Star Covers and Star Partitions of Cographs and Butterfly-free Graphs

Joyashree Mondal S Vijayakumar

IIITDM KANCHEEPURAM

Star

A graph that is isomorphic to $K_{1,r}$, for some $r \ge 0$, is called a star.

Star

A graph that is isomorphic to $K_{1,r}$, for some $r \ge 0$, is called a star.

Note: Each star has center.

STAR in a Graph

Star Cover of a Graph

Let G = (V, E) be a graph. Then a collection (V_1, \ldots, V_k) of subsets of V is called a star cover of G if each set in the collection induces a star and has $V_1 \cup \ldots \cup V_k = V$.

The Star Cover Number, sc(G)

The minimum k for which a graph G admits a star cover (V_1, \ldots, V_k) is called the star cover number of G and is denoted by sc(G).

Star Partition of a Graph

A star cover (V_1, \ldots, V_k) of a graph G = (V, E) is called a star partition if (V_1, \ldots, V_k) is a partition of V.

The Star Partition Number, sp(G)

The minimum k for which a graph G admits a star partition (V_1, \ldots, V_k) is called the star partition number of G and is denoted by sp(G).

Problems

STAR COVER

Input: A graph *G*. **Goal:** A star cover of *G* of minimum size.

STAR PARTITION

Input: A graph *G*. **Goal:** A star partition of *G* of minimum size.

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \ge 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

$$sc(F_n) = 2$$
 but $sp(F_n) = n + 1$.

STAR COVER vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

$$sc(F_n) = 2$$
 but $sp(F_n) = n + 1$.

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \ge 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

STAR COVER vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

$$sc(F_n) = 2$$
 but $sp(F_n) = n + 1$.

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \ge 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

Star Cover vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

STAR COVER vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

STAR COVER vs Star Partition

The problems are similar but not the same!

Example

For $n \geq 2$, let $F_n = K_1 \oplus nK_2$ be the friendship graph. Then

Literature Survey

NP-Completeness Results

 $\operatorname{Star}\operatorname{Cover}$ and $\operatorname{Star}\operatorname{Partition}$ are NP-hard for

- Chordal bipartite graphs [4]
- C₄-free bipartite graphs [4]
- Bipartite planar graphs [6, 1]
- K_{1,5}-free split graphs [1]
- Line graphs [2, 1]
- Co-tripartite graphs [3, 1].

Also deciding whether an input graph can be covered by *or* partitioned into three stars is NP-complete [1].

Literature Survey

Polynomial Time Algorithms

 $\operatorname{Star}\operatorname{COVER}$ and $\operatorname{Star}\operatorname{Partition}$ have polynomial time algorithms for

- bipartite permutation graphs [3, 5]
- convex bipartite graphs [1, 1]
- doubly-convex bipartite graphs [1]
- trees [4]
- claw-free split graphs [our result]
- double-split graphs [our result].

Literature Survey

Approximation and Inapproximation Results

- STAR PARTITION has a polynomial time *r*/2-approximation algorithm for *K*_{1,*r*}-free graphs [1, 2].
- $\bullet~\mathrm{Star}\,\mathrm{Cover}$ and $\mathrm{Star}\,\mathrm{Partition}$ have a polynomial time
 - A 2-approximation algorithm for split graphs [1];
 - ► O(log n)-approximation algorithms for triangle-free graphs [2];
 - (d + 1)-approximation algorithm for triangle-free graphs of degree at most d [2].
- It is NP-hard to approximate STAR PARTITION within $n^{1/2-\epsilon}$ for all $\epsilon > 0$ [1, 3].
- STAR COVER and STAR PARTITION do not have any polynomial time $c \log n$ -approximation algorithm for some constant c > 0 unless P = NP [2].

HEREDITARY GRAPHS

Hereditary Graphs

Definition

A graph class is called a hereditary graph class if for every graph in the class it also includes all its induced subgraphs.

Hereditary Graphs

Definition

A graph class is called a hereditary graph class if for every graph in the class it also includes all its induced subgraphs.

Examples: \mathcal{F} -free graphs. For instance, triangle-free graphs, chordal graphs and, more generally, perfect graphs are hereditary graphs.

Algorithm: Approximate-hereditary

Input: A graph G from the hereditary graph class G. **Output:** A star cover S of G.

$${f 0}$$
 Set ${\cal S}=\emptyset.$

2 Colour all vertices of G black.

While G has a black vertex repeat the following:

- Find a star Z with a maximum number of black vertices.
- Colour the black vertices of G that are in Z red.

• Set
$$\mathcal{S} = \mathcal{S} \cup \{Z\}$$
.

• Output S.

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $apx-sc(G) \le (c \log n) \cdot sc(G)$.

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $apx-sc(G) \le (c \log n) \cdot sc(G)$. (Follows from the greedy set cover algorithm.) Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $apx-sc(G) \le (c \log n) \cdot sc(G)$. (Follows from the greedy set cover algorithm.)

So, this is an $O(\log n)$ -approximation algorithm.

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $apx-sc(G) \le (c \log n) \cdot sc(G)$. (Follows from the *greedy* set cover algorithm.)

So, this is an $O(\log n)$ -approximation algorithm.

Theorem

STAR COVER has an $O(n^2t(n))$ time $O(\log n)$ -approximation algorithm for any hereditary graph class for which the maximum independent set can be computed in O(t(n)) time.

Hereditary graphs: An Approximation Algorithm for Star Cover Our solution size: $apx-sc(G) \le (c \log n) \cdot sc(G)$. (Follows from the *greedy* set cover algorithm.)

So, this is an $O(\log n)$ -approximation algorithm.

Theorem

STAR COVER has an $O(n^2t(n))$ time $O(\log n)$ -approximation algorithm for any hereditary graph class for which the maximum independent set can be computed in O(t(n)) time.

Corollary

STAR COVER has a polynomial time $O(\log n)$ -approximation algorithm for perfect graphs and the $O(\log n)$ approximation factor can not be improved assuming $P \neq NP^{a}$.

^aV.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)

BUTTERFLY-FREE GRAPHS

The Butterfly Graph

Butterfly-free graphs includes-

- Bipartite graphs (in fact, all triangle-free graphs).
- Split graphs (in fact, all $2K_2$ -free graphs).

Note: If G is a triangle-free graph then $sp(G) = sc(G) = \gamma(G)$.

Theorem

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O(n^2 \log n)$.
For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O(n^2 \log n)$.

Proof idea: Let (x, l_1) and (x, l_2) be two stars in an optimal star cover of G.

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O(n^2 \log n)$.

Proof idea: Let (x, l_1) and (x, l_2) be two stars in an optimal star cover of G.

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a star partition of at most the same size can be computed in time $O(n^2 \log n)$.

Proof idea: Let (x, l_1) and (x, l_2) be two stars in an optimal star cover of G.

Two stars (x, I_1) and (x, I_2) can be replaced with other two stars $(x, \{u_1, u_2, v_6, v_7\})$ and (u_3, J_3) .

• Butterfly-free graphs form a hereditary graph class.

¹Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249–260.

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O(n^4)$ time exact algorithm for this graph class ¹.

¹Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249–260.

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O(n^4)$ time exact algorithm for this graph class ¹.
- We have proved: sp(G) = sc(G) for any butterfly-free graph G.

¹Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249–260.

- Butterfly-free graphs form a hereditary graph class.
- The maximum independent set problem has an $O(n^4)$ time exact algorithm for this graph class ¹.
- We have proved: sp(G) = sc(G) for any butterfly-free graph G.
- $\bullet\,$ The approximation algorithm for ${\rm STAR}\,{\rm COVER}$ on hereditary graph classes now imply the following theorem.

¹Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249–260.

Both STAR COVER and STAR PARTITION have an $O(n^6)$ time $O(\log n)$ -approximation algorithm for STAR PARTITION on butterfly-free graphs. Moreover the $O(\log n)$ approximation factor can not be improved.

Both STAR COVER and STAR PARTITION have an $O(n^6)$ time $O(\log n)$ -approximation algorithm for STAR PARTITION on butterfly-free graphs. Moreover the $O(\log n)$ approximation factor can not be improved.^a

^aV.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)

COGRAPHS

Cographs

Cographs

A graph is called a cograph if it is P_4 -free.

Fact

A graph is a cograph if and only if it can be obtained from K_1 's by a finite number of union and join operations.

Note

The bottom-up construction of a cograph is often represented by a binary tree, namely its *cotree*.

Both STAR COVER and STAR PARTITION have:

- $O(n^2)$ time algorithms for trivially perfect graphs ((C_4, P_4)-free graphs).
- $O(n^2)$ time algorithms for co-trivially perfect graphs (($2K_2, P_4$)-free graphs).
- Linear time algorithms for threshold graphs (($C_4, 2K_2, P_4$)-free graphs).

TRIVIALLY PERFECT GRAPHS $((C_4, P_4)$ -free Graphs)

Trivially Perfect Graphs: Clique Tree Representation Connected trivially perfect graphs are comparability graphs of rooted trees.

Clique trees are compressed forms of the underlying rooted trees.

Construction of a Clique Tree

¹D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Computing, 14 (4) (1985) 926-934.

Lemma

Let $G \ncong K_n$ be a connected trivially perfect graph and suppose that it is given by its clique tree representation. Then any optimal star cover (partition) of G has a star with the center alone from the root-clique of G.

Proof

- let $\{x, y\}$ be any star from R and let $\{x_1\} \cup I_1$ and $\{x_2\} \cup I_2$ be two stars from two different components of $V \setminus R$.
- These three starts can be replaced by the two stars $(\{x\} \cup \{x_1, x_2\} \text{ and } \{y\} \cup (I_1 \cup I_2) \text{ of } G.$

$$I_1 = \{x_3, x_4, x_5\}$$
$$I_2 = \{x_6, x_7, x_8\}$$

Note:

- Let $X = \{x\} \cup I$ be any maximum star of a connected trivially perfect graph G that is not a complete graph. Then the following hold:
 - The set I is a maximum independent set of G and consists of exactly one vertex from each of the leaf-cliques of the clique-tree T(G) so that the center x alone belongs to the root-clique of T(G).
 - 2 Any star Z of G of size more than two has its center necessarily from some internal clique of T(G).

Lemma

Let G be any connected trivially perfect graph that is not a complete graph. Then G has an optimal star cover (partition) containing some maximum star of G.

A Theorem Leading to Greedy Algorithms

Theorem

Let G be any connected trivially perfect graph. Then any maximum star of G belongs to some optimal star cover (partition) of G.

Algorithm for STAR PARTITION on Trivially Perfect Graphs

Input: A trivially perfect graph G. **Output:** A star partition C of G.

• Set $\mathcal{C} = \emptyset$.

2 While G is not the null graph, repeat the following:

- Pick a component H of G.
- Find a maximum star X of H.

• Set
$$\mathcal{C} = \mathcal{C} \cup \{X\}$$

• Set $G = G \setminus X$.

③ Output \mathcal{C} .

Trivially Perfect Graphs Execution of the Algorithm for Star Partition

Therefore sp(G) = 5.

STAR PARTITION has an $O(n^2)$ time exact algorithm for trivially perfect graphs.

STAR COVER on Trivially Perfect Graphs

Theorem

Let G = (V, E) be any connected trivially perfect graph and let $X = \{v\} \cup I$ be any maximum induced star of G. Let $H = G \setminus I$ if $G \setminus X$ is disconnected and let $H = G \setminus X$ otherwise. Let C' be any optimal star cover of H. Then $C = \{X\} \cup C'$ is an optimal star cover of G.

When $G \setminus X$ is Connected

When $G \setminus X$ is Not Connected

Algorithm for $\operatorname{STAR}\operatorname{COVER}$ on Trivially Perfect Graphs

Input: A trivially perfect graph G. **Output:** A star cover C of G.

• Set $\mathcal{C} = \emptyset$.

2 While G is not the null graph, repeat the following:

- Pick a component H of G.
- Find a maximum star $X = \{x\} \cup I$ of H.
- Set $\mathcal{C} = \mathcal{C} \cup \{X\}$.
- If $H \setminus X$ is disconnected, set $G = G \setminus I$. Else set $G = G \setminus X$.

③ Output \mathcal{C} .

Trivially Perfect Graphs Execution of the Algorithm for Star Cover

Therefore sc(G) = 3.

Trivially Perfect Graphs Execution of the Algorithm for Star Cover

Therefore sc(G) = 3.

STAR COVER has an $O(n^2)$ time exact algorithm for trivially perfect graphs.

CO-TRIVIALLY PERFECT GRAPHS

$((2K_2, P_4)$ -free Graphs)

Equivalence of STAR COVER and STAR PARTITION on Co-Trivially Perfect Graphs

Fact

If G is a co-trivially perfect graph, then sp(G) = sc(G).

Implication: Suffices to study any one of STAR COVER and STAR PARTITION.

Co-clique Forest Representation of $(2K_2, P_4)$ -free Graphs

Lemma

Let G be a connected $(2K_2, P_4)$ -free graph. Suppose that G is given by its co-clique forest representation. Then G has a minimum star partition C such that the centers of stars in C are from the bottom most nodes of G.

Complete Multipartite Graphs

Proposition

Let $G = (L_1, \ldots, L_p)$ be a complete multipartite graph with $|L_1| \leq \ldots \leq |L_p|$ and let q be the largest integer such that $|L_1 \cup L_2 \cup \ldots \cup L_q| \leq p - q$. Then sp(G) = p - q.

 $(2K_2, P_4)$ -free Graphs: A Lower Bound on sp(G)

Lemma

Let $G \ncong K_1$ be a connected $(2K_2, P_4)$ -free graph. Suppose that G is given by its co-clique forest representation. Let L be a leaf node of smallest size in G and let $G' = L \oplus (G \setminus L)$. Then $sp(G') \leq sp(G)$.

Let G be a $(2K_2, P_4)$ -free graph.

And let G be transformed into the complete multipartite graph G'.

$\overset{\bullet}{L_1}$	L_2	$\overset{ullet}{L_3}$	$\overset{\bullet}{L_4}$	$\overset{\bullet}{L_5}$	$\overset{\bullet}{L_6}$	€ L7	$\overset{\bullet}{L_8}$

G′

And let G be transformed into the complete multipartite graph G'.

• By repeated application of the preceding lemma, $sp(G') \leq sp(G)$.

And let G be transformed into the complete multipartite graph G'.

- By repeated application of the preceding lemma, $sp(G') \leq sp(G)$.
- Let p be the number of leaves in G.
- Let q be the maximum value such that $|L_1| + \cdots + |L_q| \le p q$.
- Then $sp(G) \ge sp(G') = p q$.

And let G be transformed into the complete multipartite graph G'.

- By repeated application of the preceding lemma, $sp(G') \leq sp(G)$.
- Let p be the number of leaves in G.
- Let q be the maximum value such that $|L_1| + \cdots + |L_q| \le p q$.

• Then
$$sp(G) \ge sp(G') = p - q$$
.

Hence the lower bound for Star Partition on $(2K_2, P_4)$ -free graphs is p - q.

The Algorithm

Algorithm: Co-Trivially Perfect

Input: A connected $(2K_2, P_4)$ -free graph in its co-clique forest representation. **Output:** A star partition of *G*.

- Compute the complete multipartite graph $G' = (L_1, \ldots, L_p)$ from G by repeatedly removing the least size leaf node and making it a stand-alone co-clique tree.
- 2) Find the largest integer q such that $|L_1 \cup L_2 \cup \ldots \cup L_q| \leq p-q$.
- **③** Color the vertices of G that are in $L_1 \cup \ldots \cup L_q$ black and others white.
- Compute and output a star partition of G of size p-q (p-q+1) using vertices in $L_1 \cup \ldots \cup L_q$ as centers.

Properties of Black and White Nodes

- If an internal node is black, then all of its children are black.
- If an internal node is white but has a black child, then it also has a white child.

Properties of Black and White Nodes

- If an internal node is black, then all of its children are black.
- If an internal node is white but has a black child, then it also has a white child.

- Partition the co-clique forest G into sets W, B and M:
 - *W* consists of trees with only white nodes.
 - ► *B* consists of trees with only black nodes.
 - M consists of trees with both white and black nodes.

Computing the Star Partition

- While $M \neq \phi$, form stars and separate black nodes.
- **2** While $B \neq \phi$, form stars with black vertices as centers and white vertices as independent part.
- **③** While $W \neq \phi$, partition remaining white co-clique forest into stars.

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

0

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

- $M \neq \phi$.
- $B \neq \phi$.
- $W \neq \phi$.

- $B \neq \phi$.
- $W \neq \phi$.
- $M = \phi$.

- $B \neq \phi$.
- $W \neq \phi$.
- $M = \phi$.

- $B \neq \phi$.
- $W \neq \phi$.
- $M = \phi$.

- $W \neq \phi$.
- $M = \phi$.
- $B = \phi$.
- Now, number of stars $= |L_1| + \cdots + |L_q| = s$.

0

0

- $W \neq \phi$.
- $M = \phi$.
- $B = \phi$.
- Now, number of stars $= |L_1| + \cdots + |L_q| = s$.
- Hence the solution size = s + ((p q) s) = p q.

• For this path we will use a white vertex from other tree.

- For this path we will use a white vertex from other tree.
- Let $s = |L_1| + \cdots + |L_q|$.

- For this path we will use a white vertex from other tree.
- Let $s = |L_1| + \cdots + |L_q|$.
- When $B = \phi$, number of stars = s + 1.

- For this path we will use a white vertex from other tree.
- Let $s = |L_1| + \cdots + |L_q|$.
- When $B = \phi$, number of stars = s + 1.
- If s = (p q), then number of stars = p q + 1.

- For this path we will use a white vertex from other tree.
- Let $s = |L_1| + \cdots + |L_q|$.
- When $B = \phi$, number of stars = s + 1.
- If s = (p q), then number of stars = p q + 1.

• If s < (p - q), then number of stars = (s + 1) + ((p - q) - (s + 1)) = p - q.

Lemma

Let G be a connected $(2K_2, P_4)$ -free graph. If L_1, \ldots, L_q are all necessarily from the same tree T such that $(T \setminus (L_1 \cup \cdots \cup L_q)) \neq \phi$ and $|L_1| + \cdots + |L_q| = p - q$, then sp(G) > p - q.

Proof.

- Suppose sp(G) = p q.
- This implies at least q bottom parts of G must be used fully as centers.
- This is possible only if the (p q) = s centers are coming from T.
- Also |T| > p q.
- $\bullet\,$ This implies at least the vertices from root node of ${\cal T}$ are non-centers.
- Hence sp(G) > p q.

Theorem

- Let G be a connected $(2K_2, P_4)$ -free graph and suppose that it is given by its co-clique tree representation.
- Let $G' = (L_1, \ldots, L_p)$ be the corresponding complete multipartite graph.
- Let q be the largest integer such that $|L_1| + \cdots + |L_q| \le p q$.

If L_1, \ldots, L_q are all necessarily from the same tree T of size more than $|L_1 \cup \cdots \cup L_q|$ and $|L_1| + \cdots + |L_q| = p - q$, then sp(G) = p - q + 1. Else sp(G) = p - q.

THRESHOLD GRAPHS

 $((C_4, 2K_2, P_4)$ -free Graphs)

A Linear Time Algorithm for Threshold Graphs

Theorem

Let G be a connected threshold graph. Then $sp(G) = \lceil \omega(G)/2 \rceil$. Indeed G can be partitioned into a clique and at most one star.

Moreover, an optimal star partition of G can be computed in linear time.

• Determine the computational complexity of STAR COVER and STAR PARTITION for cographs.

References

- J. Bang-Jensen, J. Huang, G. MacGillivray, A. Yeo, Domination in convex bipartite and convex-round graphs. Technical Report, University of Southern Denmark, 1999.
- A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion-exclusion, SIAM Journal on Computing 39 (2009) 543-563.
- A. Brandstädt and D. Kratsch, On the restriction of some NP-complete graph problems to permutation graphs, in L. Budach, ed., *Proc. of the FCT '85 Conf.*, Lecture Notes in Computer Science 199 (1985) 53-62.
- E.J. Cockayne, S. Goodman, S.T. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975), 41-44.
- Corneil, D. G. and Perl, Y. and Stewart, L. K., A Linear Recognition Algorithm for Cographs, SIAM Journal on Computing, Volume 14 (1985), 926-934.

- P. Damaschke, H. Müller, and D. Kratch, Domination in convex and chordal bipartite graphs, Information Processing Letters 36 (1990) 231 236.
- D. Dor and M. Tarsi, Graph Decomposition is NP-Complete: A Complete Proof of Holyer's Conjecture, SIAM J. Comput., 26(4) (1997), 1166-1187.
- R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity. Undegraduate texts in computer science. Springer (2013)
- O. Duginov, Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs, Discrete Mathematics and Theoretical Computer Science 16:3 (2014) 203-214.
- M. Farber and J.M. Keil, Domination in permutation graphs, J. Algorithms 6 (1985) 309-321.
- M. R. Garey , D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1990.

- M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd Edition, Vol. 57, Elsevier, 2004.
- A.K. Kelmans, Optimal packing of stars in a graph, Discrete Mathematics 173, (1997) 97-127.
- F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Mathematics 162 (1996), 313-317.
- H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theoretical Computer Science 53 (1987) 257-265.
- V. Raman, S. Saurabh, Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52 (2008), 203-225.

- M.A. Shalu, S. Vijayakumar, T.P. Sandhya, J. Mondal, Induced star partition of graphs. Discrete Applied Mathematics 319 (2022), 81-91.
- V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
- D. Zuckerman, Linear degree extractors and the inapproximability of Max Clique and Chromatic Number, Theory of Computing, Volume 3 (2007), 103-128.