Star Covers and Star Partitions of Cographs and Butterfly-free Graphs

Joyashree Mondal S Vijayakumar

IIITDM KANCHEEPURAM

Star

A graph that is isomorphic to $K_{1, r}$, for some $r \geq 0$, is called a star.

Star

A graph that is isomorphic to $K_{1, r}$, for some $r \geq 0$, is called a star.

Note: Each star has center.

STAR in a Graph

$$
G=F_{4}
$$

Star Cover of a Graph

Let $G=(V, E)$ be a graph. Then a collection $\left(V_{1}, \ldots, V_{k}\right)$ of subsets of V is called a star cover of G if each set in the collection induces a star and has $V_{1} \cup \ldots \cup V_{k}=V$.

G
$\left(\left\{v_{0}, v_{1}, v_{2}\right\},\left\{v_{0}, v_{3}, v_{4}\right\}\right)$
A Star Cover of G

The Star Cover Number, sc (G)

The minimum k for which a graph G admits a star cover $\left(V_{1}, \ldots, V_{k}\right)$ is called the star cover number of G and is denoted by $s c(G)$.

Star Partition of a Graph

A star cover $\left(V_{1}, \ldots, V_{k}\right)$ of a graph $G=(V, E)$ is called a star partition if $\left(V_{1}, \ldots, V_{k}\right)$ is a partition of V.

G
$\left(\left\{v_{0}, v_{1}, v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\}\right)$
A Star Partition of G

The Star Partition Number, $s p(G)$

The minimum k for which a graph G admits a star partition $\left(V_{1}, \ldots, V_{k}\right)$ is called the star partition number of G and is denoted by $s p(G)$.

Problems

Star Cover
Input: A graph G.
Goal: A star cover of G of minimum size.

Star Partition

Input: A graph G.
Goal: A star partition of G of minimum size.

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \text { but } \quad s p\left(F_{n}\right)=n+1
$$

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \quad \text { but } \quad s p\left(F_{n}\right)=n+1 .
$$

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \quad \text { but } \quad \operatorname{sp}\left(F_{n}\right)=n+1 .
$$

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \text { but } s p\left(F_{n}\right)=n+1 .
$$

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \text { but } \quad s p\left(F_{n}\right)=n+1
$$

A Star Cover of F_{4}

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \text { but } \quad s p\left(F_{n}\right)=n+1 .
$$

A Star Cover of F_{4}

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \quad \text { but } \quad s p\left(F_{n}\right)=n+1 .
$$

A Star Cover of F_{4}

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_{n}=K_{1} \oplus n K_{2}$ be the friendship graph. Then

$$
s c\left(F_{n}\right)=2 \quad \text { but } \quad s p\left(F_{n}\right)=n+1 .
$$

A Star Cover of $F_{4} \quad$ A Star Partition of F_{4}

Literature Survey

NP-Completeness Results

Star Cover and Star Partition are NP-hard for

- Chordal bipartite graphs [4]
- C_{4}-free bipartite graphs [4]
- Bipartite planar graphs [6, 1]
- $K_{1,5}-$ free split graphs [1]
- Line graphs $[2,1]$
- Co-tripartite graphs $[3,1]$.

Also deciding whether an input graph can be covered by or partitioned into three stars is NP-complete [1].

Literature Survey

Polynomial Time Algorithms

Star Cover and Star Partition have polynomial time algorithms for

- bipartite permutation graphs $[3,5]$
- convex bipartite graphs [1, 1]
- doubly-convex bipartite graphs [1]
- trees [4]
- claw-free split graphs [our result]
- double-split graphs [our result].

Literature Survey

Approximation and Inapproximation Results

- Star Partition has a polynomial time $r / 2$-approximation algorithm for $K_{1, r}$-free graphs [1, 2].
- Star Cover and Star Partition have a polynomial time
- A 2-approximation algorithm for split graphs [1];
- $O(\log n)$-approximation algorithms for triangle-free graphs [2];
- $(d+1)$-approximation algorithm for triangle-free graphs of degree at most d [2].
- It is NP-hard to approximate Star Partition within $n^{1 / 2-\epsilon}$ for all $\epsilon>0[1,3]$.
- Star Cover and Star Partition do not have any polynomial time $c \log n$-approximation algorithm for some constant $c>0$ unless $P=N P[2]$.

HEREDITARY GRAPHS

Hereditary Graphs

Definition

A graph class is called a hereditary graph class if for every graph in the class it also includes all its induced subgraphs.

Hereditary Graphs

Definition

A graph class is called a hereditary graph class if for every graph in the class it also includes all its induced subgraphs.

Examples: \mathcal{F}-free graphs. For instance, triangle-free graphs, chordal graphs and, more generally, perfect graphs are hereditary graphs.

Hereditary graphs: An Algorithm for Star Cover

Hereditary graphs: An Algorithm for Star Cover

Algorithm: Approximate-hereditary
Input: A graph G from the hereditary graph class \mathcal{G}.
Output: A star cover \mathcal{S} of G.
(1) Set $\mathcal{S}=\emptyset$.
(2) Colour all vertices of G black.
(0 While G has a black vertex repeat the following:

- Find a star Z with a maximum number of black vertices.
- Colour the black vertices of G that are in Z red.
- Set $\mathcal{S}=\mathcal{S} \cup\{Z\}$.
(1) Output \mathcal{S}.

Hereditary graphs: An Approximation Algorithm for Star Cover

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $a p x-s c(G) \leq(c \log n) \cdot s c(G)$. (Follows from the greedy set cover algorithm.)

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $a p x-s c(G) \leq(c \log n) \cdot s c(G)$. (Follows from the greedy set cover algorithm.)

So, this is an $O(\log n)$-approximation algorithm.

Hereditary graphs: An Approximation Algorithm for Star Cover

 Our solution size: $\operatorname{apx-sc}(G) \leq(c \log n) \cdot s c(G)$. (Follows from the greedy set cover algorithm.)So, this is an $O(\log n)$-approximation algorithm.

Theorem

Star Cover has an $O\left(n^{2} t(n)\right)$ time $O(\log n)$-approximation algorithm for any hereditary graph class for which the maximum independent set can be computed in $O(t(n))$ time.

Hereditary graphs: An Approximation Algorithm for Star Cover
Our solution size: $\operatorname{apx-sc}(G) \leq(c \log n) \cdot s c(G)$. (Follows from the greedy set cover algorithm.)

So, this is an $O(\log n)$-approximation algorithm.

Theorem

Star Cover has an $O\left(n^{2} t(n)\right)$ time $O(\log n)$-approximation algorithm for any hereditary graph class for which the maximum independent set can be computed in $O(t(n))$ time.

Corollary

Star Cover has a polynomial time $O(\log n)$-approximation algorithm for perfect graphs and the $O(\log n)$ approximation factor can not be improved assuming $P \neq N P{ }^{a}$.

[^0]
BUTTERFLY-FREE GRAPHS

The Butterfly Graph

G

$$
\begin{aligned}
& s c(G)=2 \\
& s p(G)=3
\end{aligned}
$$

Butterfly-free graphs includes-

- Bipartite graphs (in fact, all triangle-free graphs).
- Split graphs (in fact, all $2 K_{2}$-free graphs).

Note: If G is a triangle-free graph then $s p(G)=s c(G)=\gamma(G)$.

Theorem

For any butterfly-free graph $G, s p(G)=s c(G)$. Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O\left(n^{2} \log n\right)$.

Theorem

For any butterfly-free graph $G, s p(G)=s c(G)$. Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O\left(n^{2} \log n\right)$.

Proof idea: Let $\left(x, I_{1}\right)$ and $\left(x, I_{2}\right)$ be two stars in an optimal star cover of G.

Theorem

For any butterfly-free graph $G, s p(G)=s c(G)$. Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O\left(n^{2} \log n\right)$.

Proof idea: Let $\left(x, I_{1}\right)$ and $\left(x, I_{2}\right)$ be two stars in an optimal star cover of G.

$2 K_{2}$-free bipartite graph

Theorem

For any butterfly-free graph $G, s p(G)=s c(G)$. Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O\left(n^{2} \log n\right)$.

Proof idea: Let $\left(x, I_{1}\right)$ and $\left(x, I_{2}\right)$ be two stars in an optimal star cover of G.

$\longrightarrow 2 K_{2}$-free bipartite graph

Two stars $\left(x, l_{1}\right)$ and $\left(x, l_{2}\right)$ can be replaced with other two stars $\left(x,\left\{u_{1}, u_{2}, v_{6}, v_{7}\right\}\right)$ and $\left(u_{3}, J_{3}\right)$.

Butterfly-free graphs: Approximation algorithm

- Butterfly-free graphs form a hereditary graph class.

[^1]
Butterfly-free graphs: Approximation algorithm

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O\left(n^{4}\right)$ time exact algorithm for this graph class ${ }^{1}$.

[^2]
Butterfly-free graphs: Approximation algorithm

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O\left(n^{4}\right)$ time exact algorithm for this graph class ${ }^{1}$.
- We have proved: $s p(G)=s c(G)$ for any butterfly-free graph G.

[^3]
Butterfly-free graphs: Approximation algorithm

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O\left(n^{4}\right)$ time exact algorithm for this graph class ${ }^{1}$.
- We have proved: $s p(G)=s c(G)$ for any butterfly-free graph G.
- The approximation algorithm for STAR Cover on hereditary graph classes now imply the following theorem.

[^4]
Abstract

Theorem Both Star Cover and Star Partition have an $O\left(n^{6}\right)$ time $O(\log n)$-approximation algorithm for Star Partition on butterfly-free graphs. Moreover the $O(\log n)$ approximation factor can not be improved.

Theorem

Both Star Cover and Star Partition have an $O\left(n^{6}\right)$ time $O(\log n)$-approximation algorithm for Star Partition on butterfly-free graphs. Moreover the $O(\log n)$ approximation factor can not be improved. ${ }^{a}$

${ }^{a}$ V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)

COGRAPHS

Cographs

Cographs

A graph is called a cograph if it is P_{4}-free.

Fact

A graph is a cograph if and only if it can be obtained from K_{1} 's by a finite number of union and join operations.

Note

The bottom-up construction of a cograph is often represented by a binary tree, namely its cotree.

Results on Cographs

Both Star Cover and Star Partition have:

- $O\left(n^{2}\right)$ time algorithms for trivially perfect graphs (($\left.C_{4}, P_{4}\right)$-free graphs).
- $O\left(n^{2}\right)$ time algorithms for co-trivially perfect graphs ($\left(2 K_{2}, P_{4}\right)$-free graphs).
- Linear time algorithms for threshold graphs (($\left.C_{4}, 2 K_{2}, P_{4}\right)$-free graphs).

TRIVIALLY PERFECT GRAPHS

(($\left.C_{4}, P_{4}\right)$-free Graphs)

Trivially Perfect Graphs: Clique Tree Representation

Connected trivially perfect graphs are comparability graphs of rooted trees.
Clique trees are compressed forms of the underlying rooted trees.

Construction of a Clique Tree

1
${ }^{1}$ D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Computing, 14 (4) (1985) 926-934.

Lemma

Let $G \not \approx K_{n}$ be a connected trivially perfect graph and suppose that it is given by its clique tree representation. Then any optimal star cover (partition) of G has a star with the center alone from the root-clique of G.

Proof

- let $\{x, y\}$ be any star from R and let $\left\{x_{1}\right\} \cup I_{1}$ and $\left\{x_{2}\right\} \cup I_{2}$ be two stars from two different components of $V \backslash R$.
- These three starts can be replaced by the two stars $\left(\{x\} \cup\left\{x_{1}, x_{2}\right\}\right.$ and $\{y\} \cup\left(I_{1} \cup I_{2}\right)$ of G.

$$
\begin{aligned}
& I_{1}=\left\{x_{3}, x_{4}, x_{5}\right\} \\
& I_{2}=\left\{x_{6}, x_{7}, x_{8}\right\}
\end{aligned}
$$

Note:

Let $X=\{x\} \cup /$ be any maximum star of a connected trivially perfect graph G that is not a complete graph. Then the following hold:
(1) The set l is a maximum independent set of G and consists of exactly one vertex from each of the leaf-cliques of the clique-tree $T(G)$ so that the center x alone belongs to the root-clique of $T(G)$.
(2) Any star Z of G of size more than two has its center necessarily from some internal clique of $T(G)$.

Lemma

Let G be any connected trivially perfect graph that is not a complete graph. Then G has an optimal star cover (partition) containing some maximum star of G.

A Theorem Leading to Greedy Algorithms

Theorem

Let G be any connected trivially perfect graph. Then any maximum star of G belongs to some optimal star cover (partition) of G.

Algorithm for Star Partition on Trivially Perfect Graphs

Input: A trivially perfect graph G.
Output: A star partition \mathcal{C} of G.
(1) Set $\mathcal{C}=\emptyset$.
(2) While G is not the null graph, repeat the following:

- Pick a component H of G.
- Find a maximum star X of H.
- Set $\mathcal{C}=\mathcal{C} \cup\{X\}$.
- Set $G=G \backslash X$.
© Output \mathcal{C}.

Trivially Perfect Graphs

Execution of the Algorithm for Star Partition

Therefore $s p(G)=5$.

Star Partition has an $O\left(n^{2}\right)$ time exact algorithm for trivially perfect graphs.

Star Cover on Trivially Perfect Graphs

Theorem

Let $G=(V, E)$ be any connected trivially perfect graph and let $X=\{v\} \cup$ I be any maximum induced star of G. Let $H=G \backslash /$ if $G \backslash X$ is disconnected and let $H=G \backslash X$ otherwise. Let \mathcal{C}^{\prime} be any optimal star cover of H. Then $\mathcal{C}=\{X\} \cup \mathcal{C}^{\prime}$ is an optimal star cover of G.

When $G \backslash X$ is Connected

When $G \backslash X$ is Not Connected

Algorithm for Star Cover on Trivially Perfect Graphs

Input: A trivially perfect graph G.
Output: A star cover \mathcal{C} of G.
(1) Set $\mathcal{C}=\emptyset$.
(2) While G is not the null graph, repeat the following:

- Pick a component H of G.
- Find a maximum star $X=\{x\} \cup I$ of H.
- Set $\mathcal{C}=\mathcal{C} \cup\{X\}$.
- If $H \backslash X$ is disconnected, set $G=G \backslash /$. Else set $G=G \backslash X$.
© Output \mathcal{C}.

Trivially Perfect Graphs

Execution of the Algorithm for Star Cover

Therefore $s c(G)=3$.

Trivially Perfect Graphs

Execution of the Algorithm for Star Cover

Therefore $s c(G)=3$.

Theorem

Star Cover has an $O\left(n^{2}\right)$ time exact algorithm for trivially perfect graphs.

CO-TRIVIALLY PERFECT GRAPHS

($\left(2 K_{2}, P_{4}\right)$-free Graphs)

Equivalence of Star Cover and Star Partition on Co-Trivially Perfect Graphs

Fact

If G is a co-trivially perfect graph, then $s p(G)=s c(G)$.

Implication: Suffices to study any one of Star Cover and Star Partition.

Co-clique Forest Representation of $\left(2 K_{2}, P_{4}\right)$-free Graphs

Lemma

Let G be a connected $\left(2 K_{2}, P_{4}\right)$-free graph. Suppose that G is given by its co-clique forest representation. Then G has a minimum star partition \mathcal{C} such that the centers of stars in \mathcal{C} are from the bottom most nodes of G.

Complete Multipartite Graphs

Proposition

Let $G=\left(L_{1}, \ldots, L_{p}\right)$ be a complete multipartite graph with $\left|L_{1}\right| \leq \ldots \leq\left|L_{p}\right|$ and let q be the largest integer such that $\left|L_{1} \cup L_{2} \cup \ldots \cup L_{q}\right| \leq p-q$. Then $s p(G)=p-q$.

$\left(2 K_{2}, P_{4}\right)$-free Graphs: A Lower Bound on $s p(G)$

Lemma

Let $G \not \equiv K_{1}$ be a connected $\left(2 K_{2}, P_{4}\right)$-free graph. Suppose that G is given by its co-clique forest representation. Let L be a leaf node of smallest size in G and let $G^{\prime}=L \oplus(G \backslash L)$. Then $s p\left(G^{\prime}\right) \leq \operatorname{sp}(G)$.

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Let G be a $\left(2 K_{2}, P_{4}\right)$-free graph.

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph
\dot{L}_{1}

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

And let G be transformed into the complete multipartite graph G^{\prime}.

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

And let G be transformed into the complete multipartite graph G^{\prime}.

- By repeated application of the preceding lemma, $s p\left(G^{\prime}\right) \leq s p(G)$.

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete Multipartite Graph

And let G be transformed into the complete multipartite graph G^{\prime}.

- By repeated application of the preceding lemma, $s p\left(G^{\prime}\right) \leq s p(G)$.
- Let p be the number of leaves in G.
- Let q be the maximum value such that $\left|L_{1}\right|+\cdots+\left|L_{q}\right| \leq p-q$.
- Then $s p(G) \geq s p\left(G^{\prime}\right)=p-q$.

Transformation of a $\left(2 K_{2}, P_{4}\right)$-free Graph to a Specific Complete

 Multipartite GraphAnd let G be transformed into the complete multipartite graph G^{\prime}.

G^{\prime}

- By repeated application of the preceding lemma, $s p\left(G^{\prime}\right) \leq s p(G)$.
- Let p be the number of leaves in G.
- Let q be the maximum value such that $\left|L_{1}\right|+\cdots+\left|L_{q}\right| \leq p-q$.
- Then $s p(G) \geq s p\left(G^{\prime}\right)=p-q$.

Hence the lower bound for Star Partition on $\left(2 K_{2}, P_{4}\right)$-free graphs is $p-q$.

The Algorithm

Algorithm: Co-Trivially Perfect

Input: A connected $\left(2 K_{2}, P_{4}\right)$-free graph in its co-clique forest representation.
Output: A star partition of G.
(1) Compute the complete multipartite graph $G^{\prime}=\left(L_{1}, \ldots, L_{p}\right)$ from G by repeatedly removing the least size leaf node and making it a stand-alone co-clique tree.
(2) Find the largest integer q such that $\left|L_{1} \cup L_{2} \cup \ldots \cup L_{q}\right| \leq p-q$.
(0) Color the vertices of G that are in $L_{1} \cup \ldots \cup L_{q}$ black and others white.
(1) Compute and output a star partition of G of size $p-q(p-q+1)$ using vertices in $L_{1} \cup \ldots \cup L_{q}$ as centers.

Properties of Black and White Nodes

- If an internal node is black, then all of its children are black.
- If an internal node is white but has a black child, then it also has a white child.

Properties of Black and White Nodes

- If an internal node is black, then all of its children are black.
- If an internal node is white but has a black child, then it also has a white child.

- Partition the co-clique forest G into sets W, B and M :
- W consists of trees with only white nodes.
- B consists of trees with only black nodes.
- M consists of trees with both white and black nodes.

Computing the Star Partition

(1) While $M \neq \phi$, form stars and separate black nodes.
(2) While $B \neq \phi$, form stars with black vertices as centers and white vertices as independent part.
(0) While $W \neq \phi$, partition remaining white co-clique forest into stars.

Algorithm with an example

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

Algorithm with an example

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

Algorithm with an example

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

Algorithm with an example

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

Algorithm with an example

- $B \neq \phi$.
- $W \neq \phi$.
- $M=\phi$.

Algorithm with an example

- $B \neq \phi$.
- $W \neq \phi$.
- $M=\phi$.

Algorithm with an example

- $B \neq \phi$.
- $W \neq \phi$.
- $M=\phi$.

Algorithm with an example

- $W \neq \phi$.
- $M=\phi$.
- $B=\phi$.
- Now, number of stars $=\left|L_{1}\right|+\cdots+\left|L_{q}\right|=s$.

Algorithm with an example

- $W \neq \phi$.
- $M=\phi$.
- $B=\phi$.
- Now, number of stars $=\left|L_{1}\right|+\cdots+\left|L_{q}\right|=s$.
- Hence the solution size $=s+((p-q)-s)=p-q$.

All Black Nodes From Same Co-clique Tree

All Black Nodes From Same Co-clique Tree

All Black Nodes From Same Co-clique Tree

- For this path we will use a white vertex from other tree.

All Black Nodes From Same Co-clique Tree

- For this path we will use a white vertex from other tree.
- Let $s=\left|L_{1}\right|+\cdots+\left|L_{q}\right|$.

All Black Nodes From Same Co-clique Tree

- For this path we will use a white vertex from other tree.
- Let $s=\left|L_{1}\right|+\cdots+\left|L_{q}\right|$.
- When $B=\phi$, number of stars $=s+1$.

All Black Nodes From Same Co-clique Tree

- For this path we will use a white vertex from other tree.
- Let $s=\left|L_{1}\right|+\cdots+\left|L_{q}\right|$.
- When $B=\phi$, number of stars $=s+1$.
- If $s=(p-q)$, then number of stars $=p-q+1$.

All Black Nodes From Same Co-clique Tree

- For this path we will use a white vertex from other tree.
- Let $s=\left|L_{1}\right|+\cdots+\left|L_{q}\right|$.
- When $B=\phi$, number of stars $=s+1$.
- If $s=(p-q)$, then number of stars $=p-q+1$.
- If $s<(p-q)$, then number of stars $=(s+1)+((p-q)-(s+1))=p-q$.

Lemma

Let G be a connected $\left(2 K_{2}, P_{4}\right)$-free graph. If L_{1}, \ldots, L_{q} are all necessarily from the same tree T such that $\left(T \backslash\left(L_{1} \cup \cdots \cup L_{q}\right)\right) \neq \phi$ and $\left|L_{1}\right|+\cdots+\left|L_{q}\right|=p-q$, then $s p(G)>p-q$.

Proof.

- Suppose $s p(G)=p-q$.
- This implies at least q bottom parts of G must be used fully as centers.
- This is possible only if the $(p-q)=s$ centers are coming from T.
- Also $|T|>p-q$.
- This implies at least the vertices from root node of T are non-centers.
- Hence $s p(G)>p-q$.

Theorem

- Let G be a connected $\left(2 K_{2}, P_{4}\right)$-free graph and suppose that it is given by its co-clique tree representation.
- Let $G^{\prime}=\left(L_{1}, \ldots, L_{p}\right)$ be the corresponding complete multipartite graph.
- Let q be the largest integer such that $\left|L_{1}\right|+\cdots+\left|L_{q}\right| \leq p-q$.

If L_{1}, \ldots, L_{q} are all necessarily from the same tree T of size more than $\left|L_{1} \cup \cdots \cup L_{q}\right|$ and $\left|L_{1}\right|+\cdots+\left|L_{q}\right|=p-q$, then $s p(G)=p-q+1$. Else $s p(G)=p-q$.

THRESHOLD GRAPHS

(($\left.C_{4}, 2 K_{2}, P_{4}\right)$-free Graphs)

A Linear Time Algorithm for Threshold Graphs

Theorem

Let G be a connected threshold graph. Then $s p(G)=\lceil\omega(G) / 2\rceil$. Indeed G can be partitioned into a clique and at most one star.

Moreover, an optimal star partition of G can be computed in linear time.

Future Scope

(1) Determine the computational complexity of Star Cover and Star Partition for cographs.

References

固 J．Bang－Jensen，J．Huang，G．MacGillivray，A．Yeo，Domination in convex bipartite and convex－round graphs．Technical Report，University of Southern Denmark， 1999.

围 A．Björklund，T．Husfeldt，M．Koivisto，Set partitioning via inclusion－exclusion， SIAM Journal on Computing 39 （2009）543－563．

遇 A．Brandstädt and D．Kratsch，On the restriction of some NP－complete graph problems to permutation graphs，in L．Budach，ed．，Proc．of the FCT＇85 Conf．， Lecture Notes in Computer Science 199 （1985）53－62．

嗇 E．J．Cockayne，S．Goodman，S．T．Hedetniemi，A linear algorithm for the domination number of a tree，Inform．Process．Lett． 4 （1975），41－44．

國 Corneil，D．G．and Perl，Y．and Stewart，L．K．，A Linear Recognition Algorithm for Cographs，SIAM Journal on Computing，Volume 14 （1985），926－934．

回 P．Damaschke，H．Müller，and D．Kratch，Domination in convex and chordal bipartite graphs，Information Processing Letters 36 （1990） 231 － 236.

国 D．Dor and M．Tarsi，Graph Decomposition is NP－Complete：A Complete Proof of Holyer＇s Conjecture，SIAM J．Comput．，26（4）（1997），1166－1187．

专 R．G．Downey and M．R．Fellows，Fundamentals of Parameterized Complexity． Undegraduate texts in computer science．Springer（2013）
固 O．Duginov，Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs，Discrete Mathematics and Theoretical Computer Science 16：3（2014） 203－214．
围 M．Farber and J．M．Keil，Domination in permutation graphs，J．Algorithms 6 （1985） 309－321．
围 M．R．Garey，D．S．Johnson，Computers and Intractability；A Guide to the Theory of NP－Completeness，W．H．Freeman \＆Co．，New York， 1990.
：M．C．Golumbic，Algorithmic Graph Theory and Perfect Graphs，2nd Edition，Vol． 57，Elsevier， 2004.
：A．K．Kelmans，Optimal packing of stars in a graph，Discrete Mathematics 173， （1997）97－127．

围 F．Maffray，M．Preissmann，On the NP－completeness of the k－colorability problem for triangle－free graphs，Discrete Mathematics 162 （1996），313－317．

國 H．Müller and A．Brandstädt，The NP－completeness of Steiner tree and dominating set for chordal bipartite graphs，Theoretical Computer Science 53 （1987）257－265．

国 V．Raman，S．Saurabh，Short cycles make W－hard problems hard：FPT algorithms for W－hard problems in graphs with no short cycles．Algorithmica 52 （2008）， 203－225．
: M.A. Shalu, S. Vijayakumar, T.P. Sandhya, J. Mondal, Induced star partition of graphs. Discrete Applied Mathematics 319 (2022), 81-91.

国 V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
固 D. Zuckerman, Linear degree extractors and the inapproximability of Max Clique and Chromatic Number, Theory of Computing, Volume 3 (2007), 103-128.

[^0]: ${ }^{a}$ V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)

[^1]: ${ }^{1}$ Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.

[^2]: ${ }^{1}$ Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.

[^3]: ${ }^{1}$ Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.

[^4]: ${ }^{1}$ Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.

