# Frobenius Problem for the Proth numbers

Joint work with Dhara Thakkar (IIT Gandhinagar)

Pranjal Srivastava Indian Institute of Science Education and Research Bhopal, India.

16<sup>th</sup> February, 2024

10th Annual International Conference on Algorithms and Discrete Applied Mathematics (CALDAM) 2024 Indian Institute of Technology Bhilai

- Frobenius Problem
- \* Frobenius Problem for special numbers
- Wilf Conjecture



#### The Frobenius Problem:

Given: A set  $L = \{l_1, l_2, ..., l_m\}$  with  $gcd(l_1, ..., l_m) = 1$ , and  $l_i \ge 2$ . Question: Find the largest natural number that is not expressible as a non-negative linear combination of  $l_1, l_2, ..., l_m$ .



# The Frobenius Problem:

Given: A set  $L = \{l_1, l_2, ..., l_m\}$  with  $gcd(l_1, ..., l_m) = 1$ , and  $l_i \ge 2$ . Question: Find the largest natural number that is not expressible as a non-negative linear combination of  $l_1, l_2, ..., l_m$ .

#### **Other Names:**

- The Money Exchange Problem
- The Chicken Nuggets Problem

# The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

Chicken nuggets come in boxes of 6, 9, and 20.



# The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

Chicken nuggets come in boxes of 6, 9, and 20.



Answer: 43.

# The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

Chicken nuggets come in boxes of 6, 9, and 20.



Answer: 43.

Claim : 43 is not expressible using 6,9,20

• We can choose  $\leq$  2 packs of 20.

• If we choose 0 or 1 packs, then we have to represent 43 or 23 as a linear combination of 6 and 9. Not Possible!

• If we choose two packs of 20 then we can not represent 3 using of 6 and 9. Again Not Possible!

To see that every larger number is expressible, note that

$$44 = 1 \cdot 20 + 0 \cdot 9 + 4 \cdot 6$$
  

$$45 = 0 \cdot 20 + 3 \cdot 9 + 3 \cdot 6$$
  

$$46 = 2 \cdot 20 + 0 \cdot 9 + 1 \cdot 6$$
  

$$47 = 1 \cdot 20 + 3 \cdot 9 + 0 \cdot 6$$
  

$$48 = 0 \cdot 20 + 0 \cdot 9 + 8 \cdot 6$$
  

$$49 = 2 \cdot 20 + 1 \cdot 9 + 0 \cdot 6$$

and every larger number can be written as a multiple of 6 plus one of these numbers.



 Problem discussed by Frobenius (1849–1917) in his lectures in the late 1800's — but Frobenius never published anything.



- Problem discussed by Frobenius (1849–1917) in his lectures in the late 1800's — but Frobenius never published anything.
- A related problem discussed by Sylvester: Compute h(l<sub>1</sub>, l<sub>2</sub>,..., l<sub>n</sub>):= The total number of non-negative integers that are not expressible as a linear combination of the l<sub>i</sub>.

- Problem discussed by Frobenius (1849–1917) in his lectures in the late 1800's — but Frobenius never published anything.
- A related problem discussed by Sylvester: Compute h(l<sub>1</sub>, l<sub>2</sub>, ..., l<sub>n</sub>):= The total number of non-negative integers that are not expressible as a linear combination of the l<sub>i</sub>.
- Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].

- Problem discussed by Frobenius (1849–1917) in his lectures in the late 1800's — but Frobenius never published anything.
- A related problem discussed by Sylvester: Compute h(l<sub>1</sub>, l<sub>2</sub>, ..., l<sub>n</sub>):= The total number of non-negative integers that are not expressible as a linear combination of the l<sub>i</sub>.
- Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].
- \* The Frobenius problem has been studied for
  - Several special cases, e.g., numbers in a geometric sequence, arithmetic sequence, Pythagorean triples, three consecutive squares or cubes, and many more!

- Problem discussed by Frobenius (1849–1917) in his lectures in the late 1800's — but Frobenius never published anything.
- A related problem discussed by Sylvester: Compute h(l<sub>1</sub>, l<sub>2</sub>, ..., l<sub>n</sub>):= The total number of non-negative integers that are not expressible as a linear combination of the l<sub>i</sub>.
- Computing the Frobenius Number is known to be NP-Hard [Ramirez-Alfonsin96].
- \* The Frobenius problem has been studied for
  - Several special cases, e.g., numbers in a geometric sequence, arithmetic sequence, Pythagorean triples, three consecutive squares or cubes, and many more!
  - The Frobenius problem has been studied for several special numerical semigroups that naturally arises from special prime like Fibonacci, Mersenne, Thabit, and Repunit.

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Example:**  $S = \{6, 9, 12, 15, 18, 20, 24, \dots, 42, 44 \rightarrow\}$  and  $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43\}.$ 

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Example:**  $S = \{6, 9, 12, 15, 18, 20, 24, \dots, 42, 44 \rightarrow\}$  and  $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43\}.$ 

**Definition:** If S is a numerical semigroup and  $S = \langle B \rangle$ , then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Example:**  $S = \{6, 9, 12, 15, 18, 20, 24, \dots, 42, 44 \rightarrow\}$  and  $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43\}.$ 

**Definition:** If S is a numerical semigroup and  $S = \langle B \rangle$ , then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.

**Example:**  $S = \langle 6, 9, 20 \rangle$ .

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Example:**  $S = \{6, 9, 12, 15, 18, 20, 24, \dots, 42, 44 \rightarrow\}$  and  $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43\}.$ 

**Definition:** If S is a numerical semigroup and  $S = \langle B \rangle$ , then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.

**Example:**  $S = \langle 6, 9, 20 \rangle$ .

**Definition:** The cardinality of a minimal system of generators of S is called the embedding dimension of S denoted by e(S).

**Definition:** A subset S of  $\mathbb{N}$  containing 0 is a numerical semigroup if S is closed under addition and has a finite complement in  $\mathbb{N}$ .

**Example:**  $S = \{6, 9, 12, 15, 18, 20, 24, \dots, 42, 44 \rightarrow\}$  and  $\mathbb{N} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43\}.$ 

**Definition:** If S is a numerical semigroup and  $S = \langle B \rangle$ , then B is a system of generators of S. A system of generators B of S is minimal if no proper subset of B generates S.

**Example:**  $S = \langle 6, 9, 20 \rangle$ .

**Definition:** The cardinality of a minimal system of generators of S is called the embedding dimension of S denoted by e(S).

**Definition:** The Frobenius number (F(S)) of a numerical semigroup  $S = \langle \{a_1, a_2, \ldots, a_n\} \rangle$  is the largest integer that cannot be expressed as a sum  $\sum_{i=1}^{n} t_i a_i$ , where  $t_1, \ldots, t_n \in \mathbb{N}$ .



\* For 
$$S = \langle a_1, a_2 \rangle$$
,  $F(S) = (a_1 - 1)a_2 - a_1$ .



★ For 
$$S = \langle a_1, a_2 \rangle$$
,  $F(S) = (a_1 - 1)a_2 - a_1$ .

 \* For S = ⟨a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>⟩, the exact but a bit complicated formula is known [Tripathi17].

- \* For  $S = \langle a_1, a_2 \rangle$ ,  $F(S) = (a_1 1)a_2 a_1$ .
- \* For S = ⟨a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>⟩, the exact but a bit complicated formula is known [Tripathi17].
- \* Surprisingly, No general result is known for  $e(S) \ge 4$ .

- \* For  $S = \langle a_1, a_2 \rangle$ ,  $F(S) = (a_1 1)a_2 a_1$ .
- \* For S = ⟨a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>⟩, the exact but a bit complicated formula is known [Tripathi17].
- \* Surprisingly, No general result is known for  $e(S) \ge 4$ .
- The Frobenius problem for special classes of numerical semigroups is widely studied.

- \* For  $S = \langle a_1, a_2 \rangle$ ,  $F(S) = (a_1 1)a_2 a_1$ .
- \* For S = ⟨a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>⟩, the exact but a bit complicated formula is known [Tripathi17].
- \* Surprisingly, No general result is known for  $e(S) \ge 4$ .
- The Frobenius problem for special classes of numerical semigroups is widely studied.
  - E.g., The Frobenius problem for
    - The Fibonacci numerical semigroup [MRR07],
    - The Mersenne numerical semigroup [RBT17],
    - The Thabit numerical semigroup [RBT 15],
    - The repunit numerical semigroup [RBT 16].

- \* For  $S = \langle a_1, a_2 \rangle$ ,  $F(S) = (a_1 1)a_2 a_1$ .
- \* For S = ⟨a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>⟩, the exact but a bit complicated formula is known [Tripathi17].
- \* Surprisingly, No general result is known for  $e(S) \ge 4$ .
- The Frobenius problem for special classes of numerical semigroups is widely studied.
  - E.g., The Frobenius problem for
    - The Fibonacci numerical semigroup [MRR07],
    - The Mersenne numerical semigroup [RBT17],
    - The Thabit numerical semigroup [RBT 15],
    - The repunit numerical semigroup [RBT 16].

# The Proth Numerical semigroups



#### The Proth Numerical semigroups

**Definition:** The Proth number is a natural number of the form  $k2^n + 1$ , where  $n, k \in \mathbb{Z}^+$  and  $k < 2^n$  is an odd number. E.g., 3, 5, 9, 13, 17, 25, 33, 41, 49.



**Definition:** A Proth number is a *Proth prime* if it is prime. E.g., 3, 5, 13, 17, 41, 97.

**Definition:** A Proth number is a *Proth prime* if it is prime. E.g., 3, 5, 13, 17, 41, 97.

**Definition:** A numerical semigroup *S* is the Proth numerical semigroup if  $n \in \mathbb{N}$  such that

$$S = \langle \{ k2^{n+i} + 1 \mid i \in \mathbb{N} \} \rangle,$$

where  $n, k \in \mathbb{Z}^+$  and  $k < 2^n$  is an odd number.

We denote the Proth numerical semigroup by  $P_k(n)$ .

**Definition:** A Proth number is a *Proth prime* if it is prime. E.g., 3, 5, 13, 17, 41, 97.

**Definition:** A numerical semigroup *S* is the Proth numerical semigroup if  $n \in \mathbb{N}$  such that

$$S = \langle \{ k2^{n+i} + 1 \mid i \in \mathbb{N} \} \rangle,$$

where  $n, k \in \mathbb{Z}^+$  and  $k < 2^n$  is an odd number.

We denote the Proth numerical semigroup by  $P_k(n)$ .

Why Proth Numerical Semigroup?

**Definition:** A Proth number is a *Proth prime* if it is prime. E.g., 3, 5, 13, 17, 41, 97.

**Definition:** A numerical semigroup *S* is the Proth numerical semigroup if  $n \in \mathbb{N}$  such that

$$5 = \langle \{ k2^{n+i} + 1 \mid i \in \mathbb{N} \} \rangle,$$

where  $n, k \in \mathbb{Z}^+$  and  $k < 2^n$  is an odd number.

We denote the Proth numerical semigroup by  $P_k(n)$ .

Why Proth Numerical Semigroup?

Surprisingly, the methods that has been used to study the Frobenius Problem for the Fibonacci, Mersenne, Thabit, Repunit numerical semigroup is not *directly* applicable to the Proth Numerical semigroup.

# Embedding Dimension of the Proth Numerical Semigroup

Theorem 1 [S, Thakkar]

Let n > 2 be an integer then  $e(P_k(n)) = n + r + 1.$ 

Moreover,  $\{k2^{n+i} + 1 \mid i \in \{0, 1, ..., n + r\}\}$  is the minimal system of generators of  $P_k(n)$ .

#### Theorem 1 [S, Thakkar]

Let n > 2 be an integer then

$$e(P_k(n)) = n + r + 1.$$

Moreover,  $\{k2^{n+i} + 1 \mid i \in \{0, 1, ..., n+r\}\}$  is the minimal system of generators of  $P_k(n)$ .

**Notation:** We now take  $s_i = k2^{n+i} + 1$  for all  $i \in \mathbb{N}$ . Thus, with this notation,  $\{s_0, s_1, ..., s_{n+r}\}$  is the minimal system of generators of  $P_k(n)$ .



Let *S* be a numerical semigroup and  $t \in S \setminus \{0\}$ .



Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

The Apéry set of S with respect to t is

$$\operatorname{Ap}(S,t) = \{s \in S \mid s - t \notin S\}$$



Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \ | \ s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  
Ap $(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}.$ 

Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \mid s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  
Ap $(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}.$ 

\* Ap(S, t) = { $w(0), w(1), \ldots, w(t-1)$ }, where w(i) is the least element of S congruent with i modulo t, for all  $i \in \{0, \ldots, t-1\}$ .

Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \mid s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  
Ap $(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}.$ 

Ap(S, t) = {w(0), w(1),..., w(t − 1)}, where w(i) is the least element of S congruent with i modulo t, for all i ∈ {0,..., t − 1}.
|Ap(S, t)| = t.

Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \mid s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  
Ap $(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}$ .

Ap(S, t) = {w(0), w(1), ..., w(t − 1)}, where w(i) is the least element of S congruent with i modulo t, for all i ∈ {0, ..., t − 1}.
|Ap(S, t)| = t.

Why Apéry set?

Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \mid s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  
Ap $(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}.$ 

Ap(S, t) = {w(0), w(1), ..., w(t − 1)}, where w(i) is the least element of S congruent with i modulo t, for all i ∈ {0,..., t − 1}.
|Ap(S, t)| = t.

## Why Apéry set?

**Lemma** [Selmer77] Let S be a numerical semigroup and let s' be a non-zero element of S. Then

 $\mathbf{F}(S) = \max(\mathrm{Ap}(S, s')) - s'.$ 

Let S be a numerical semigroup and  $t \in S \setminus \{0\}$ .

\* The Apéry set of S with respect to t is  $Ap(S,t) = \{s \in S \mid s - t \notin S\}$ 

E.g., Let 
$$S = \langle a_1, a_2 \rangle$$
. We have  

$$\operatorname{Ap}(S, a_1) = \{0, a_2, 2a_2, \dots, (a_1 - 1)a_2\}.$$

Ap(S, t) = {w(0), w(1), ..., w(t − 1)}, where w(i) is the least element of S congruent with i modulo t, for all i ∈ {0,..., t − 1}.
|Ap(S, t)| = t.

## Why Apéry set?

**Lemma** [Selmer77] Let S be a numerical semigroup and let s' be a non-zero element of S. Then

 $\mathbf{F}(S) = \max(\mathrm{Ap}(S, s')) - s'.$ 

E.g., 
$$F(S) = (a_1 - 1)a_2 - a_1$$
.

Let P(r, n) denotes the set of all n + r-tuple  $(a_1, \ldots, a_{n+r})$  that satisfies the following conditions:

- \* for every  $i \in \{1, \ldots, n+r\}$ ,  $a_i \in \{0, 1, 2\}$ ;
- \* if  $a_i = 2$  for some  $j = 2, \ldots, n + r$  then  $a_i = 0$  for i < j.

Let P(r, n) denotes the set of all n + r-tuple  $(a_1, \ldots, a_{n+r})$  that satisfies the following conditions:

- \* for every  $i \in \{1, \ldots, n+r\}$ ,  $a_i \in \{0, 1, 2\}$ ;
- \* if  $a_j = 2$  for some  $j = 2, \ldots, n + r$  then  $a_i = 0$  for i < j.

We take  $\hat{P}(r, n) = \{a_1s_1 + \cdots + a_{n+r}s_{n+r} \mid (a_1, \dots, a_{n+r}) \in P(r, n)\}$ 

Let P(r, n) denotes the set of all n + r-tuple  $(a_1, \ldots, a_{n+r})$  that satisfies the following conditions:

\* for every i ∈ {1,..., n + r}, a<sub>i</sub> ∈ {0,1,2};  
\* if a<sub>j</sub> = 2 for some j = 2,..., n + r then a<sub>i</sub> = 0 for i < j.  
We take 
$$\hat{P}(r, n) = \{a_1s_1 + \dots + a_{n+r}s_{n+r} \mid (a_1, \dots, a_{n+r}) \in P(r, n)\}$$

## Lemma [S, Thakkar]

Let  $P_{2^r+1}(n) = \langle \{s_0, s_1, \dots, s_{n+r}\} \rangle$ . If  $s \in Ap(P_{2^r+1}(n), s_0)$  then there exist  $(a_1, \dots, a_{n+r}) \in P(r, n)$  such that  $s = a_1s_1 + \dots + a_{n+r}s_{n+r}$ .

Let P(r, n) denotes the set of all n + r-tuple  $(a_1, \ldots, a_{n+r})$  that satisfies the following conditions:

We take  $\hat{P}(r, n) = \{a_1s_1 + \dots + a_{n+r}s_{n+r} \mid (a_1, \dots, a_{n+r}) \in P(r, n)\}$ 

## Lemma [S, Thakkar]

Let  $P_{2^r+1}(n) = \langle \{s_0, s_1, \dots, s_{n+r}\} \rangle$ . If  $s \in Ap(P_{2^r+1}(n), s_0)$  then there exist  $(a_1, \dots, a_{n+r}) \in P(r, n)$  such that  $s = a_1s_1 + \dots + a_{n+r}s_{n+r}$ .



#### Elements that are Not in the Apéry set

Lemma [S, Thakkar] Let n > 2 be an integer. Then  $F \cap \operatorname{Ap}(P_{2^r+1}(n), s_0) = \emptyset$ , where  $F = F_1 \cup F_2$ , and  $F_1 = \{a_1s_1 + \dots + a_{n+r-1}s_{n+r-1} + s_{n+r} \mid a_i \in \{0, 1, 2\} \text{ for } 1 \le i \le n + r - 2, a_{n+r-1} \in \{1, 2\} \text{ and if } a_j = 2 \text{ for some } j \text{ then } a_i = 0 \text{ for } i < j\};$   $F_2 = \left(\bigcup_{l=0}^{r-2} E_l \cup \{2s_{n+r}\}\right) \setminus \{s_1 + s_n + s_{n+r}, 2s_1 + s_n + s_{n+r}, s_n + s_{n+r}\},$ where  $E_l = \{a_1s_1 + \dots + a_{n+l}s_{n+l} + s_{n+r} \mid a_i \in \{0, 1, 2\} \text{ for } 1 \le i \le n + l - 1, a_{n+l} \in \{1, 2\} \text{ and if } a_j = 2 \text{ then } a_j = 0 \text{ for } i < j\}.$ 

#### Elements that are Not in the Apéry set

Lemma [S, Thakkar] Let n > 2 be an integer. Then  $F \cap \operatorname{Ap}(P_{2^r+1}(n), s_0) = \emptyset$ , where  $F = F_1 \cup F_2$ , and  $F_1 = \{a_1s_1 + \dots + a_{n+r-1}s_{n+r-1} + s_{n+r} \mid a_i \in \{0, 1, 2\} \text{ for } 1 \le i \le n + r - 2, a_{n+r-1} \in \{1, 2\} \text{ and if } a_j = 2 \text{ for some } j \text{ then } a_i = 0 \text{ for } i < j\};$   $F_2 = \left(\bigcup_{l=0}^{r-2} E_l \cup \{2s_{n+r}\}\right) \setminus \{s_1 + s_n + s_{n+r}, 2s_1 + s_n + s_{n+r}, s_n + s_{n+r}\},$ where  $E_l = \{a_1s_1 + \dots + a_{n+l}s_{n+l} + s_{n+r} \mid a_i \in \{0, 1, 2\} \text{ for } 1 \le i \le n + l - 1, a_{n+l} \in \{1, 2\} \text{ and if } a_i = 2 \text{ then } a_i = 0 \text{ for } i < j\}.$ 





 $Ap(P_{2^{r}+1}(n), s_{0}) = \{a_{1}s_{1} + \dots + a_{n+r}s_{n+r} \mid (a_{1}, \dots, a_{n+r}) \in P(r, n)\} \setminus F.$ Proof Idea:

 $\operatorname{Ap}(P_{2^{r}+1}(n), s_{0}) = \{a_{1}s_{1} + \cdots + a_{n+r}s_{n+r} \mid (a_{1}, \ldots, a_{n+r}) \in P(r, n)\} \setminus F.$ 

\* 
$$\operatorname{Ap}(P_{2^r+1}(n), s_0) \subseteq \hat{P}(r, n).$$

 $\operatorname{Ap}(P_{2^{r}+1}(n), s_{0}) = \{a_{1}s_{1} + \cdots + a_{n+r}s_{n+r} \mid (a_{1}, \ldots, a_{n+r}) \in P(r, n)\} \setminus F.$ 

\* 
$$\operatorname{Ap}(P_{2^r+1}(n), s_0) \subseteq \hat{P}(r, n).$$

\* 
$$F \cap \operatorname{Ap}(P_{2^r+1}(n), s_0) = \emptyset$$

 $\operatorname{Ap}(P_{2^{r}+1}(n), s_{0}) = \{a_{1}s_{1} + \cdots + a_{n+r}s_{n+r} \mid (a_{1}, \ldots, a_{n+r}) \in P(r, n)\} \setminus F.$ 

\* 
$$\operatorname{Ap}(P_{2^r+1}(n), s_0) \subseteq \hat{P}(r, n).$$

\* 
$$F \cap \operatorname{Ap}(P_{2^r+1}(n), s_0) = \emptyset$$

\* 
$$|\operatorname{Ap}(P_{2^r+1}(n), s_0)| = s_0,$$
  
 $|F| = 2^{n+r} - 2^n - 2,$  and  
 $|\hat{P}(r, n)| = 2^{n+r+1} - 1.$ 

 $\operatorname{Ap}(P_{2^{r}+1}(n), s_{0}) = \{a_{1}s_{1} + \cdots + a_{n+r}s_{n+r} \mid (a_{1}, \ldots, a_{n+r}) \in P(r, n)\} \setminus F.$ 

\* 
$$\operatorname{Ap}(P_{2^r+1}(n), s_0) \subseteq \hat{P}(r, n).$$

- \*  $F \cap \operatorname{Ap}(P_{2^r+1}(n), s_0) = \emptyset.$
- \*  $|\operatorname{Ap}(P_{2^r+1}(n), s_0)| = s_0,$  $|F| = 2^{n+r} - 2^n - 2,$  and  $|\hat{P}(r, n)| = 2^{n+r+1} - 1.$
- \*  $\operatorname{Ap}(P_{2^r+1}(n), s_0) = \{a_1s_1 + \cdots + a_{n+r}s_{n+r} \mid (a_1, \ldots, a_{n+r}) \in P(r, n)\} \setminus F.$

Recall that,  $F(S) = \max(Ap(S, s')) - s'$ .



Recall that, 
$$F(S) = \max(Ap(S, s')) - s'$$
.

Note that w(i) is the least element of  $P_{2^r+1}(n)$  congruent with *i* modulo  $s_0$ , for all  $i \in \{0, \ldots, s_0 - 1\}$ .

Recall that, 
$$F(S) = \max(Ap(S, s')) - s'$$
.

Note that w(i) is the least element of  $P_{2^r+1}(n)$  congruent with *i* modulo  $s_0$ , for all  $i \in \{0, \ldots, s_0 - 1\}$ .

What is the Maximum Element of the Apéry set?



Recall that, 
$$F(S) = \max(Ap(S, s')) - s'$$
.

Note that w(i) is the least element of  $P_{2^r+1}(n)$  congruent with *i* modulo  $s_0$ , for all  $i \in \{0, \ldots, s_0 - 1\}$ .

#### What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let  $s \in P_{2^r+1}(n)$  such that  $s \not\equiv 0 \pmod{s_0}$ , then  $s+1 \in P_{2^r+1}(n)$ . Moreover,

\* 
$$w(i+1) \le w(i) + 1$$
 for  $1 \le i \le s_0 - 1$ .  
\*  $w(2) = s_1 + s_n + s_{n+r}$ ;  
\*  $w(1) = 2s_1 + s_n + s_{n+r} = \max(\operatorname{Ap}(P_{2^r+1}(n), s_0))$ .  
\*  $w(1) - w(2) = s_1$ .

Recall that, 
$$F(S) = \max(Ap(S, s')) - s'$$
.

Note that w(i) is the least element of  $P_{2^r+1}(n)$  congruent with *i* modulo  $s_0$ , for all  $i \in \{0, \ldots, s_0 - 1\}$ .

## What is the Maximum Element of the Apéry set?

Lemma [S, Thakkar]

Let  $s \in P_{2^r+1}(n)$  such that  $s \not\equiv 0 \pmod{s_0}$ , then  $s+1 \in P_{2^r+1}(n)$ . Moreover,

\* 
$$w(i+1) \le w(i) + 1$$
 for  $1 \le i \le s_0 - 1$ .  
\*  $w(2) = s_1 + s_n + s_{n+r}$ ;  
\*  $w(1) = 2s_1 + s_n + s_{n+r} = \max(\operatorname{Ap}(P_{2^r+1}(n), s_0))$ .  
\*  $w(1) - w(2) = s_1$ .

## Theorem [S, Thakkar]

Let n > 2 be a positive integer. Then the Frobenius number of the Proth numerical semigroup is given by

$$F(P_{2^r+1}(n)) = 2s_1 + s_n + s_{n+r} - s_0.$$



## Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and  $\nu(S) = |\{s \in S \mid s \leq \operatorname{F}(S)\}|$ , then

 $\mathrm{F}(S) + 1 \leq \mathrm{e}(S)\nu(S),$ 

where e(S) is the embedding dimension of S and F(S) is the Frobenius number of S.



## Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and  $u(S) = |\{s \in S \mid s \leq \operatorname{F}(S)\}|$ , then

 $\mathrm{F}(S) + 1 \leq \mathrm{e}(S)\nu(S),$ 

where e(S) is the embedding dimension of S and F(S) is the Frobenius number of S.

This conjecture is true for only few families! E.g.,

- \* Almost arithmetic sequence.
- \* Numerical semigroup with genus less than 60.
- \* Repunit numerical semigroup etc.

For arbitrary numerical Semigroup, it is still Open!

## Wilf Conjecture [Wilf78]

Let S be a numerical semigroup, and  $u(S) = |\{s \in S \mid s \leq \operatorname{F}(S)\}|$ , then

 $\mathbf{F}(S) + 1 \le \mathbf{e}(S)\nu(S),$ 

where e(S) is the embedding dimension of S and F(S) is the Frobenius number of S.

This conjecture is true for only few families! E.g.,

- \* Almost arithmetic sequence.
- \* Numerical semigroup with genus less than 60.
- \* Repunit numerical semigroup etc.

For arbitrary numerical Semigroup, it is still Open!

Theorem [S, Thakkar]

The Proth numerical semigroup  $P_{2^r+1}(n)$  satisfies Wilf's conjecture.





#### Towards the Proof

**Definition:** An integer x is a pseudo-Frobenius number of S if  $x \in \mathbb{Z} \setminus S$  and  $x + s \in S$  for all  $s \in S \setminus \{0\}$ .

**Definition:** PF(S) is the set of pseudo-Frobenius numbers of *S*.



**Definition:** PF(S) is the set of pseudo-Frobenius numbers of S.

Consider the relation on  $\mathbb{Z}$ :  $a \leq_S b$  if  $b - a \in S$ . Then  $\leq_S$  is an order relation.

 $\operatorname{PF}(S) = \{ w - s' \mid w \in \operatorname{maximals}_{\leq S}(\operatorname{Ap}(S, s')) \}$ 

**Definition:** PF(S) is the set of pseudo-Frobenius numbers of S.

Consider the relation on  $\mathbb{Z}$ :  $a \leq_S b$  if  $b - a \in S$ . Then  $\leq_S$  is an order relation.

$$\operatorname{PF}(S) = \{ w - s' \mid w \in \operatorname{maximals}_{\leq S}(\operatorname{Ap}(S, s')) \}$$

**Definition:** The cardinality of the set PF(S) is called the type of S denoted by t(S)

**Definition:** PF(S) is the set of pseudo-Frobenius numbers of *S*.

Consider the relation on  $\mathbb{Z}$ :  $a \leq_S b$  if  $b - a \in S$ . Then  $\leq_S$  is an order relation.

$$\operatorname{PF}(S) = \{ w - s' \mid w \in \operatorname{maximals}_{\leq S}(\operatorname{Ap}(S, s')) \}$$

**Definition:** The cardinality of the set PF(S) is called the type of S denoted by t(S)

**Theorem** [S, Thakkar] Let n > 2 be an integer and let  $P_{2^r+1}(n)$  be the Proth numerical semigroup. Then

$$PF(P_{2^{r}+1}(n)) = \{2s_{i} + s_{i+1} + \dots + s_{n+r-1} - s_{0} \mid 1 \le i \le r\} \cup \\ \{2s_{j} + s_{j+1} + \dots + s_{n-1} + s_{n+r} - s_{0} \mid 1 \le j \le n-2\} \\ \cup \{2s_{1} + s_{n} + s_{n+r} - s_{0}\}, \text{and} \\ t(P_{2^{r}+1}(n)) = |PF(P_{2^{r}+1}(n)| = r + n - 1.$$

## Wilf Conjecture for Proth Numerical semigroups





Theorem [S, Thakkar]

The Proth numerical semigroup  $P_{2^r+1}(n)$  satisfies Wilf's conjecture.

Theorem [S, Thakkar]

The Proth numerical semigroup  $P_{2^r+1}(n)$  satisfies Wilf's conjecture.

**Proof** Recall that  $e(P_{2^r+1}(n)) = n + r + 1$ .

Theorem [S, Thakkar]

The Proth numerical semigroup  $P_{2^r+1}(n)$  satisfies Wilf's conjecture.

**Proof** Recall that 
$$e(P_{2^r+1}(n)) = n + r + 1$$
.

$$F(P_{2^{r}+1}(n)) + 1 \le (t(P_{2^{r}+1}(n)) + 1) \nu(P_{2^{r}+1}(n))$$
  
=  $(n+r) \nu(P_{2^{r}+1}(n))$   
<  $(n+r+1) \nu(P_{2^{r}+1}(n))$   
=  $e(P_{2^{r}+1}(n)) \nu(P_{2^{r}+1}(n).$ 

## Bibliography

- [ST24] Srivastava, Pranjal and Thakkar, Dhara: The Frobenius Problem for the Proth Numbers. Conference on Algorithms and Discrete Applied Mathematics (2024)
- [ADG20] Assi, A., D'Anna, M., García-Sánchez, P.A.: Numerical semigroups and applications. Springer Nature (2020)
- [MRR07] Marín, J. M., Ramírez- Alfonsín, J. L, Revuelta, M. P.: On the Frobenius number of Fibonacci numerical semigroups. Integers. Electronic Journal of Combinatorial Number Theory (2007)
- [Tripathi17] Tripathi, Amitabha. Formulae for the Frobenius number in three variables. J. Number Theory 170 (2017), 368–389.
- [RBT17] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for Mersenne numerical semigroups. Mathematische Zeitschrift. 286(1), 741-9 (2017)
- [RBT15] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for Thabit numerical semigroups. Journal of Number Theory. 155, 85-99 (2015)
- [RBT16] Rosales, J.C., Branco, M., Torrão, D.: The Frobenius problem for repunit numerical semigroups. The Ramanujan Journal. 40(2), 323-34 (2016)
- [Selmer77] Selmer, E. S.: On the linear diophantine problem of Frobenius (1977).
- [Wilf78] Wilf, H.: A circle-of-lights algorithm for the "money-changing problem. The American Mathematical Monthly. 85, 562-565 (1978)

## Thank you!