ⟨6, 9, 20⟩.

Definition: The cardinality of a minimal system of generators of S is
called the embedding dimension of S denoted by e(S).

Definition: The Frobenius number (F(S)) of a numerical semigroup
S = ⟨{a1, a2, . . . , an}⟩ is the largest integer that cannot be expressed as a

sum
n∑

i=1
tiai , where t1, . . . , tn ∈ N.
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I
Some Known Results

I For S = ⟨a1, a2⟩, F(S) = (a1 − 1)a2 − a1.

I For S = ⟨a1, a2, a3⟩, the exact but a bit complicated formula is
known [Tripathi17].

I Surprisingly, No general result is known for e(S) ≥ 4.

I The Frobenius problem for special classes of numerical semigroups is
widely studied.

E.g., The Frobenius problem for
I The Fibonacci numerical semigroup [MRR07],
I The Mersenne numerical semigroup [RBT17],
I The Thabit numerical semigroup [RBT 15],
I The repunit numerical semigroup [RBT 16].
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I
The Proth Numerical semigroups

Definition: The Proth number is a natural number of the form k2n + 1,
where n, k ∈ Z+ and k < 2n is an odd number. E.g., 3, 5, 9, 13, 17, 25,
33, 41, 49.

Definition: A Proth number is a Proth prime if it is prime. E.g., 3, 5,
13, 17, 41, 97.

Definition: A numerical semigroup S is the Proth numerical semigroup if
n ∈ N such that

S = ⟨{k2n+i + 1 | i ∈ N}⟩,
where n, k ∈ Z+ and k < 2n is an odd number.

We denote the Proth numerical semigroup by Pk(n).

Why Proth Numerical Semigroup?

Surprisingly, the methods that has been used to study the Frobenius
Problem for the Fibonacci, Mersenne, Thabit, Repunit numerical
semigroup is not directly applicable to the Proth Numerical semigroup.
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I
Embedding Dimension of the Proth Numerical Semigroup

Theorem 1 [S,Thakkar]

Let n > 2 be an integer then
e(Pk(n)) = n + r + 1.

Moreover, {k2n+i + 1 | i ∈ {0, 1, . . . , n + r}
}

is the minimal system of
generators of Pk(n).

Notation: We now take si = k2n+i + 1 for all i ∈ N. Thus, with this
notation, {s0, s1, ..., sn+r} is the minimal system of generators of Pk(n).
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I
Towards the Frobenius number of the Proth Numerical Semigroups

Let S be a numerical semigroup and t ∈ S \ {0}.

I The Apéry set of S with respect to t is
Ap(S , t) = {s ∈ S | s − t /∈ S}

.

E.g., Let S = ⟨a1, a2⟩. We have
Ap(S , a1) = {0, a2, 2a2, . . . , (a1 − 1)a2}.

I Ap(S , t) = {w(0),w(1), . . . ,w(t − 1)}, where w(i) is the least
element of S congruent with i modulo t, for all i ∈ {0, . . . , t − 1}.

I |Ap(S , t)| = t.

Why Apéry set?

Lemma [Selmer77] Let S be a numerical semigroup and let s ′ be a
non-zero element of S . Then

F(S) = max(Ap(S , s ′))− s ′.

E.g., F(S) = (a1 − 1)a2 − a1.
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I
Continue...

Let P(r , n) denotes the set of all n + r -tuple (a1, . . . , an+r ) that satisfies
the following conditions:

I for every i ∈ {1, . . . , n + r}, ai ∈ {0, 1, 2};
I if aj = 2 for some j = 2, . . . , n + r then ai = 0 for i < j .

We take P̂(r , n) = {a1s1 + · · ·+ an+r sn+r | (a1, . . . , an+r ) ∈ P(r , n)}

Lemma [S, Thakkar]

Let P2r+1(n) = ⟨{s0, s1, . . . , sn+r}⟩. If s ∈ Ap(P2r+1(n), s0) then there
exist (a1, . . . , an+r ) ∈ P(r , n) such that s = a1s1 + · · ·+ an+r sn+r .
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Elements that are Not in the Apéry set

Lemma [S, Thakkar] Let n > 2 be an integer. Then
F ∩ Ap(P2r+1(n), s0) = ∅,

where F = F1 ∪ F2, and

F1 =
{
a1s1 + · · ·+ an+r−1sn+r−1 + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤ n +

r − 2, an+r−1 ∈ {1, 2} and if aj = 2 for some j then ai = 0 for i < j
}
;

F2 =
( r−2⋃

l=0
El ∪ {2sn+r}

) ∖
{s1 + sn + sn+r , 2s1 + sn + sn+r , sn + sn+r},

where El =
{
a1s1 + · · ·+ an+l sn+l + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤

n + l − 1, an+l ∈ {1, 2} and if aj = 2 then ai = 0 for i < j
}
.
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I

Theorem: [S, Thakkar] Let n > 2 be an integer. Then

Ap(P2r+1(n), s0) = {a1s1 + · · ·+ an+r sn+r | (a1, . . . , an+r ) ∈ P(r , n)} \ F .

Proof Idea:

I Ap(P2r+1(n), s0) ⊆ P̂(r , n).

I F ∩ Ap(P2r+1(n), s0) = ∅.
I |Ap(P2r+1(n), s0)| = s0,

|F | = 2n+r − 2n − 2, and
|P̂(r , n)| = 2n+r+1 − 1.

I Ap(P2r+1(n), s0) = {a1s1 + · · ·+ an+r sn+r | (a1, . . . , an+r ) ∈
P(r , n)} \ F .
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I
The Frobenius Number

Recall that, F(S) = max(Ap(S , s ′))− s ′.

Note that w(i) is the least element of P2r+1(n) congruent with i modulo
s0, for all i ∈ {0, . . . , s0 − 1}.

What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let s ∈ P2r+1(n) such that s ̸≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover,

I w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.
I w(2) = s1 + sn + sn+r ;
I w(1) = 2s1 + sn + sn+r = max(Ap(P2r+1(n), s0)).
I w(1)− w(2) = s1.

Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth
numerical semigroup is given by

F(P2r+1(n)) = 2s1 + sn + sn+r − s0.

15



I
The Frobenius Number

Recall that, F(S) = max(Ap(S , s ′))− s ′.

Note that w(i) is the least element of P2r+1(n) congruent with i modulo
s0, for all i ∈ {0, . . . , s0 − 1}.

What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let s ∈ P2r+1(n) such that s ̸≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover,

I w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.
I w(2) = s1 + sn + sn+r ;
I w(1) = 2s1 + sn + sn+r = max(Ap(P2r+1(n), s0)).
I w(1)− w(2) = s1.

Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth
numerical semigroup is given by

F(P2r+1(n)) = 2s1 + sn + sn+r − s0.

15



I
The Frobenius Number

Recall that, F(S) = max(Ap(S , s ′))− s ′.

Note that w(i) is the least element of P2r+1(n) congruent with i modulo
s0, for all i ∈ {0, . . . , s0 − 1}.

What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let s ∈ P2r+1(n) such that s ̸≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover,

I w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.
I w(2) = s1 + sn + sn+r ;
I w(1) = 2s1 + sn + sn+r = max(Ap(P2r+1(n), s0)).
I w(1)− w(2) = s1.

Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth
numerical semigroup is given by

F(P2r+1(n)) = 2s1 + sn + sn+r − s0.

15



I
The Frobenius Number

Recall that, F(S) = max(Ap(S , s ′))− s ′.

Note that w(i) is the least element of P2r+1(n) congruent with i modulo
s0, for all i ∈ {0, . . . , s0 − 1}.

What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let s ∈ P2r+1(n) such that s ̸≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover,

I w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.
I w(2) = s1 + sn + sn+r ;
I w(1) = 2s1 + sn + sn+r = max(Ap(P2r+1(n), s0)).
I w(1)− w(2) = s1.

Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth
numerical semigroup is given by

F(P2r+1(n)) = 2s1 + sn + sn+r − s0.

15



I
The Frobenius Number

Recall that, F(S) = max(Ap(S , s ′))− s ′.

Note that w(i) is the least element of P2r+1(n) congruent with i modulo
s0, for all i ∈ {0, . . . , s0 − 1}.

What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let s ∈ P2r+1(n) such that s ̸≡ 0(mod s0), then s + 1 ∈ P2r+1(n).
Moreover,

I w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.
I w(2) = s1 + sn + sn+r ;
I w(1) = 2s1 + sn + sn+r = max(Ap(P2r+1(n), s0)).
I w(1)− w(2) = s1.

Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth
numerical semigroup is given by

F(P2r+1(n)) = 2s1 + sn + sn+r − s0.

15



I
Wilf Conjecture

Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and ν(S) = |{s ∈ S | s ≤ F(S)}|, then

F(S) + 1 ≤ e(S)ν(S),
where e(S) is the embedding dimension of S and F(S) is the Frobenius
number of S .

This conjecture is true for only few families! E.g.,

I Almost arithmetic sequence.

I Numerical semigroup with genus less than 60.

I Repunit numerical semigroup etc.

For arbitrary numerical Semigroup, it is still Open!

Theorem [S, Thakkar]

The Proth numerical semigroup P2r+1(n) satisfies Wilf’s conjecture.
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Towards the Proof

Definition: An integer x is a pseudo-Frobenius number of S if x ∈ Z \ S
and x + s ∈ S for all s ∈ S \ {0}.

Definition: PF(S) is the set of pseudo-Frobenius numbers of S .

Consider the relation on Z: a ≤S b if b − a ∈ S . Then ≤S is is an order
relation.

PF(S) = {w − s ′ | w ∈ maximals≤S(Ap(S , s ′)}

Definition: The cardinality of the set PF(S) is called the type of S
denoted by t(S)

Theorem [S, Thakkar] Let n > 2 be an integer and let P2r+1(n) be the
Proth numerical semigroup. Then

PF(P2r+1(n)) = {2si + si+1 + · · ·+ sn+r−1 − s0 | 1 ≤ i ≤ r}∪
{2sj + sj+1 + · · ·+ sn−1 + sn+r − s0 | 1 ≤ j ≤ n − 2}
∪ {2s1 + sn + sn+r − s0}, and
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Wilf Conjecture for Proth Numerical semigroups

Lemma [ADG20]) Let S be a numerical semigroup. We have
F(S) + 1 ≤ (t(S) + 1)ν(S).

Theorem [S, Thakkar]

The Proth numerical semigroup P2r+1(n) satisfies Wilf’s conjecture.

Proof Recall that e(P2r+1(n)) = n + r + 1.

F(P2r+1(n)) + 1 ≤ (t(P2r+1(n)) + 1) ν(P2r+1(n))

= (n + r) ν(P2r+1(n))

< (n + r + 1) ν(P2r+1(n))

= e(P2r+1(n)) ν(P2r+1(n).
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