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Introduction Total Dominating Set

Definitions

Total Dominating Set

A set D ⊆ V (G ) is called a total dominating set of G if for vertex u ∈ V (G ),
there exists a vertex x ∈ D such that xu ∈ E (G )
i.e., |N(u) ∩ D| ≥ 1 for every u ∈ V (G ).

γt (G ) = min{|D| : D is a total dominating set in G}
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A graph GA graph G with a total dominating set D = {u, v , x , y}
and total domination number, γt (G ) = 4.

4



Introduction Total Dominating Set

Definitions

Total Dominating Set

A set D ⊆ V (G ) is called a total dominating set of G if for vertex u ∈ V (G ),
there exists a vertex x ∈ D such that xu ∈ E (G )
i.e., |N(u) ∩ D| ≥ 1 for every u ∈ V (G ).

γt (G ) = min{|D| : D is a total dominating set in G}

u v

u v

a

z

w

b

c

yx

b

c

yx

A graph G

A graph G with a total dominating set D = {u, v , x , y}
and total domination number, γt (G ) = 4.

4



Introduction Total Dominating Set

Definitions

Total Dominating Set

A set D ⊆ V (G ) is called a total dominating set of G if for vertex u ∈ V (G ),
there exists a vertex x ∈ D such that xu ∈ E (G )
i.e., |N(u) ∩ D| ≥ 1 for every u ∈ V (G ).

γt (G ) = min{|D| : D is a total dominating set in G}

u v

u v
a

z

w

b

c

yx

b

c

yx

A graph G

A graph G with a total dominating set D = {u, v , x , y}

and total domination number, γt (G ) = 4.

4



Introduction Total Dominating Set

Definitions

Total Dominating Set

A set D ⊆ V (G ) is called a total dominating set of G if for vertex u ∈ V (G ),
there exists a vertex x ∈ D such that xu ∈ E (G )
i.e., |N(u) ∩ D| ≥ 1 for every u ∈ V (G ).

γt (G ) = min{|D| : D is a total dominating set in G}

u v

u v
a

z

w

b

c

yx

b

c

yx

A graph G

A graph G with a total dominating set D = {u, v , x , y}
and total domination number, γt (G ) = 4.

4



Introduction Open Packing

Definitions

Open Packing

A set S ⊆ V (G ) is called an open packing in G if no two distinct vertices in S
have a common neighbour in G

=⇒ |S ∩ N(u)| ≤ 1 for every u ∈ V (G )

Open Packing Number, ρo(G ) = max{|S | : S is an open packing in G}

G : 1

2 5

7

63

4 8

S1 = {1, 7, 8}, S2 = {2, 8} and S3 = {3, 6} are some open packing in G .
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Introduction Open Packing

Duality

Given a graph G and a vertex subset D of G ,

D is a total dominating set in G ⇐⇒ |D ∩ N(x)| ≥ 1 for every x ∈ V (G )

D is an open packing in G ⇐⇒ |D ∩ N(x)| ≤ 1 for every x ∈ V (G )

=⇒ γt (G ) ≥ ρo(G )
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Introduction Open Packing

Computational Problems

Total Dominating Set (TDS)

Instance: A graph G (V ,E ) and a positive integer k ≤ |V (G )|.
Question: Is there a total dominating set of size k in G?

Min-Total Dominating Set

Instance : A graph G .
Task : Find γt (G ).

Open Packing

Instance: A graph G (V ,E ) and a positive integer k ≤ |V (G )|.
Question: Does G contain an open packing of size k?

Max-Open Packing

Instance : A graph G .
Task : Find ρo(G ).
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Introduction Open Packing

Known Results on Total Dominating Set

Total dominating set problem was introduced by Cockayne et al. (1980).

It is known that Total Dominating Set is NP-complete for

(a) bipartite graphs [Pfaff et al. (1983)]

(b) split graphs [Corneil and Perl (1984)]

(c) K1,3-free graphs [McRae (1995)]

The total dominating set is known to be polynomial time solvable on

(a) chordal bipartite graphs [Damaschke et al. (1990)]

(b) strongly chordal graphs [Chang (1988)].

Chleb́ık and Chleb́ıková (2008) proved that Min-Total Dominating Set
cannot be approximated within a factor of (1− ϵ) ln n for any ϵ > 0 on
bipartite graphs unless NP ⊆ Dtime(nO(log log n)).

Antony et al. (2023) proved that Total Dominating Set is NP-complete
for r-regular triangle-free graphs for every r ≥ 3.
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Introduction Open Packing

Known Results on Open Packing

Open packing in graphs was introduced by Henning and Slater (1999).

Rall (2005) proved that for a tree T with at least two vertices,
γt (T ) = ρo(T ).

We (Shalu and Kirubakaran (2023)) proved that γt (G ) = ρo(G ) when G is a
chordal bipartite graph with no isolated vertices and showed that a maximum
open packing in this class of graphs can be found in O(n3) time.

It is known that Open Packing is NP-complete for bipartite graphs [Shalu
et al. (2017)].

Ramos et al. (2014) showed that Open Packing is NP-complete for split
graphs with minimum degree at least two.

Relation between open packing number and other graph parameters such as
P3-radon number are also studied in the literature [Henning et al. (2013)].

3-independent set, subclique and injective coloring are some of the graph
related to open packing.
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H-free Graphs

H-free Graphs
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H-free Graphs

Results

(1.) Open Packing is NP-complete on K1,3-free graphs.

(2.) For every r ≥ 1 and for every connected (P4 ∪ rK1)-free graph G ,
ρo(G ) ≤ 2r + 1 (This bound is tight).

The above set of results eventually imply that

Theorem 1

For p ≥ 4, let H be a graph on p vertices. Then, Open Packing is polynomial
time solvable on the class of H-free graphs if and only if
H ∈ {pK1, (K2 ∪ (p − 2)K1), (P3 ∪ (p − 3)K1), (P4 ∪ (p − 4)K1)} unless NP = P.
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H-free Graphs

Observation 1

For p ≥ 4, let H be a graph on p vertices such that
H /∈{P4 ∪ (p − 4)K1,P3 ∪ (p − 3)K1,K2 ∪ (p − 2)K1, pK1}. Then, H contains H ′

for some H ′ ∈ {K3, 2K2,C4,K1,3,C5} as an induced subgraph.

Case 1: H ′ = K3.

Bipartite Graphs ⊆ K3-free graphs

Open Packing is NPC in bipartite
graphs [1,2]

=⇒ Open Packing is NPC in
K3-free graphs.

Case 2: H ′ ∈ {2K2,C4,C5}.
Split Graphs ⊆ H ′-free graphs.

Open Packing is NPC in split
graphs [3]

=⇒
Open Packing is NPC in

(i) 2K2-free graphs, (ii) C4-free
graphs and (iii) C5-free graphs.

So, if H contains H ′ ∈ {K3, 2K2,C4,C5}, then Open Packing is NP-complete in
H-free graphs

[1] - Shalu et al. (2017) [2] - Shalu and Kirubakaran (2023)
[3] - Ramos et al. (2014)
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H-free Graphs K1,3-free Graphs

K1,3-free Graphs

Theorem 2

Open Packing is NP-complete for K1,3-free graphs.

Independent Set

Instance: A simple graph G and a positive integer k ≤ |V (G )|.
Question: Does G contains an independent set of size k?

Karp (1972) proved that Independent Set is NP-complete for simple graphs.
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H-free Graphs K1,3-free Graphs

K1,3-free Graphs

Construction 1

Input: A simple graph G with V (G ) = {u1, u2, . . . , un}.
Output: A K1,3-free graph G ′.

Gaurantee: G has an independent set of size k if and only if G ′ has an
open packing of size k.

Procedure:

Step 1 : Replace each edge e = uu′ in G by a three vertex path ueu′ in G ′.

Step 2 : For every pair of edges e, e′ ∈ E (G ), add an edge ee′ in G ′ if e and
e′ are incident on a common vertex in G.

Step 3 : For every vertex ui ∈ V (G ) with exactly one edge, say e incident
on it in G, introduce a vertex vi and two edges uivi , vie in G ′.

The graph G ′ is K1,3-free.

Assume the contrary, that G ′ has a K1,3 with some vertex
x ∈ V (G ′) = V (G ) ∪ E (G ) ∪ {vi : 1 ≤ i ≤ n, dG (ui ) = 1} as centre.

x /∈ V (G ) ∪ {vi : 1 ≤ i ≤ n, dG (ui ) = 1} since NG ′(ui ) and NG ′(vi ) is a
clique.

x /∈ E (G ) because for all e = uu′ ∈ E (G ), NG ′ [e] = NG ′ [u] ∪ NG ′ [u′] is a
union of two cliques.

=⇒ no such x exists which is a contradiction.

Idea:

=⇒ S ⊆ V (G ) is an independent set in G if and only if S is an open packing in
G ′. (i.e., uv /∈ E (G ) ⇐⇒ NG ′(u) ∩ NG ′(v) = ∅ )

⇐= Suppose S is an open packing in G ′.

1 If vi ∈ S, then replace vi by ui in S.
2 If e = uu′ ∈ S, then no vertex having a common neighbour with u or u′ in G ′

is in S. Replace e either with u or u′ in S.

This completes the Guarantee of Construction 1.

u2

u3u5

u1

u4u6

e7

(a)G
e1

e2e6

e4

e5 e3

u1 e1 u2

e2

u3u5

e6

e3

e4

u4

e5

e7

u6

v6

(b)G ′
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H-free Graphs K1,3-free Graphs

K1,3-free Graphs

Theorem 3 (Håstard (1999))

Max-Independent Set cannot be approximated within a factor of n(1−ϵ) for
any ϵ > 0, in general graphs unless NP=P.

Theorem 4

Max-Open Packing is hard to approximate within a factor of N
1
2−ϵ for any

ϵ > 0 in K1,3-free graphs unless NP = P where N denotes the number of vertices
in a K1,3-free graph.

Theorem 4 follows from Theorem 3 and Construction 1.
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H-free Graphs K1,3-free Graphs

K1,3-free Graphs

Lemma 5 (Rall (2005))

Given a graph G, let the neighbourhood graph G [o] of G be a simple graph with
V (G [o]) = V (G ) and
E (G [o]) = {xy : x , y ∈ V (G ), x ̸= y and NG (x) ∩ NG (y) ̸= ∅}. Then, a vertex
subset S is an open packing in G if and only if S is an independent set in G [o].

Theorem 6 (Downey and Fellows (1995))

Independent Set parameterized by solution size is W[1]-complete on simple
graphs.

Theorem 7

Open Packing parameterized by solution size is W[1]-complete on K1,3-free
graphs.

Theorem 7 follows from Theorem 6, Lemma 5 and Construction 1.
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H-free Graphs K1,3-free Graphs

Observation 1

For p ≥ 4, let H be a graph on p vertices such that
H /∈{P4 ∪ (p − 4)K1,P3 ∪ (p − 3)K1,K2 ∪ (p − 2)K1, pK1}.
Then, H contains one of K3, 2K2,C4,K1,3 or C5 as an induced subgraph.

Known: Open Packing is NP-complete for (i) K3-free graphs, (ii) K1,3-free
graphs, (iii) C4-free graphs, (iv) 2K2-free graphs and (v) C5-free graphs.

Sufficiency Part of Theorem 1

For a graph H on p vertices with p ≥ 4, Open Packing is polynomial time
solvable in H-free graphs only if
H ∈ {P4 ∪ (p − 4)K1,P3 ∪ (p − 3)K1,K2 ∪ (p − 2)K1, pK1} unless NP = P.
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H-free Graphs (P4 ∪ rK1)-free Graphs

Necessary Part of Theorem 1

For p ≥ 4, if H ∈ {P4 ∪ (p − 4)K1,P3 ∪ (p − 3)K1,K2 ∪ (p − 2)K1, pK1}, then
Open Packing is polynomial time solvable in H-free graphs.

Note that (i) (P3 ∪ (p − 3)K1)-free graphs ⊆ (P4 ∪ (p − 3)K1)-free graphs

(ii) (K2 ∪ (p − 2)K1)-free graphs ⊆ (P4 ∪ (p − 3)K1)-free graphs

(iii) pK1-free graphs ⊆ (P4 ∪ (p − 2)K1)-free graphs

=⇒ To prove the necessary part, it is enough to show that Open Packing ∈ P
in the class of (P4 ∪ rK1)-free graphs for every r ≥ 0.
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H-free Graphs (P4 ∪ rK1)-free Graphs

(P4 ∪ rK1)-free Graphs

Lemma 8

Given a graph class G, if there exists k ∈ N such that ρo(G ) ≤ k for every G ∈ G,
then
(i) G contains at most O(nk) open packings and
(ii) all open packings in G can be computed in O(nk+1) time for every G ∈ G.
So, ρo(G ) can be computed in O(nk+1) time.

Lemma 9 (Folklore)

For connected P4-free graphs, ρo(G ) ≤ γt (G ) = 2.

k = 2

Lemma 10

For r ≥ 1, if G is a connected (P4 ∪ rK1)-free graph, then ρo(G ) ≤ 2r + 1.

k = 2r + 1
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H-free Graphs (P4 ∪ rK1)-free Graphs

Remark 1

The bound given in Lemma 10 is tight. An example for the case r = 3 is given
below.
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y2 z2
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Figure: A (P4 ∪ 3K1)-free graph G3

with an open packing S3 = {x1, x2, x3, y1, y2, y3, v} of
size 7 = (2(3) + 1).
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H-free Graphs (P4 ∪ rK1)-free Graphs

Theorem 1

For p ≥ 4, let H be a graph on p vertices. Then, Open Packing is polynomial
time solvable on the class of H-free graphs if and only if
H ∈ {pK1, (K2 ∪ (p − 2)K1), (P3 ∪ (p − 3)K1), (P4 ∪ (p − 4)K1)} unless NP = P.

Proved!
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Subclasses of Split Graphs

Subclasses of Split Graphs
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Subclasses of Split Graphs

Objective

Complexity comparision between Total Dominating Set and Open Packing

Graph Class Total Dominating Set Open Packing

Chordal Bipartite
Graphs

P [4] P [2]

H-free Graphs P/NP P/NP

Bipartite Graphs NPC [5] NPC [2,6]

Split Graphs NPC [7] NPC [3]

?
P NPC

?
NPC P

[2] - Shalu and Kirubakaran (2023) [3]- Ramos et al. (2014)
[4] - Damaschke et al. (1990) [5] - Pfaff et al. (1983)
[6] - Shalu et al. (2017) [7] - Corneil and Perl (1984)
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Subclasses of Split Graphs

Split Graphs

Split Graphs

K1,r -free Split Graphs Ir -Split Graphs

Split Graphs A graph G is called a split graph if there exists a partition

C ∪ I of the vertex set such that C is a clique and I is an independent set.

G (C ∪ I ,E ) is a K1,r -free split graph =⇒ |N(v) ∩ I | ≤ r − 1

for every vertex v ∈ C [8]

Ir -split graphs : Given r ≥ 1, a split graph G (C ∪ I ,E ) is said to be an

Ir -split graph if d(v) = r for every v ∈ I .

TDS is NPC in

K1,r -free split graphs for r ≥ 5 [9]

and is in P for r ≤ 4 by [8]

TDS is NPC in

I2-split graphs by [7]

[8]-Renjith and Sadagopan (2020) [9]-White et al. (1985)
[7]-Corneil and Perl (1984)
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[7]-Corneil and Perl (1984)
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Subclasses of Split Graphs

Dichotomy Results

1 Open Packing is NPC in K1,r -free split graphs for r ≥ 4 and is polynomial
time solvable for r ≤ 3.

2 Open Packing is NPC in Ir -split graphs for r ≥ 3 and is polynomial time
solvable for r ≤ 2.
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Subclasses of Split Graphs K1,r -free Split Graphs

K1,4-free Split Graphs

Theorem 11

Open Packing is NP-complete on K1,4-free split graphs.

Independent Set

Instance: A simple graph G and a positive integer k ≤ |V (G )|.
Question: Is there an independent set of size k in G?

Karp (1972) proved that Independent Set is NP-complete for simple graphs.
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Subclasses of Split Graphs K1,r -free Split Graphs

Construction 2

Input: A simple graph G.

Output: A K1,4-free split graph G ′.
Gaurantee: G has an independent set of size k if and only if G ′ has a

open packing of size k + 1.

Procedure:

Step 1 : Replace each edge e = uu′ in G by a three vertex path ueu′ in G ′.

Step 2 : Introduce three new vertices x, y , z and two edges xy , xz in G ′.
Step 3 : Make E (G ) ∪ {y , z} a clique in G ′.

u1

u2

u3u4

u5

u6
e4

e3

e2

e1

e5

e6
e7

G

u2
e1

u1

u3
e2

e5
u5

e4
u4

e3

e6

u6e7

y

xz

Clique Independent Set
G ′
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Subclasses of Split Graphs K1,r -free Split Graphs

K1,3-free Split Graphs

Theorem 12

Open Packing is polynomial time solvable in K1,3-free split graphs.

Proof (Outline)

Let G (C ∪ I ,E ) be a K1,3-free split graph.
Then, |N(u) ∩ I | ≤ 2 for every u ∈ C .
Case 1: |N(u) ∩ I | ≤ 1 for every u ∈ C .

Then, ρo(G ) =

{
2 if |I | = 1 and d(u) = 1 for u ∈ I

|I | Otherwise

Case 2: There exists u ∈ C such that |N(u) ∩ I | = 2.

Hence, ρo(G ) =


2 if ∃u, v ∈ I such that N(u) ∩ N(v) = ∅

or ∃u ∈ I such that d(u) = 1

1 otherwise
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Subclasses of Split Graphs Ir -Split Graphs

Ir -Split Graphs

Theorem 13

Open Packing is NP-complete on Ir -split graphs for r ≥ 3.

For r ≥ 3,

r -Dimensional Matching ≤P Open Packing in Ir -Split Graphs

Theorem 14

Open Packing is polynomial time solvable on Ir -split graphs for r ≤ 2.

For r ≤ 2, Open Packing in Ir -Split Graphs ≤P Matching in graphs
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Subclasses of Split Graphs Ir -Split Graphs

Ir -Split Graphs

Theorem 15

Total Dominating Set is NP-complete on Ir -split graphs for r ≥ 2.

For r ≥ 2,

r -Hitting Set ≤P Total Dominating Set in Ir -Split Graphs

Theorem 16

The total domination number of a I1-split graph G (C ∪ I ,E ) is max{2, |I |}.
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Subclasses of Split Graphs Ir -Split Graphs

Complexity

Complexity comparision between Total Dominating Set and Open Packing

Graph Class Total Dominating Set Open Packing

Chordal Bipartite Graphs P [4] P [2]

H-free Graphs P/NP P/NP

Bipartite Graphs NPC [5] NPC [2,6]

Split Graphs NPC [7] NPC [3]

K1,4-free Split Graphs P [8] NPC

I2-Split Graphs NPC [7] P

[2] - Shalu and Kirubakaran (2023) [3]- Ramos et al. (2014)
[4] - Damaschke et al. (1990) [5] - Pfaff et al. (1983)
[6] - Shalu et al. (2017) [7] - Corneil and Perl (1984)
[8] - Renjith and Sadagopan (2020)
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Conclusion

Conclusion
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Conclusion

Future Scope

We proved that γt (G ) ≤ 2r + 2 for a (P4 ∪ rK1)-free graph.

This implies that
γt (G )− ρo(G ) ≤ 2r + 1. Can this bound be improved?

Complexity of Total Dominating Set and Open Packing in subclasses
of split graphs when regularity is imposed on

(a) the clique set and

(b) both the clique set and the independent set

of the clique-independence partition of split graph.
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