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Star
A graph that is isomorphic to Kj ,, for some r > 0, is called a star.




Star
A graph that is isomorphic to Kj ,, for some r > 0, is called a star.

Note: Each star has center.
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Star Cover of a Graph

Let G = (V, E) be a graph. Then a collection (V4, ..., Vi) of subsets of V is called a
star cover of G if each set in the collection induces a star and has VU ... UV, = V.

V1 V2

M ({vo, v1, o}, {vo, v3, va})

V4 V3

G A Star Cover of G

The Star Cover Number, sc(G)

The minimum k for which a graph G admits a star cover (V4, ..., Vi) is called the star
cover number of G and is denoted by sc(G).




Star Partition of a Graph

A star cover (Vi,..., Vi) of a graph G = (V/, E) is called a star partition if (Vq,..., Vi)
is a partition of V.

l><] ({0, w1, w2}, {3}, {va})
G A Star Partition of G

The Star Partition Number, sp(G)

The minimum k for which a graph G admits a star partition (V4,..., Vi) is called the
star partition number of G and is denoted by sp(G).




Problems

STAR COVER
Input: A graph G.
Goal: A star cover of G of minimum size.

STAR PARTITION
Input: A graph G.
Goal: A star partition of G of minimum size.




STAR COVER vs STAR PARTITION

The problems are similar but not the same!

Example
For n > 2, let F, = K; & nKj; be the friendship graph. Then

sc(F,) =2 but sp(F,)=n+1.
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STAR COVER vs STAR PARTITION

The problems are similar but not the same!

Example
For n > 2, let F, = K; & nKj; be the friendship graph. Then

sc(F,) =2 but sp(F,)=n+1.
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STAR COVER vs STAR PARTITION

The problems are similar but not the same!

Example
For n > 2, let F, = K; & nKj; be the friendship graph. Then

sc(F,) =2 but sp(F,)=n+1.
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STAR COVER vs STAR PARTITION

The problems are similar but not the same!
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STAR COVER vs STAR PARTITION

The problems are similar but not the same!

Example

For n > 2, let F, = K; & nKj; be the friendship graph. Then

sc(F,) =2 but sp(F,)=n+1.

Vi V2 Vi V2
’}4 Vo
! A o ’
V6 Vs Ve Vs
Fa A Star Cover of F,
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Literature Survey

NP-Completeness Results

STAR COVER and STAR PARTITION are NP-hard for

e Chordal bipartite graphs [4]
o (C,-free bipartite graphs [4]
@ Bipartite planar graphs [6, 1]
o Kjs-free split graphs [1]

e Line graphs [2, 1]

e Co-tripartite graphs [3, 1].

Also deciding whether an input graph can be covered by or partitioned into three stars is
NP-complete [1].



Literature Survey

Polynomial Time Algorithms

STAR COVER and STAR PARTITION have polynomial time algorithms for

@ bipartite permutation graphs [3, 5]
@ convex bipartite graphs [1, 1]

@ doubly-convex bipartite graphs [1]
o trees [4]

o claw-free split graphs [our result]

@ double-split graphs [our result].



Literature Survey

Approximation and Inapproximation Results

@ STAR PARTITION has a polynomial time r/2-approximation algorithm for Ky ,-free
graphs [1, 2].
@ STAR COVER and STAR PARTITION have a polynomial time
» A 2-approximation algorithm for split graphs [1];
» O(log n)-approximation algorithms for triangle-free graphs [2];
» (d + 1)-approximation algorithm for triangle-free graphs of degree at most d [2].
@ It is NP-hard to approximate STAR PARTITION within n'/2=¢ for all ¢ > 0 [1, 3].
@ STAR COVER and STAR PARTITION do not have any polynomial time
¢ log n-approximation algorithm for some constant ¢ > 0 unless P = NP [2].
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HEREDITARY GRAPHS
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Hereditary Graphs

Definition
A graph class is called a hereditary graph class if for every graph in the class it also
includes all its induced subgraphs.
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Hereditary Graphs

Definition

A graph class is called a hereditary graph class if for every graph in the class it also
includes all its induced subgraphs.

Examples: F-free graphs. For instance, triangle-free graphs, chordal graphs and, more
generally, perfect graphs are hereditary graphs.
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Hereditary graphs: An Algorithm for Star Cover
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Hereditary graphs: An Algorithm for Star Cover
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Hereditary graphs: An Algorithm for Star Cover

Algorithm: Approximate-hereditary

Input: A graph G from the hereditary graph class G.
Output: A star cover S of G.

Q Set S=0.
@ Colour all vertices of G black.
© While G has a black vertex repeat the following:

» Find a star Z with a maximum number of black vertices
» Colour the black vertices of G that are in Z red.
» Set S:SU{Z}.

Q@ Output S.
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Hereditary graphs: An Approximation Algorithm for Star Cover
Our solution size: apx-sc(G) < (clogn) - sc(G).
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Hereditary graphs: An Approximation Algorithm for Star Cover

Our solution size: apx-sc(G) < (clogn)-sc(G). (Follows from the greedy set cover
algorithm.)
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Hereditary graphs: An Approximation Algorithm for Star Cover
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Hereditary graphs: An Approximation Algorithm for Star Cover

Our solution size: apx-sc(G) < (clogn)-sc(G). (Follows from the greedy set cover
algorithm.)

So, this is an O(log n)-approximation algorithm.
Theorem

STAR COVER has an O(n*t(n)) time O(log n)-approximation algorithm for any
hereditary graph class for which the maximum independent set can be computed in

O(t(n)) time.
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Hereditary graphs: An Approximation Algorithm for Star Cover

Our solution size: apx-sc(G) < (clogn)-sc(G). (Follows from the greedy set cover
algorithm.)

So, this is an O(log n)-approximation algorithm.

Theorem

STAR COVER has an O(n*t(n)) time O(log n)-approximation algorithm for any
hereditary graph class for which the maximum independent set can be computed in

O(t(n)) time.

Corollary

STAR COVER has a polynomial time O(log n)-approximation algorithm for perfect
graphs and the O(log n) approximation factor can not be improved assuming P % NP 2.

2V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
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BUTTERFLY-FREE GRAPHS
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The Butterfly Graph

N sc(G) =2
|73 V3
G sp(G) =3

Butterfly-free graphs includes-
@ Bipartite graphs (in fact, all triangle-free graphs).
@ Split graphs (in fact, all 2K,-free graphs).
Note: If G is a triangle-free graph then sp(G) = sc(G) = v(G).



Theorem

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a
star partition of at most the same size can be computed in time O(n? log n).
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Theorem

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a
star partition of at most the same size can be computed in time O(n? log n).

Proof idea: Let (x, /1) and (x, k) be two stars in an optimal star cover of G.
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Theorem

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a
star partition of at most the same size can be computed in time O(n? log n).

Proof idea: Let (x, /1) and (x, k) be two stars in an optimal star cover of G.

¥» 2K,-free bipartite graph
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Theorem

For any butterfly-free graph G, sp(G) = sc(G). Moreover, given a star cover of G, a
star partition of at most the same size can be computed in time O(n? log n).

Proof idea: Let (x, /1) and (x, k) be two stars in an optimal star cover of G.

\¥> 2K,-free bipartite graph

h

Two stars (x, /1) and (x, k) can be replaced with other two stars (x, {uy, t2, vs, v7}) and
(U3, J3)

18



Butterfly-free graphs: Approximation algorithm

o Butterfly-free graphs form a hereditary graph class.

'Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.
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Butterfly-free graphs: Approximation algorithm

o Butterfly-free graphs form a hereditary graph class.

@ The maximum independent set problem has an O(n*) time exact algorithm for this
graph class 1.

'Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.
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Butterfly-free graphs: Approximation algorithm

o Butterfly-free graphs form a hereditary graph class.

@ The maximum independent set problem has an O(n*) time exact algorithm for this
graph class 1.

@ We have proved: sp(G) = sc(G) for any butterfly-free graph G.

'Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.
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Butterfly-free graphs: Approximation algorithm

o Butterfly-free graphs form a hereditary graph class.

@ The maximum independent set problem has an O(n*) time exact algorithm for this
graph class 1.

@ We have proved: sp(G) = sc(G) for any butterfly-free graph G.

@ The approximation algorithm for STAR COVER on hereditary graph classes now
imply the following theorem.

'Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249-260.
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Theorem

Both STAR COVER and STAR PARTITION have an O(n°) time O(log n)-approximation
algorithm for STAR PARTITION on butterfly-free graphs. Moreover the O(log n)
approximation factor can not be improved.

20



Theorem

Both STAR COVER and STAR PARTITION have an O(n®) time O(log n)-approximation
algorithm for STAR PARTITION on butterfly-free graphs. Moreover the O(log n)
approximation factor can not be improved. °

2V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
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COGRAPHS
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Cographs

Cographs
A graph is called a cograph if it is P,-free.

Fact
A graph is a cograph if and only if it can be obtained from Kj's by a finite number of
union and join operations.

Note
The bottom-up construction of a cograph is often represented by a binary tree, namely
its cotree.
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Results on Cographs

Both STAR COVER and STAR PARTITION have:
e O(n?) time algorithms for trivially perfect graphs ((Cs, P;)-free graphs).
e O(n?) time algorithms for co-trivially perfect graphs ((2K>, Ps)-free graphs).

@ Linear time algorithms for threshold graphs ((Cq, 2K, Py)-free graphs).

23



TRIVIALLY PERFECT GRAPHS
((Cy, P4)-free Graphs)
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Trivially Perfect Graphs: Clique Tree Representation

Connected trivially perfect graphs are comparability graphs of rooted trees.

Clique trees are compressed forms of the underlying rooted trees.

Vi

Vo

V3

Vs

v7

V11 V13

{Vla V2, V3}

N—Clique
{V47 V5} {V67 V7}
{Vg', Vg} )
internal-clique
{V1o, V11} {V127 V13}

[
{via} leaf-clique
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Construction of a Clique Tree

{a, b}

{c,d, e} {f}

{e} {h, i}

1

!D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal
on Computing, 14 (4) (1985) 926-934.
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Lemma

Let G 2 K, be a connected trivially perfect graph and suppose that it is given by its
clique tree representation. Then any optimal star cover (partition) of G has a star with
the center alone from the root-clique of G.
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Proof

o let {x,y} be any star from R and let {x;} U /; and {x,} U k, be two stars from two
different components of V \ R.

@ These three starts can be replaced by the two stars ({x} U {x1, x} and
{y}u(hUbhb)of G.

{xy}

L= {X3,X4,X5}

1} {x} b = {xs,x7,xs}

sHxaixs}t  {xHxHxe}

28



Note:

Let X = {x} U/ be any maximum star of a connected trivially perfect graph G that is
not a complete graph. Then the following hold:

© The set / is a maximum independent set of G and consists of exactly one vertex
from each of the leaf-cliques of the clique-tree T(G) so that the center x alone
belongs to the root-clique of T(G).

@ Any star Z of G of size more than two has its center necessarily from some internal
clique of T(G).

29



Lemma

Let G be any connected trivially perfect graph that is not a complete graph. Then G
has an optimal star cover (partition) containing some maximum star of G.
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A Theorem Leading to Greedy Algorithms

Theorem

Let G be any connected trivially perfect graph. Then any maximum star of G belongs
to some optimal star cover (partition) of G.

31



Algorithm for STAR PARTITION on Trivially Perfect Graphs

Input: A trivially perfect graph G.

Output: A star partition C of G.

Q Set C=10.

@ While G is not the null graph, repeat the following:

» Pick a component H of G.

» Find a maximum star X of H.
» Set C=CU{X}.

» Set G=G\ X.

@ Output C.

32



Trivially Perfect Graphs

Execution of the Algorithm for Star Partition

Ne

Ne

Ne

Therefore sp(G) = 5.
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Theorem

STAR PARTITION has an O(n?) time exact algorithm for trivially perfect graphs.
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STAR COVER on Trivially Perfect Graphs

Theorem

Let G = (V, E) be any connected trivially perfect graph and let X = {v} U | be any

maximum induced star of G. Let H= G\ | if G\ X is disconnected and let H = G \ X
otherwise. Let C' be any optimal star cover of H. Then C = {X} UC(’ is an optimal star

cover of G.

35



When G \ X is Connected
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When G \ X is Not Connected

"N

-
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Algorithm for STAR COVER on Trivially Perfect Graphs

Input: A trivially perfect graph G.

Output: A star cover C of G.

Q Set C=10.

@ While G is not the null graph, repeat the following:

» Pick a component H of G.

» Find a maximum star X ={x} U/ of H.

» Set C=CU{X}.

» If H\ X is disconnected, set G=G\/. Else set G =G\ X.

@ Output C.

38



Trivially Perfect Graphs

Execution of the Algorithm for Star Cover

—e

—e

Therefore sc(G) = 3.



Trivially Perfect Graphs

Execution of the Algorithm for Star Cover

"N

e

Therefore sc(G) = 3.
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Theorem

STAR COVER has an O(n?) time exact algorithm for trivially perfect graphs.
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CO-TRIVIALLY PERFECT GRAPHS
((2K3, P4)-free Graphs)
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Equivalence of STAR COVER and STAR PARTITION on
Co-Trivially Perfect Graphs

Fact
If G is a co-trivially perfect graph, then sp(G) = sc(G).

Implication: Suffices to study any one of STAR COVER and STAR PARTITION.
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Co-clique Forest Representation of (2K, Py)-free Graphs

{d,e}d {f.g}

{h,i}e
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Lemma

Let G be a connected (2K>, P,)-free graph. Suppose that G is given by its co-clique
forest representation. Then G has a minimum star partition C such that the centers of

stars in C are from the bottom most nodes of G.
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Complete Multipartite Graphs

Lo+ Loto

Proposition

G

Let G = (Li,...,L,) be a complete multipartite graph with |L;| < ... <|L,| and let g

be the largest integer such that |L; U L, U...

ULy <p—gq. Then sp(G) =p —q.
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(2K, Py)-free Graphs: A Lower Bound on sp(G)

Lemma

Let G 2 K; be a connected (2K3, P;)-free graph. Suppose that G is given by its
co-clique forest representation. Let L be a leaf node of smallest size in G and let

G'=L®(G\L). Then sp(G') < sp(G).

~e




Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

Let G be a (2K, Py)-free graph.

A A
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete

Multipartite Graph

Ly
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

O A
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

O A

Ly
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

O
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

O
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

O

L3
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

° ° ° I\
Ly Ly L3
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

And let G be transformed into the complete multipartite graph G'.

G/
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

And let G be transformed into the complete multipartite graph G'.

G/

@ By repeated application of the preceding lemma, sp(G’) < sp(G).
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete
Multipartite Graph

And let G be transformed into the complete multipartite graph G'.

G/

@ By repeated application of the preceding lemma, sp(G’) < sp(G).
@ Let p be the number of leaves in G.

o Let g be the maximum value such that |Li| + -+ |Ly] < p—g.
@ Then sp(G) > sp(G') =p—q.
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Transformation of a (2Kj, P,)-free Graph to a Specific Complete

Multipartite Graph

And let G be transformed into the complete multipartite graph G'.

G/

@ By repeated application of the preceding lemma, sp(G’) < sp(G).

@ Let p be the number of leaves in G.

o Let g be the maximum value such that |Li| + -+ |Ly] < p—g.

@ Then sp(G) > sp(G') =p—q.

Hence the lower bound for Star Partition on (2K;, P,)-free graphs is p — g.
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The Algorithm

Algorithm: Co-Trivially Perfect

Input: A connected (2K5, P;)-free graph in its co-clique forest representation.
Output: A star partition of G.

@ Compute the complete multipartite graph G’ = (Li,...,L,) from G by
repeatedly removing the least size leaf node and making it a
stand-alone co-clique tree.

@ Find the largest integer g such that |[LULU...UL,/<p—gq.

@ Color the vertices of G that are in [;U...UL, black and others
white.

©Q Compute and output a star partition of G of size p—q (p—qg+1)
using vertices in L[;U...UL,; as centers.
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Properties of Black and White Nodes

@ If an internal node is black, then all of its children are black.

o If an internal node is white but has a black child, then it also has a white child.

Le Ly L; L, Ls

49



Properties of Black and White Nodes

@ If an internal node is black, then all of its children are black.

o If an internal node is white but has a black child, then it also has a white child.

Le L I; La Ls

@ Partition the co-clique forest G into sets W, B and M:
» W consists of trees with only white nodes.
» B consists of trees with only black nodes.
» M consists of trees with both white and black nodes.

49



Computing the Star Partition

@ While M # ¢, form stars and separate black nodes.

@ While B # ¢, form stars with black vertices as centers and white vertices as
independent part.

© While W # ¢, partition remaining white co-clique forest into stars.

50



Algorithm with an example

Le Ly L7 Ly

o M # ¢.
o B # ¢.
o W +#¢.

Ls
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Algorithm with an example

Le Ly L7 Ly

o M # ¢.
o B # ¢.
o W +#¢.

Ls
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Algorithm with an example

/ L

L7 Ly

o M # ¢.
o B # ¢.
o W +#¢.

Ls
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Algorithm with an example

/ L

L7 Ly

o M # ¢.
o B # ¢.
o W +#¢.

Ls
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Algorithm with an example

7 A

L7 Ly

e B#¢.
o W # ¢
o M=¢.
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Algorithm with an example

7 A

L7 Ly

e B#¢.
o W # ¢
o M=¢.
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Algorithm with an example

[e]
Le Ly

e B#¢.
o W # ¢
o M=¢.
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Algorithm with an example

W+ 6.
M=,
B=¢
Now, number of stars = |L1| +--- + |L4| = s.

® 6 6 o
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Algorithm with an example

W+ 6.
M = .
B =¢.

Now, number of stars = |L1| +--- + |L4| = s.
Hence the solution size = s+ ((p—q) —s) = p — q.

® 6 6 o ¢
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All Black Nodes From Same Co-clique Tree

Ls Lp Lq

52



All Black Nodes From Same Co-clique Tree

Ls Lp Lq
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All Black Nodes From Same Co-clique Tree

Ly

Ls Lp Lq

@ For this path we will use a white vertex from other tree.
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All Black Nodes From Same Co-clique Tree

Ly

Ls Lp Lq

@ For this path we will use a white vertex from other tree.

o Let s =|Li|+ -+ L4l
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All Black Nodes From Same Co-clique Tree

Ly

Ls Lp Lq

@ For this path we will use a white vertex from other tree.

o Let s =|Li|+ -+ L4l
@ When B = ¢, number of stars = s + 1.
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All Black Nodes From Same Co-clique Tree

Ly

Ls Lp Lq

@ For this path we will use a white vertex from other tree.

o Let s =|Li|+ -+ L4l
@ When B = ¢, number of stars = s + 1.
e If s=(p— q), then number of stars = p — g + 1.
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All Black Nodes From Same Co-clique Tree

Ly

Ls Lp Lq

For this path we will use a white vertex from other tree.
Let s = |Lq| + -+ |Lg].

When B = ¢, number of stars = s + 1.

If s = (p— q), then number of stars = p — g + 1.

If s < (p— q), then number of stars = (s+ 1)+ ((p—¢q) —(s+1)) =p—gq.
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Lemma |

Let G be a connected (2K, Py)-free graph. If Ly, ..., Ly are all necessarily from the
same tree T such that (T \ (LiU---ULy)) # ¢ and |L1| + -+ |L4| = p— q, then

sp(G) > p—q.

Proof.
@ Suppose sp(G) = p — q.
This implies at least g bottom parts of G must be used fully as centers.

©

This is possible only if the (p — gq) = s centers are coming from T.
Also |T| > p—gq.
This implies at least the vertices from root node of T are non-centers.

® 6 o6 o

Hence sp(G) > p — q.
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Theorem

@ Let G be a connected (2K,, P;)-free graph and suppose that it is given by its
co-clique tree representation.

o Let G' =(Ly,...,L,) be the corresponding complete multipartite graph.
o Let q be the largest integer such that |Li| + -+ + |Lq| < p— q.

If Ly, ..., L, are all necessarily from the same tree T of size more than |L; U ---U Lg|
and |Li| +---+ |Ly| = p— q, then sp(G) = p—q+ 1. Else sp(G) = p — q.
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THRESHOLD GRAPHS
(G4, 2K>, Py)-free Graphs)
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A Linear Time Algorithm for Threshold Graphs

Theorem

Let G be a connected threshold graph. Then sp(G) = [w(G)/2]. Indeed G can be
partitioned into a clique and at most one star.

Moreover, an optimal star partition of G can be computed in linear time.
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Future Scope

@ Determine the computational complexity of STAR COVER and STAR PARTITION
for cographs.

57
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