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Star
A graph that is isomorphic to K1,r , for some r ≥ 0, is called a star.

Note: Each star has center.
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STAR in a Graph

v1
v2

v3

v4

v5
v6

v7

v8
u u

v2

v6

v8 v4

v3

v5v7

v1

u

G = F4

3



Star Cover of a Graph

Let G = (V ,E ) be a graph. Then a collection (V1, . . . ,Vk) of subsets of V is called a
star cover of G if each set in the collection induces a star and has V1 ∪ . . . ∪ Vk = V .

G A Star Cover of G
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The Star Cover Number, sc(G )

The minimum k for which a graph G admits a star cover (V1, . . . ,Vk) is called the star
cover number of G and is denoted by sc(G ).
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Star Partition of a Graph

A star cover (V1, . . . ,Vk) of a graph G = (V ,E ) is called a star partition if (V1, . . . ,Vk)
is a partition of V .

G A Star Partition of G

({v0, v1, v2}, {v3}, {v4})
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The Star Partition Number, sp(G )

The minimum k for which a graph G admits a star partition (V1, . . . ,Vk) is called the
star partition number of G and is denoted by sp(G ).
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Problems

StarCover
Input: A graph G .
Goal: A star cover of G of minimum size.

StarPartition
Input: A graph G .
Goal: A star partition of G of minimum size.
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StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



StarCover vs StarPartition
The problems are similar but not the same!

Example
For n ≥ 2, let Fn = K1 ⊕ nK2 be the friendship graph. Then

sc(Fn) = 2 but sp(Fn) = n + 1.

v0

v3

v4

v2v1

v8

v7

v6 v5

F4

v0

v3

v1

v7

v5

v0

v4

v2

v8

v6

A Star Cover of F4

v0

v3

v1

v7

v5

v4

v2

v8

v6

A Star Partition of F4

7



Literature Survey
NP-Completeness Results

StarCover and StarPartition are NP-hard for

Chordal bipartite graphs [4]

C4-free bipartite graphs [4]

Bipartite planar graphs [6, 1]

K1,5-free split graphs [1]

Line graphs [2, 1]

Co-tripartite graphs [3, 1].

Also deciding whether an input graph can be covered by or partitioned into three stars is
NP-complete [1].
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Literature Survey

Polynomial Time Algorithms

StarCover and StarPartition have polynomial time algorithms for

bipartite permutation graphs [3, 5]

convex bipartite graphs [1, 1]

doubly-convex bipartite graphs [1]

trees [4]

claw-free split graphs [our result]

double-split graphs [our result].
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Literature Survey

Approximation and Inapproximation Results

StarPartition has a polynomial time r/2-approximation algorithm for K1,r -free
graphs [1, 2].

StarCover and StarPartition have a polynomial time
▶ A 2-approximation algorithm for split graphs [1];
▶ O(log n)-approximation algorithms for triangle-free graphs [2];
▶ (d + 1)-approximation algorithm for triangle-free graphs of degree at most d [2].

It is NP-hard to approximate StarPartition within n1/2−ϵ for all ϵ > 0 [1, 3].

StarCover and StarPartition do not have any polynomial time
c log n-approximation algorithm for some constant c > 0 unless P = NP [2].
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HEREDITARY GRAPHS
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Hereditary Graphs

Definition
A graph class is called a hereditary graph class if for every graph in the class it also
includes all its induced subgraphs.

Examples: F -free graphs. For instance, triangle-free graphs, chordal graphs and, more
generally, perfect graphs are hereditary graphs.
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Hereditary graphs: An Algorithm for Star Cover
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Hereditary graphs: An Algorithm for Star Cover

Algorithm: Approximate-hereditary

Input: A graph G from the hereditary graph class G.
Output: A star cover S of G .

1 Set S = ∅.
2 Colour all vertices of G black.

3 While G has a black vertex repeat the following:

▶ Find a star Z with a maximum number of black vertices.
▶ Colour the black vertices of G that are in Z red.
▶ Set S = S ∪ {Z}.

4 Output S.

14



Hereditary graphs: An Approximation Algorithm for Star Cover
Our solution size: apx-sc(G ) ≤ (c log n) · sc(G ).

(Follows from the greedy set cover
algorithm.)

So, this is an O(log n)-approximation algorithm.

Theorem
StarCover has an O(n2t(n)) time O(log n)-approximation algorithm for any
hereditary graph class for which the maximum independent set can be computed in
O(t(n)) time.

Corollary

StarCover has a polynomial time O(log n)-approximation algorithm for perfect
graphs and the O(log n) approximation factor can not be improved assuming P ̸= NP a.

aV.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
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BUTTERFLY-FREE GRAPHS
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The Butterfly Graph

G sp(G ) = 3

sc(G ) = 2
v0

v2

v3

v1

v4

Butterfly-free graphs includes-

Bipartite graphs (in fact, all triangle-free graphs).

Split graphs (in fact, all 2K2-free graphs).

Note: If G is a triangle-free graph then sp(G ) = sc(G ) = γ(G ).
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Theorem
For any butterfly-free graph G, sp(G ) = sc(G ). Moreover, given a star cover of G , a
star partition of at most the same size can be computed in time O(n2 log n).

Proof idea: Let (x , I1) and (x , I2) be two stars in an optimal star cover of G .

2K2-free bipartite graph

x

I2I1

u1

u2

u3

J1
J2
J3

v6
v7

Two stars (x , I1) and (x , I2) can be replaced with other two stars (x , {u1, u2, v6, v7}) and
(u3, J3).
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Butterfly-free graphs: Approximation algorithm

Butterfly-free graphs form a hereditary graph class.

The maximum independent set problem has an O(n4) time exact algorithm for this
graph class 1.

We have proved: sp(G ) = sc(G ) for any butterfly-free graph G .

The approximation algorithm for StarCover on hereditary graph classes now
imply the following theorem.

1Farber, M. (1989), On diameters and radii of bridged graphs, Discrete Math., 73(3), 249–260.
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Theorem
Both StarCover and StarPartition have an O(n6) time O(log n)-approximation
algorithm for StarPartition on butterfly-free graphs. Moreover the O(log n)
approximation factor can not be improved.

a

aV.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin Heidelberg (2001)
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Theorem
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COGRAPHS
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Cographs

Cographs
A graph is called a cograph if it is P4-free.

Fact
A graph is a cograph if and only if it can be obtained from K1’s by a finite number of
union and join operations.

Note
The bottom-up construction of a cograph is often represented by a binary tree, namely
its cotree.

22



Results on Cographs

Both StarCover and StarPartition have:

O(n2) time algorithms for trivially perfect graphs ((C4,P4)-free graphs).

O(n2) time algorithms for co-trivially perfect graphs ((2K2,P4)-free graphs).

Linear time algorithms for threshold graphs ((C4, 2K2,P4)-free graphs).
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TRIVIALLY PERFECT GRAPHS

((C4,P4)-free Graphs)
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Trivially Perfect Graphs: Clique Tree Representation
Connected trivially perfect graphs are comparability graphs of rooted trees.

Clique trees are compressed forms of the underlying rooted trees.
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v9

v14

v4 v8
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internal-clique

root-clique

{v8, v9}

{v10, v11} {v12, v13}
{v14}

{v1, v2, v3}

{v4, v5} {v6, v7}
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Construction of a Clique Tree

a b

c d e f

g h i

{a, b}

{f }{c, d , e}

{g} {h, i}

1

a
0
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1 1

dc e
0
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1
1D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal

on Computing, 14 (4) (1985) 926-934.
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Lemma

Let G ≇ Kn be a connected trivially perfect graph and suppose that it is given by its
clique tree representation. Then any optimal star cover (partition) of G has a star with
the center alone from the root-clique of G .
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Proof

let {x , y} be any star from R and let {x1} ∪ I1 and {x2} ∪ I2 be two stars from two
different components of V \ R .
These three starts can be replaced by the two stars ({x} ∪ {x1, x2} and
{y} ∪ (I1 ∪ I2) of G .

I1 = {x3, x4, x5}
I2 = {x6, x7, x8}

{x,y}

{x1} {x2}

{x5}{x3} {x6} {x8}{x4} {x7}
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Note:

Let X = {x} ∪ I be any maximum star of a connected trivially perfect graph G that is
not a complete graph. Then the following hold:

1 The set I is a maximum independent set of G and consists of exactly one vertex
from each of the leaf-cliques of the clique-tree T (G ) so that the center x alone
belongs to the root-clique of T (G ).

2 Any star Z of G of size more than two has its center necessarily from some internal
clique of T (G ).
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Lemma

Let G be any connected trivially perfect graph that is not a complete graph. Then G
has an optimal star cover (partition) containing some maximum star of G .
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A Theorem Leading to Greedy Algorithms

Theorem

Let G be any connected trivially perfect graph. Then any maximum star of G belongs
to some optimal star cover (partition) of G .
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Algorithm for StarPartition on Trivially Perfect Graphs

Input: A trivially perfect graph G .
Output: A star partition C of G .

1 Set C = ∅.
2 While G is not the null graph, repeat the following:

▶ Pick a component H of G.
▶ Find a maximum star X of H.
▶ Set C = C ∪ {X}.
▶ Set G = G \ X.

3 Output C.
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Trivially Perfect Graphs
Execution of the Algorithm for Star Partition

1

1 11

44 4 3 3 3

1
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G

Therefore sp(G ) = 5.
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Theorem

StarPartition has an O(n2) time exact algorithm for trivially perfect graphs.
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StarCover on Trivially Perfect Graphs

Theorem

Let G = (V ,E ) be any connected trivially perfect graph and let X = {v} ∪ I be any
maximum induced star of G . Let H = G \ I if G \ X is disconnected and let H = G \ X
otherwise. Let C ′ be any optimal star cover of H. Then C = {X} ∪ C ′ is an optimal star
cover of G .
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When G \ X is Connected

1

1 11

33 3 2 2 2

1

G
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When G \ X is Not Connected

2 2 2

1

1 1 1

G
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Algorithm for StarCover on Trivially Perfect Graphs

Input: A trivially perfect graph G .
Output: A star cover C of G .

1 Set C = ∅.
2 While G is not the null graph, repeat the following:

▶ Pick a component H of G.
▶ Find a maximum star X = {x} ∪ I of H.
▶ Set C = C ∪ {X}.
▶ If H \ X is disconnected, set G = G \ I. Else set G = G \ X.

3 Output C.
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Trivially Perfect Graphs
Execution of the Algorithm for Star Cover
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Therefore sc(G ) = 3.
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Theorem

StarCover has an O(n2) time exact algorithm for trivially perfect graphs.
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CO-TRIVIALLY PERFECT GRAPHS

((2K2,P4)-free Graphs)
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Equivalence of StarCover and StarPartition on

Co-Trivially Perfect Graphs

Fact
If G is a co-trivially perfect graph, then sp(G ) = sc(G ).

Implication: Suffices to study any one of StarCover and StarPartition.
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Co-clique Forest Representation of (2K2,P4)-free Graphs
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{a, b, c}

{d , e} {f , g}

{h, i}
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Lemma
Let G be a connected (2K2,P4)-free graph. Suppose that G is given by its co-clique
forest representation. Then G has a minimum star partition C such that the centers of
stars in C are from the bottom most nodes of G .
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Complete Multipartite Graphs

L1 Lq Lq+1 Lq+2 Lp

G

Proposition

Let G = (L1, . . . , Lp) be a complete multipartite graph with |L1| ≤ . . . ≤ |Lp| and let q
be the largest integer such that |L1 ∪ L2 ∪ . . . ∪ Lq| ≤ p − q. Then sp(G ) = p − q.
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(2K2,P4)-free Graphs: A Lower Bound on sp(G )

Lemma

Let G ≇ K1 be a connected (2K2,P4)-free graph. Suppose that G is given by its
co-clique forest representation. Let L be a leaf node of smallest size in G and let
G ′ = L⊕ (G \ L). Then sp(G ′) ≤ sp(G ).

L

PL PL

L

G G ′
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Transformation of a (2K2,P4)-free Graph to a Specific Complete

Multipartite Graph

Let G be a (2K2,P4)-free graph.

And let G be transformed into the complete multipartite graph G ′.

L1

L1

L2

L1 L2

L3

L1 L2 L3L1 L2 L3 L4 L5 L6 L7 L8

G ′

By repeated application of the preceding lemma, sp(G ′) ≤ sp(G ).

Let p be the number of leaves in G .

Let q be the maximum value such that |L1|+ · · ·+ |Lq| ≤ p − q.

Then sp(G ) ≥ sp(G ′) = p − q.

Hence the lower bound for Star Partition on (2K2,P4)-free graphs is p − q.
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The Algorithm

Algorithm: Co-Trivially Perfect

Input: A connected (2K2,P4)-free graph in its co-clique forest representation.
Output: A star partition of G .

1 Compute the complete multipartite graph G ′ = (L1, . . . , Lp) from G by

repeatedly removing the least size leaf node and making it a

stand-alone co-clique tree.

2 Find the largest integer q such that |L1 ∪ L2 ∪ . . . ∪ Lq| ≤ p − q.

3 Color the vertices of G that are in L1 ∪ . . . ∪ Lq black and others

white.

4 Compute and output a star partition of G of size p − q (p − q + 1)
using vertices in L1 ∪ . . . ∪ Lq as centers.
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Properties of Black and White Nodes

If an internal node is black, then all of its children are black.

If an internal node is white but has a black child, then it also has a white child.

L2L6

L1

L4L7 L5

L3

Partition the co-clique forest G into sets W ,B and M :
▶ W consists of trees with only white nodes.
▶ B consists of trees with only black nodes.
▶ M consists of trees with both white and black nodes.
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Properties of Black and White Nodes

If an internal node is black, then all of its children are black.

If an internal node is white but has a black child, then it also has a white child.

L2L6

L1

L4L7 L5

L3

Partition the co-clique forest G into sets W ,B and M :
▶ W consists of trees with only white nodes.
▶ B consists of trees with only black nodes.
▶ M consists of trees with both white and black nodes.
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Computing the Star Partition

1 While M ̸= ϕ, form stars and separate black nodes.

2 While B ̸= ϕ, form stars with black vertices as centers and white vertices as
independent part.

3 While W ̸= ϕ, partition remaining white co-clique forest into stars.
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Algorithm with an example

L2L6

L1

L4L7 L5

L3

L2L6

L1

L4L7 L5

L3

L6

L1

L4L7 L5

L3

L6

L1

L4L7 L5

L3

L6 L4L7 L5

L3

L6 L4L7 L5

L3

L6 L7 L5

L3

M ̸= ϕ.

B ̸= ϕ.

W ̸= ϕ.

M = ϕ.

B = ϕ.

Now, number of stars = |L1|+ · · ·+ |Lq| = s.

Hence the solution size = s + ((p − q)− s) = p − q.
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All Black Nodes From Same Co-clique Tree

L1

L2L3 L4

L1

L2L3 L4

For this path we will use a white vertex from other tree.

Let s = |L1|+ · · ·+ |Lq|.
When B = ϕ, number of stars = s + 1.

If s = (p − q), then number of stars = p − q + 1.

If s < (p − q), then number of stars = (s + 1) + ((p − q)− (s + 1)) = p − q.
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Lemma
Let G be a connected (2K2,P4)-free graph. If L1, . . . , Lq are all necessarily from the
same tree T such that (T \ (L1 ∪ · · · ∪ Lq)) ̸= ϕ and |L1|+ · · ·+ |Lq| = p − q, then
sp(G ) > p − q.

Proof.
Suppose sp(G ) = p − q.

This implies at least q bottom parts of G must be used fully as centers.

This is possible only if the (p − q) = s centers are coming from T .

Also |T | > p − q.

This implies at least the vertices from root node of T are non-centers.

Hence sp(G ) > p − q.
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Theorem
Let G be a connected (2K2,P4)-free graph and suppose that it is given by its
co-clique tree representation.

Let G ′ = (L1, . . . , Lp) be the corresponding complete multipartite graph.

Let q be the largest integer such that |L1|+ · · ·+ |Lq| ≤ p − q.

If L1, . . . , Lq are all necessarily from the same tree T of size more than |L1 ∪ · · · ∪ Lq|
and |L1|+ · · ·+ |Lq| = p − q, then sp(G ) = p − q + 1. Else sp(G ) = p − q.
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THRESHOLD GRAPHS

((C4, 2K2,P4)-free Graphs)
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A Linear Time Algorithm for Threshold Graphs

Theorem

Let G be a connected threshold graph. Then sp(G ) = ⌈ω(G )/2⌉. Indeed G can be
partitioned into a clique and at most one star.

Moreover, an optimal star partition of G can be computed in linear time.
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Future Scope

1 Determine the computational complexity of StarCover and StarPartition
for cographs.
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