Open Packing in *H*-free Graphs and Some Subclasses of Split Graphs

M. A. Shalu

V. K. Kirubakaran

10th Annual International Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2024),

Indian Institute Technology, Bhilai

February 17, 2024

Outline

Introduction

- Total Dominating Set
- Open Packing
- 2 H-free Graphs
 - K_{1,3}-free Graphs
 - $(P_4 \cup rK_1)$ -free Graphs
- Subclasses of Split Graphs
 - K_{1,r}-free Split Graphs
 - *I_r*-Split Graphs

Conclusion

Introduction

Total Dominating Set

Definitions

Total Dominating Set

A set $D \subseteq V(G)$ is called a total dominating set of G if for vertex $u \in V(G)$, there exists a vertex $x \in D$ such that $xu \in E(G)$ i.e., $|N(u) \cap D| \ge 1$ for every $u \in V(G)$.

 $\gamma_t(G) = \min\{|D| : D \text{ is a total dominating set in } G\}$

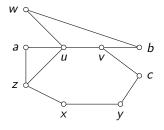
Total Dominating Set

Definitions

Total Dominating Set

A set $D \subseteq V(G)$ is called a total dominating set of G if for vertex $u \in V(G)$, there exists a vertex $x \in D$ such that $xu \in E(G)$ i.e., $|N(u) \cap D| \ge 1$ for every $u \in V(G)$.

 $\gamma_t(G) = \min\{|D| : D \text{ is a total dominating set in } G\}$



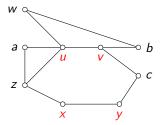
A graph G

Definitions

Total Dominating Set

A set $D \subseteq V(G)$ is called a total dominating set of G if for vertex $u \in V(G)$, there exists a vertex $x \in D$ such that $xu \in E(G)$ i.e., $|N(u) \cap D| \ge 1$ for every $u \in V(G)$.

 $\gamma_t(G) = \min\{|D| : D \text{ is a total dominating set in } G\}$



A graph G with a total dominating set $D = \{u, v, x, y\}$

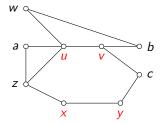
Total Dominating Set

Definitions

Total Dominating Set

A set $D \subseteq V(G)$ is called a total dominating set of G if for vertex $u \in V(G)$, there exists a vertex $x \in D$ such that $xu \in E(G)$ i.e., $|N(u) \cap D| \ge 1$ for every $u \in V(G)$.

 $\gamma_t(G) = \min\{|D| : D \text{ is a total dominating set in } G\}$



A graph G with a total dominating set $D = \{u, v, x, y\}$ and total domination number, $\gamma_t(G) = 4$.

Open Packing

Definitions

Open Packing

A set $S \subseteq V(G)$ is called an open packing in G if no two distinct vertices in S have a common neighbour in G

Open Packing Number, $\rho^{o}(G) = \max\{|S| : S \text{ is an open packing in } G\}$

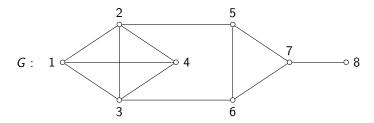
Open Packing

Definitions

Open Packing

A set $S \subseteq V(G)$ is called an open packing in G if no two distinct vertices in S have a common neighbour in G

Open Packing Number, $\rho^{o}(G) = \max\{|S| : S \text{ is an open packing in } G\}$



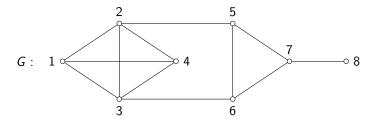
 $S_1=\{1,7,8\},~S_2=\{2,8\}$ and $S_3=\{3,6\}$ are some open packing in G.

Definitions

Open Packing

A set $S \subseteq V(G)$ is called an open packing in G if no two distinct vertices in S have a common neighbour in $G \implies |S \cap N(u)| \le 1$ for every $u \in V(G)$

Open Packing Number, $\rho^o(G) = \max\{|S| : S \text{ is an open packing in } G\}$



 $S_1=\{1,7,8\},~S_2=\{2,8\}$ and $S_3=\{3,6\}$ are some open packing in G.

Duality

- Given a graph G and a vertex subset D of G,
 - D is a total dominating set in $G \iff |D \cap N(x)| \ge 1$ for every $x \in V(G)$
 - *D* is an open packing in *G* \iff $|D \cap N(x)| \le 1$ for every $x \in V(G)$

Duality

- Given a graph G and a vertex subset D of G,
 - D is a total dominating set in $G \iff |D \cap N(x)| \ge 1$ for every $x \in V(G)$
 - *D* is an open packing in *G* \iff $|D \cap N(x)| \le 1$ for every $x \in V(G)$

 $\implies \gamma_{_t}(G) \ge \rho^o(G)$

Computational Problems

TOTAL DOMINATING SET (TDS)

Instance: A graph G(V, E) and a positive integer $k \le |V(G)|$. Question: Is there a total dominating set of size k in G?

Open Packing

Instance: A graph G(V, E) and a positive integer $k \le |V(G)|$. Question: Does G contain an open packing of size k?

Computational Problems

TOTAL DOMINATING SET (TDS)

Instance: A graph G(V, E) and a positive integer $k \le |V(G)|$. Question: Is there a total dominating set of size k in G?

MIN-TOTAL DOMINATING SET

Instance : A graph G. Task : Find $\gamma_t(G)$.

OPEN PACKING

Instance: A graph G(V, E) and a positive integer $k \le |V(G)|$. Question: Does G contain an open packing of size k?

MAX-OPEN PACKING

Instance : A graph G. Task : Find $\rho^{o}(G)$.

• Total dominating set problem was introduced by Cockayne et al. (1980).

- Total dominating set problem was introduced by Cockayne et al. (1980).
- \bullet It is known that TOTAL DOMINATING SET is NP-complete for
 - (a) bipartite graphs [Pfaff et al. (1983)]
 - (b) split graphs [Corneil and Perl (1984)]
 - (c) $K_{1,3}$ -free graphs [McRae (1995)]

- Total dominating set problem was introduced by Cockayne et al. (1980).
- \bullet It is known that TOTAL DOMINATING SET is NP-complete for
 - (a) bipartite graphs [Pfaff et al. (1983)]
 - (b) split graphs [Corneil and Perl (1984)]
 - (c) $K_{1,3}$ -free graphs [McRae (1995)]
- The total dominating set is known to be polynomial time solvable on

 (a) chordal bipartite graphs [Damaschke et al. (1990)]
 (b) strengty chordal graphs [Chang (1982)]
 - (b) strongly chordal graphs [Chang (1988)].

- Total dominating set problem was introduced by Cockayne et al. (1980).
- \bullet It is known that TOTAL DOMINATING SET is NP-complete for
 - (a) bipartite graphs [Pfaff et al. (1983)]
 - (b) split graphs [Corneil and Perl (1984)]
 - (c) $K_{1,3}$ -free graphs [McRae (1995)]
- The total dominating set is known to be polynomial time solvable on
 (a) chordal bipartite graphs [Damaschke et al. (1990)]
 (b) strongly chordal graphs [Chang (1988)].
- Chlebík and Chlebíková (2008) proved that MIN-TOTAL DOMINATING SET cannot be approximated within a factor of $(1 \epsilon) \ln n$ for any $\epsilon > 0$ on bipartite graphs unless $NP \subseteq Dtime(n^{O(\log \log n)})$.

- Total dominating set problem was introduced by Cockayne et al. (1980).
- \bullet It is known that TOTAL Dominating Set is NP-complete for
 - (a) bipartite graphs [Pfaff et al. (1983)]
 - (b) split graphs [Corneil and Perl (1984)]
 - (c) K_{1,3}-free graphs [McRae (1995)]
- The total dominating set is known to be polynomial time solvable on
 (a) chordal bipartite graphs [Damaschke et al. (1990)]
 (b) strongly chordal graphs [Chang (1988)].
- Chlebík and Chlebíková (2008) proved that MIN-TOTAL DOMINATING SET cannot be approximated within a factor of $(1 \epsilon) \ln n$ for any $\epsilon > 0$ on bipartite graphs unless $NP \subseteq Dtime(n^{O(\log \log n)})$.
- Antony et al. (2023) proved that TOTAL DOMINATING SET is NP-complete for r-regular triangle-free graphs for every $r \ge 3$.

• Open packing in graphs was introduced by Henning and Slater (1999).

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.
- We (Shalu and Kirubakaran (2023)) proved that $\gamma_t(G) = \rho^o(G)$ when G is a chordal bipartite graph with no isolated vertices and showed that a maximum open packing in this class of graphs can be found in $O(n^3)$ time.

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.
- We (Shalu and Kirubakaran (2023)) proved that $\gamma_t(G) = \rho^o(G)$ when G is a chordal bipartite graph with no isolated vertices and showed that a maximum open packing in this class of graphs can be found in $O(n^3)$ time.
- It is known that OPEN PACKING is NP-complete for bipartite graphs [Shalu et al. (2017)].

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.
- We (Shalu and Kirubakaran (2023)) proved that $\gamma_t(G) = \rho^o(G)$ when G is a chordal bipartite graph with no isolated vertices and showed that a maximum open packing in this class of graphs can be found in $O(n^3)$ time.
- It is known that OPEN PACKING is NP-complete for bipartite graphs [Shalu et al. (2017)].
- Ramos et al. (2014) showed that OPEN PACKING is NP-complete for split graphs with minimum degree at least two.

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.
- We (Shalu and Kirubakaran (2023)) proved that $\gamma_t(G) = \rho^o(G)$ when G is a chordal bipartite graph with no isolated vertices and showed that a maximum open packing in this class of graphs can be found in $O(n^3)$ time.
- It is known that OPEN PACKING is NP-complete for bipartite graphs [Shalu et al. (2017)].
- Ramos et al. (2014) showed that OPEN PACKING is NP-complete for split graphs with minimum degree at least two.
- Relation between open packing number and other graph parameters such as P_3 -radon number are also studied in the literature [Henning et al. (2013)].

- Open packing in graphs was introduced by Henning and Slater (1999).
- Rall (2005) proved that for a tree T with at least two vertices, $\gamma_t(T) = \rho^o(T)$.
- We (Shalu and Kirubakaran (2023)) proved that $\gamma_t(G) = \rho^o(G)$ when G is a chordal bipartite graph with no isolated vertices and showed that a maximum open packing in this class of graphs can be found in $O(n^3)$ time.
- It is known that OPEN PACKING is NP-complete for bipartite graphs [Shalu et al. (2017)].
- Ramos et al. (2014) showed that OPEN PACKING is NP-complete for split graphs with minimum degree at least two.
- Relation between open packing number and other graph parameters such as P_3 -radon number are also studied in the literature [Henning et al. (2013)].
- 3-independent set, subclique and injective coloring are some of the graph related to open packing.

Results

- (1.) OPEN PACKING is NP-complete on $K_{1,3}$ -free graphs.
- (2.) For every $r \ge 1$ and for every connected $(P_4 \cup rK_1)$ -free graph G, $\rho^o(G) \le 2r + 1$ (This bound is tight).

Results

- (1.) OPEN PACKING is NP-complete on $K_{1,3}$ -free graphs.
- (2.) For every $r \ge 1$ and for every connected $(P_4 \cup rK_1)$ -free graph G, $\rho^{\circ}(G) \le 2r + 1$ (This bound is tight).

The above set of results eventually imply that

Theorem 1

For $p \ge 4$, let H be a graph on p vertices. Then, OPEN PACKING is polynomial time solvable on the class of H-free graphs if and only if $H \in \{pK_1, (K_2 \cup (p-2)K_1), (P_3 \cup (p-3)K_1), (P_4 \cup (p-4)K_1)\}$ unless NP = P.

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$. Then, H contains H'for some $H' \in \{K_3, 2K_2, C_4, K_{1,3}, C_5\}$ as an induced subgraph.

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$. Then, H contains H'for some $H' \in \{K_3, 2K_2, C_4, K_{1,3}, C_5\}$ as an induced subgraph.

Case 1: $H' = K_3$.

Bipartite Graphs $\subseteq K_3$ -free graphs

 $\frac{\rm OPEN\ PACKING\ is\ NPC\ in\ bipartite}{\rm graphs\ [1,2]} =$

OPEN PACKING is NPC in K_3 -free graphs.

[1] - Shalu et al. (2017) [2] - Shalu and Kirubakaran (2023)

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$. Then, H contains H'for some $H' \in \{K_3, 2K_2, C_4, K_{1,3}, C_5\}$ as an induced subgraph.

Case 1: $H' = K_3$. Bipartite Graphs $\subset K_3$ -free graphs OPEN PACKING is NPC in bipartite **OPEN PACKING is NPC in** graphs [1,2] K_3 -free graphs. Case 2: $H' \in \{2K_2, C_4, C_5\}$. Split Graphs \subset *H*'-free graphs. **OPEN PACKING is NPC in OPEN PACKING is NPC in split** (i) $2K_2$ -free graphs, (ii) C_4 -free \implies graphs [3] graphs and (iii) C_5 -free graphs.

[1] - Shalu et al. (2017)
[2] - Shalu and Kirubakaran (2023)
[3] - Ramos et al. (2014)

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$. Then, H contains H'for some $H' \in \{K_3, 2K_2, C_4, K_{1,3}, C_5\}$ as an induced subgraph.

Case 1: $H' = K_3$. Bipartite Graphs $\subseteq K_3$ -free graphs OPEN PACKING is NPC in bipartite graphs [1,2] \Longrightarrow OPEN PACKING is NPC in K_3 -free graphs. Case 2: $H' \in \{2K_2, C_4, C_5\}$. Split Graphs $\subseteq H'$ -free graphs. OPEN PACKING is NPC in split graphs [3] \Longrightarrow OPEN PACKING is NPC in (i) $2K_2$ -free graphs, (ii) C_4 -free graphs and (iii) C_5 -free graphs.

So, if *H* contains $H' \in \{K_3, 2K_2, C_4, C_5\}$, then OPEN PACKING is NP-complete in *H*-free graphs

[1] - Shalu et al. (2017) [2] - Shalu and Kirubakaran (2023)

[3] - Ramos et al. (2014)

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$. Then, H contains H'for some $H' \in \{K_3, 2K_2, C_4, K_{1,3}, C_5\}$ as an induced subgraph.

Case 1: $H' = K_3$. Bipartite Graphs $\subseteq K_3$ -free graphs OPEN PACKING is NPC in bipartite graphs [1,2] \Longrightarrow OPEN PACKING is NPC in K_3 -free graphs. Case 2: $H' \in \{2K_2, C_4, C_5\}$. Split Graphs $\subseteq H'$ -free graphs. OPEN PACKING is NPC in split graphs [3] \Longrightarrow OPEN PACKING is NPC in (i) $2K_2$ -free graphs, (ii) C_4 -free graphs and (iii) C_5 -free graphs.

So, if *H* contains $H' \in \{K_3, 2K_2, C_4, C_5\}$, then OPEN PACKING is NP-complete in *H*-free graphs

[1] - Shalu et al. (2017) [2] - Shalu and Kirubakaran (2023)

[3] - Ramos et al. (2014)

*K*_{1,3}-free Graphs

Theorem 2

OPEN PACKING is NP-complete for $K_{1,3}$ -free graphs.

$K_{1,3}$ -free Graphs

Theorem 2

OPEN PACKING is NP-complete for $K_{1,3}$ -free graphs.

INDEPENDENT SET

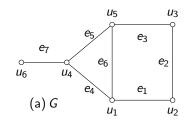
```
Instance: A simple graph G and a positive integer k \leq |V(G)|.
```

Question: Does G contains an independent set of size k?

Karp (1972) proved that INDEPENDENT SET is NP-complete for simple graphs.

Construction 1

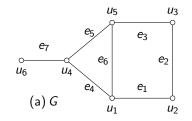
Input: A simple graph G with $V(G) = \{u_1, u_2, ..., u_n\}$. Output: A $K_{1,3}$ -free graph G'.



K_{1,3}-free Graphs

Construction 1

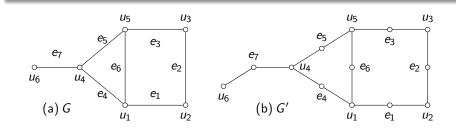
Input: A simple graph G with $V(G) = \{u_1, u_2, ..., u_n\}$. Output: A $K_{1,3}$ -free graph G'. Gaurantee: G has an independent set of size k if and only if G' has an open packing of size k.



Construction 1

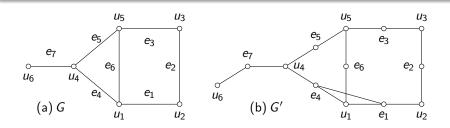
Procedure:

Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.



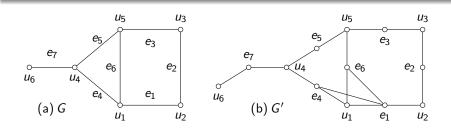
Construction 1

- Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.



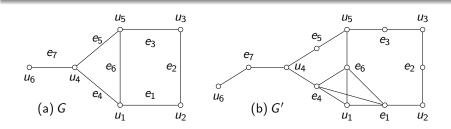
Construction 1

- Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.



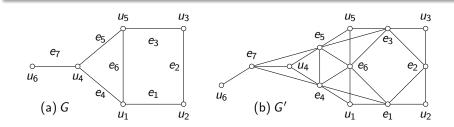
Construction 1

- Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.



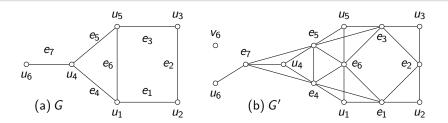
Construction 1

- Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.



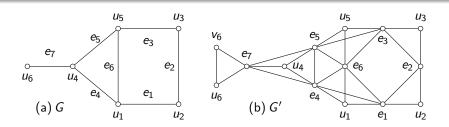
Construction 1

- Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.
- Step 3: For every vertex $u_i \in V(G)$ with exactly one edge, say e incident on it in G, introduce a vertex v_i and two edges u_iv_i, v_ie in G'.



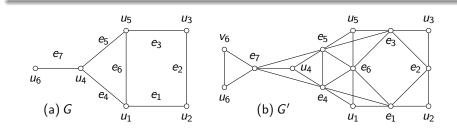
Construction 1

- Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: For every pair of edges $e, e' \in E(G)$, add an edge ee' in G' if e and e' are incident on a common vertex in G.
- Step 3: For every vertex $u_i \in V(G)$ with exactly one edge, say e incident on it in G, introduce a vertex v_i and two edges u_iv_i, v_ie in G'.



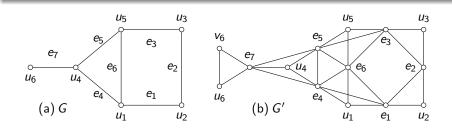
Construction 1

The graph G' is $K_{1,3}$ -free.



Construction 1

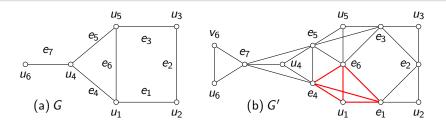
The graph G' is $K_{1,3}$ -free. Assume the contrary, that G' has a $K_{1,3}$ with some vertex $x \in V(G') = V(G) \cup E(G) \cup \{v_i : 1 \le i \le n, d_G(u_i) = 1\}$ as centre.



Construction 1

The graph G' is $K_{1,3}$ -free. Assume the contrary, that G' has a $K_{1,3}$ with some vertex $x \in V(G') = V(G) \cup E(G) \cup \{v_i : 1 \le i \le n, d_G(u_i) = 1\}$ as centre.

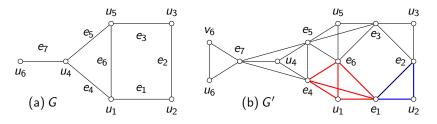
• $x \notin V(G) \cup \{v_i : 1 \le i \le n, d_G(u_i) = 1\}$ since $N_{G'}(u_i)$ and $N_{G'}(v_i)$ is a clique.



Construction 1

The graph G' is $K_{1,3}$ -free. Assume the contrary, that G' has a $K_{1,3}$ with some vertex $x \in V(G') = V(G) \cup E(G) \cup \{v_i : 1 \le i \le n, d_G(u_i) = 1\}$ as centre.

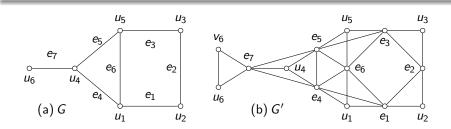
- $x \notin V(G) \cup \{v_i : 1 \le i \le n, d_G(u_i) = 1\}$ since $N_{G'}(u_i)$ and $N_{G'}(v_i)$ is a clique.
- $x \notin E(G)$ because for all $e = uu' \in E(G)$, $N_{G'}[e] = N_{G'}[u] \cup N_{G'}[u']$ is a union of two cliques.
- \implies no such x exists which is a contradiction.



Construction 1

Idea:

 $\implies S \subseteq V(G) \text{ is an independent set in } G \text{ if and only if } S \text{ is an open packing in } G'. (i.e., uv \notin E(G) \iff N_{G'}(u) \cap N_{G'}(v) = \emptyset)$

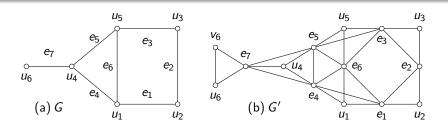


Construction 1

Idea:

 $\implies S \subseteq V(G) \text{ is an independent set in } G \text{ if and only if } S \text{ is an open packing in } G'. (i.e., uv \notin E(G) \iff N_{G'}(u) \cap N_{G'}(v) = \emptyset)$

 \iff Suppose S is an open packing in G'.



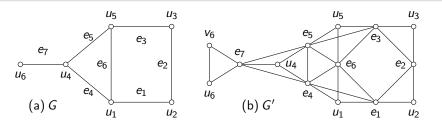
Construction 1

Idea:

 $\implies S \subseteq V(G) \text{ is an independent set in } G \text{ if and only if } S \text{ is an open packing in } G'. (i.e., uv \notin E(G) \iff N_{G'}(u) \cap N_{G'}(v) = \emptyset)$

 \Leftarrow Suppose S is an open packing in G'.

1 If $v_i \in S$, then replace v_i by u_i in S.



Construction 1

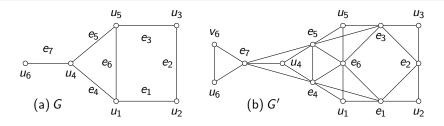
Idea:

 $\implies S \subseteq V(G) \text{ is an independent set in } G \text{ if and only if } S \text{ is an open packing in} \\ G'. (i.e., uv \notin E(G) \iff N_{G'}(u) \cap N_{G'}(v) = \emptyset)$

 \leftarrow Suppose S is an open packing in G'.

- **1** If $v_i \in S$, then replace v_i by u_i in S.
- If e = uu' ∈ S, then no vertex having a common neighbour with u or u' in G' is in S. Replace e either with u or u' in S.

This completes the Guarantee of Construction 1.



Theorem 4

MAX-OPEN PACKING is hard to approximate within a factor of $N^{\frac{1}{2}-\epsilon}$ for any $\epsilon > 0$ in $K_{1,3}$ -free graphs unless NP = P where N denotes the number of vertices in a $K_{1,3}$ -free graph.

Theorem 3 (Håstard (1999))

MAX-INDEPENDENT SET cannot be approximated within a factor of $n^{(1-\epsilon)}$ for any $\epsilon > 0$, in general graphs unless NP=P.

Theorem 4

MAX-OPEN PACKING is hard to approximate within a factor of $N^{\frac{1}{2}-\epsilon}$ for any $\epsilon > 0$ in $K_{1,3}$ -free graphs unless NP = P where N denotes the number of vertices in a $K_{1,3}$ -free graph.

Theorem 4 follows from Theorem 3 and Construction 1.

Theorem 7

OPEN PACKING parameterized by solution size is W[1]-complete on $K_{1,3}$ -free graphs.

Lemma 5 (Rall (2005))

Given a graph G, let the neighbourhood graph $G^{[o]}$ of G be a simple graph with $V(G^{[o]}) = V(G)$ and $E(G^{[o]}) = \{xy : x, y \in V(G), x \neq y \text{ and } N_G(x) \cap N_G(y) \neq \emptyset\}$. Then, a vertex subset S is an open packing in G if and only if S is an independent set in $G^{[o]}$.

Theorem 6 (Downey and Fellows (1995))

INDEPENDENT SET parameterized by solution size is W[1]-complete on simple graphs.

Theorem 7

OPEN PACKING parameterized by solution size is W[1]-complete on $K_{1,3}$ -free graphs.

Theorem 7 follows from Theorem 6, Lemma 5 and Construction 1.

Observation 1

For $p \ge 4$, let H be a graph on p vertices such that $H \notin \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}.$ Then, H contains one of $K_3, 2K_2, C_4, K_{1,3}$ or C_5 as an induced subgraph.

Known: OPEN PACKING is NP-complete for (i) K_3 -free graphs, (ii) $K_{1,3}$ -free graphs, (iii) C_4 -free graphs, (iv) $2K_2$ -free graphs and (v) C_5 -free graphs.

Sufficiency Part of Theorem 1

For a graph H on p vertices with $p \ge 4$, OPEN PACKING is polynomial time solvable in H-free graphs only if $H \in \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$ unless NP = P.

Necessary Part of Theorem 1

For $p \ge 4$, if $H \in \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$, then OPEN PACKING is polynomial time solvable in *H*-free graphs.

Necessary Part of Theorem 1

For $p \ge 4$, if $H \in \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$, then OPEN PACKING is polynomial time solvable in *H*-free graphs.

Note that (i) $(P_3 \cup (p-3)K_1)$ -free graphs $\subseteq (P_4 \cup (p-3)K_1)$ -free graphs (ii) $(K_2 \cup (p-2)K_1)$ -free graphs $\subseteq (P_4 \cup (p-3)K_1)$ -free graphs (iii) pK_1 -free graphs $\subseteq (P_4 \cup (p-2)K_1)$ -free graphs

Necessary Part of Theorem 1

For $p \ge 4$, if $H \in \{P_4 \cup (p-4)K_1, P_3 \cup (p-3)K_1, K_2 \cup (p-2)K_1, pK_1\}$, then OPEN PACKING is polynomial time solvable in *H*-free graphs.

Note that (i)
$$(P_3 \cup (p-3)K_1)$$
-free graphs $\subseteq (P_4 \cup (p-3)K_1)$ -free graphs
(ii) $(K_2 \cup (p-2)K_1)$ -free graphs $\subseteq (P_4 \cup (p-3)K_1)$ -free graphs
(iii) pK_1 -free graphs $\subseteq (P_4 \cup (p-2)K_1)$ -free graphs

⇒ To prove the necessary part, it is enough to show that OPEN PACKING \in P in the class of ($P_4 \cup rK_1$)-free graphs for every $r \ge 0$.

$(P_4 \cup rK_1)$ -free Graphs

Lemma 8

Given a graph class \mathcal{G} , if there exists $k \in \mathbb{N}$ such that $\rho^{o}(G) \leq k$ for every $G \in \mathcal{G}$, then

(i) G contains at most $O(n^k)$ open packings and

(ii) all open packings in G can be computed in $O(n^{k+1})$ time for every $G \in \mathcal{G}$.

So, $\rho^{o}(G)$ can be computed in $O(n^{k+1})$ time.

$(P_4 \cup rK_1)$ -free Graphs

Lemma 8

Given a graph class \mathcal{G} , if there exists $k \in \mathbb{N}$ such that $\rho^{\circ}(G) \leq k$ for every $G \in \mathcal{G}$, then

(i) G contains at most $O(n^k)$ open packings and

(ii) all open packings in G can be computed in $O(n^{k+1})$ time for every $G \in \mathcal{G}$. So, $\rho^{o}(G)$ can be computed in $O(n^{k+1})$ time.

Lemma 9 (Folklore)

For connected P₄-free graphs, $\rho^{o}(G) \leq \gamma_{t}(G) = 2$.

Lemma 10

For $r \ge 1$, if G is a connected $(P_4 \cup rK_1)$ -free graph, then $\rho^{\circ}(G) \le 2r + 1$.

$(P_4 \cup rK_1)$ -free Graphs

Lemma 8

Given a graph class \mathcal{G} , if there exists $k \in \mathbb{N}$ such that $\rho^{\circ}(G) \leq k$ for every $G \in \mathcal{G}$, then

(i) G contains at most $O(n^k)$ open packings and

(ii) all open packings in G can be computed in $O(n^{k+1})$ time for every $G \in \mathcal{G}$. So, $\rho^{\circ}(G)$ can be computed in $O(n^{k+1})$ time.

Lemma 9 (Folklore)

For connected P₄-free graphs, $\rho^{o}(G) \leq \gamma_{t}(G) = 2$.

$$k = 2$$

Lemma 10

For $r \ge 1$, if G is a connected $(P_4 \cup rK_1)$ -free graph, then $\rho^o(G) \le 2r + 1$.

k = 2r + 1

Remark 1

The bound given in Lemma 10 is tight. An example for the case r = 3 is given below.

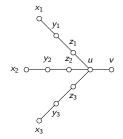


Figure: A $(P_4 \cup 3K_1)$ -free graph G_3

Remark 1

The bound given in Lemma 10 is tight. An example for the case r = 3 is given below.

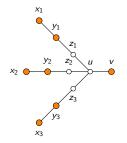


Figure: A $(P_4 \cup 3K_1)$ -free graph G_3 with an open packing $S_3 = \{x_1, x_2, x_3, y_1, y_2, y_3, v\}$ of size 7 = (2(3) + 1).

Theorem 1

For $p \ge 4$, let H be a graph on p vertices. Then, OPEN PACKING is polynomial time solvable on the class of H-free graphs if and only if $H \in \{pK_1, (K_2 \cup (p-2)K_1), (P_3 \cup (p-3)K_1), (P_4 \cup (p-4)K_1)\}$ unless NP = P.

Proved!

Subclasses of Split Graphs

Subclasses of Split Graphs

Objective

Complexity comparision between TOTAL DOMINATING SET and OPEN PACKING

Graph Class	Total Dominating Set	Open Packing
Chordal Bipartite Graphs	P [4]	P [2]
H-free Graphs	P/NP	P/NP
Bipartite Graphs	NPC [5]	NPC [2,6]
Split Graphs	NPC [7]	NPC [3]

- [2] Shalu and Kirubakaran (2023)
- [4] Damaschke et al. (1990)
- [6] Shalu et al. (2017)

- [3]- Ramos et al. (2014)
- [5] Pfaff et al. (1983)
- [7] Corneil and Perl (1984)

Objective

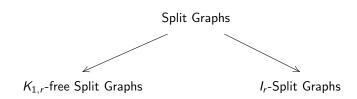
Complexity comparision between TOTAL DOMINATING SET and OPEN PACKING

Graph Class	Total Dominating Set	Open Packing
Chordal Bipartite Graphs	P [4]	P [2]
H-free Graphs	P/NP	P/NP
Bipartite Graphs	NPC [5]	NPC [2,6]
Split Graphs	NPC [7]	NPC [3]
2	Р	NPC
?	NPC	Р

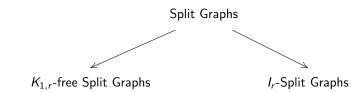
- [2] Shalu and Kirubakaran (2023)
- [4] Damaschke et al. (1990)
- [6] Shalu et al. (2017)

- [3]- Ramos et al. (2014)
- [5] Pfaff et al. (1983)
- [7] Corneil and Perl (1984)

Split Graphs

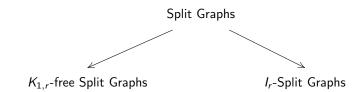


Split Graphs



Split Graphs A graph G is called a split graph if there exists a partition $C \cup I$ of the vertex set such that C is a clique and I is an independent set.

Split Graphs

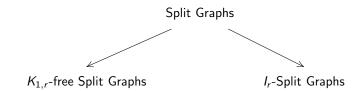


Split Graphs A graph G is called a split graph if there exists a partition $C \cup I$ of the vertex set such that C is a clique and I is an independent set.

 $G(C \cup I, E)$ is a $K_{1,r}$ -free split graph $\implies |N(v) \cap I| \le r - 1$ for every vertex $v \in C$ [8]

[8]-Renjith and Sadagopan (2020)

Split Graphs



Split Graphs A graph G is called a split graph if there exists a partition $C \cup I$ of the vertex set such that C is a clique and I is an independent set.

$$G(C \cup I, E)$$
 is a $K_{1,r}$ -free split graph $\implies |N(v) \cap I| \le r - 1$
for every vertex $v \in C$ [8]

 I_r -split graphs : Given $r \ge 1$, a split graph $G(C \cup I, E)$ is said to be an I_r -split graph if d(v) = r for every $v \in I$.

[8]-Renjith and Sadagopan (2020)

Split Graphs

 $K_{1,r}$ -free Split Graphs

→ *I_r*-Split Graphs

TDS is NPC in $K_{1,r}$ -free split graphs for $r \ge 5$ [9] and is in P for $r \le 4$ by [8] TDS is NPC in I_2 -split graphs by [7]

[8]-Renjith and Sadagopan (2020)[9]-White et al. (1985)[7]-Corneil and Perl (1984)

Dichotomy Results

- OPEN PACKING is NPC in K_{1,r}-free split graphs for r ≥ 4 and is polynomial time solvable for r ≤ 3.
- OPEN PACKING is NPC in *I_r*-split graphs for *r* ≥ 3 and is polynomial time solvable for *r* ≤ 2.

Theorem 11

OPEN PACKING is NP-complete on $K_{1,4}$ -free split graphs.

Theorem 11

OPEN PACKING is NP-complete on $K_{1,4}$ -free split graphs.

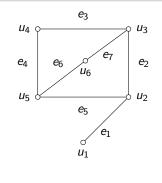
INDEPENDENT SET

Instance: A simple graph G and a positive integer $k \leq |V(G)|$.

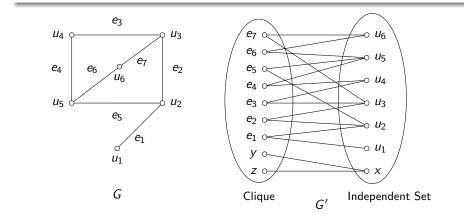
Question: Is there an independent set of size k in G?

Karp (1972) proved that INDEPENDENT SET is NP-complete for simple graphs.

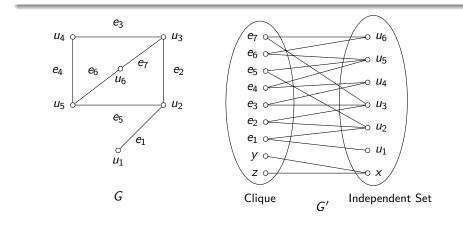
Input: A simple graph G.



Input: A simple graph G. Output: A $K_{1,4}$ -free split graph G'.

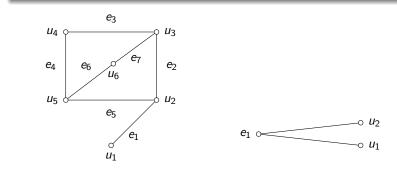


Input: A simple graph G. Output: A K_{1,4}-free split graph G'. Gaurantee: G has an independent set of size k if and only if G' has a open packing of size k + 1.



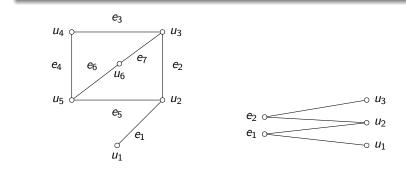
Procedure:

Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.



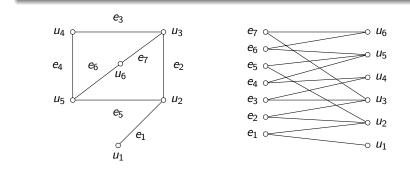
Procedure:

Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.



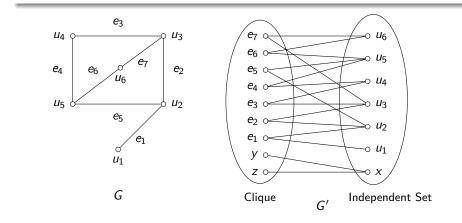
Procedure:

Step 1: Replace each edge e = uu' in G by a three vertex path ueu' in G'.



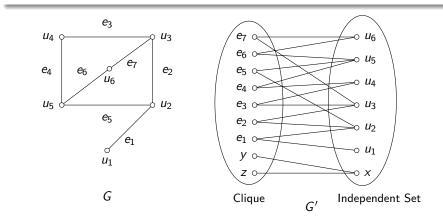
Procedure:

- Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: Introduce three new vertices x, y, z and two edges xy, xz in G'.



Procedure:

- Step 1 : Replace each edge e = uu' in G by a three vertex path ueu' in G'.
- Step 2: Introduce three new vertices x, y, z and two edges xy, xz in G'.
- Step 3: Make $E(G) \cup \{y, z\}$ a clique in G'.



Theorem 12

OPEN PACKING is polynomial time solvable in $K_{1,3}$ -free split graphs.

Theorem 12

OPEN PACKING is polynomial time solvable in $K_{1,3}$ -free split graphs.

Proof (Outline)

Let $G(C \cup I, E)$ be a $K_{1,3}$ -free split graph. Then, $|N(u) \cap I| \leq 2$ for every $u \in C$.

Theorem 12

OPEN PACKING is polynomial time solvable in $K_{1,3}$ -free split graphs.

Proof (Outline)

Let $G(C \cup I, E)$ be a $K_{1,3}$ -free split graph. Then, $|N(u) \cap I| \le 2$ for every $u \in C$. Case 1: $|N(u) \cap I| \le 1$ for every $u \in C$.

Case 2: There exists $u \in C$ such that $|N(u) \cap I| = 2$.

Theorem 12

OPEN PACKING is polynomial time solvable in $K_{1,3}$ -free split graphs.

Proof (Outline)

Let $G(C \cup I, E)$ be a $K_{1,3}$ -free split graph. Then, $|N(u) \cap I| \le 2$ for every $u \in C$. *Case 1:* $|N(u) \cap I| \le 1$ for every $u \in C$. Then, $\rho^o(G) = \begin{cases} 2 & \text{if } |I| = 1 \text{ and } d(u) = 1 \text{ for } u \in I \\ |I| & \text{Otherwise} \end{cases}$ *Case 2:* There exists $u \in C$ such that $|N(u) \cap I| = 2$. Hence, $\rho^o(G) = \begin{cases} 2 & \text{if } \exists u, v \in I \text{ such that } N(u) \cap N(v) = \emptyset \\ & \text{or } \exists u \in I \text{ such that } d(u) = 1 \\ 1 & \text{otherwise} \end{cases}$

Theorem 13

OPEN PACKING is NP-complete on I_r -split graphs for $r \geq 3$.

Theorem 13

OPEN PACKING is NP-complete on l_r -split graphs for $r \geq 3$.

For $r \geq 3$,

r-DIMENSIONAL MATCHING \leq_P OPEN PACKING in I_r -Split Graphs

Theorem 13

OPEN PACKING is NP-complete on I_r -split graphs for $r \geq 3$.

For $r \geq 3$,

r-DIMENSIONAL MATCHING \leq_P OPEN PACKING in I_r -Split Graphs

Theorem 14

OPEN PACKING is polynomial time solvable on I_r -split graphs for $r \leq 2$.

For $r \leq 2$, Open Packing in I_r -Split Graphs \leq_P Matching in graphs

Theorem 15

TOTAL DOMINATING SET is NP-complete on l_r -split graphs for $r \geq 2$.

Theorem 15

TOTAL DOMINATING SET is NP-complete on I_r -split graphs for $r \geq 2$.

For $r \geq 2$,

r-HITTING SET \leq_P TOTAL DOMINATING SET in I_r -Split Graphs

Theorem 15

TOTAL DOMINATING SET is NP-complete on I_r -split graphs for $r \geq 2$.

For $r \geq 2$,

r-HITTING SET \leq_P TOTAL DOMINATING SET in I_r -Split Graphs

Theorem 16

The total domination number of a I_1 -split graph $G(C \cup I, E)$ is $\max\{2, |I|\}$.

Complexity

Complexity comparision between TOTAL Dominating Set and Open Packing

Graph Class	Total Dominating Set	Open Packing
Chordal Bipartite Graphs	P [4]	P [2]
H-free Graphs	P/NP	P/NP
Bipartite Graphs	NPC [5]	NPC [2,6]
Split Graphs	NPC [7]	NPC [3]
$K_{1,4}$ -free Split Graphs	P [8]	NPC
<i>I</i> ₂ -Split Graphs	NPC [7]	Р

- [2] Shalu and Kirubakaran (2023)
- [4] Damaschke et al. (1990)
- [6] Shalu et al. (2017)
- [8] Renjith and Sadagopan (2020)
- [3]- Ramos et al. (2014)
- [5] Pfaff et al. (1983)
- [7] Corneil and Perl (1984)

Conclusion

• We proved that $\gamma_t(G) \leq 2r + 2$ for a $(P_4 \cup rK_1)$ -free graph.

• We proved that $\gamma_t(G) \leq 2r + 2$ for a $(P_4 \cup rK_1)$ -free graph. This implies that $\gamma_t(G) - \rho^o(G) \leq 2r + 1$.

• We proved that $\gamma_t(G) \leq 2r + 2$ for a $(P_4 \cup rK_1)$ -free graph. This implies that $\gamma_t(G) - \rho^o(G) \leq 2r + 1$. Can this bound be improved?

- We proved that $\gamma_t(G) \leq 2r + 2$ for a $(P_4 \cup rK_1)$ -free graph. This implies that $\gamma_t(G) \rho^{\circ}(G) \leq 2r + 1$. Can this bound be improved?
- Complexity of TOTAL DOMINATING SET and OPEN PACKING in subclasses of split graphs when regularity is imposed on
 - (a) the clique set and
 - (b) both the clique set and the independent set
 - of the clique-independence partition of split graph.

References

References I

- Antony, D., Chandran, L. S., Gayen, A., Gosavi, S., and Jacob, D. (2023). Total domination, separated clusters, cd-coloring: Algorithms and hardness. Manusript,arXiv.
- Chang, G. J. (1988). Labeling algorithms for domination problems in sun-free chordal graphs. *Discrete Applied Mathematics*, 22(1):21–34.
- Chlebík, M. and Chlebíková, J. (2008). Approximation hardness of dominating set problems in bounded degree graphs. *Information and Computation*, 206(11):1264–1275.
- Cockayne, E. J., Dawes, R. M., and Hedetniemi, S. T. (1980). Total domination in graphs. *Networks*, 10(3):211–219.
- Corneil, D. G. and Perl, Y. (1984). Clustering and domination in perfect graphs. *Discrete Applied Mathematics*, 9(1):27–39.
- Damaschke, P., Muller, H., and Kratsch, D. (1990). Domination in convex and chordal bipartite graphs. *Information Processing Letters*, 31:231–236.

References

References II

- Downey, R. G. and Fellows, M. R. (1995). Fixed-parameter tractability and completeness II: On completeness for W[1]. *Theoretical Computer Science*, 141(1):109–131.
- Håstard, J. (1999). Clique is hard to approximate within $n^{1-\epsilon}$. Acta Mathematica, 182:105–142.
- Henning, M. A., Rautenbach, D., and Schäfer, P. M. (2013). Open packing, total domination, and the P₃-radon number. *Discrete Mathematics*, 313(9):992–998.
- Henning, M. A. and Slater, P. J. (1999). Open packing in graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 29:3–16.
- Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E., Thatcher, J. W., and Bohlinger, J. D., editors, *Complexity of Computer Computations*, pages 85–103. Springer.
- McRae, A. A. (1995). Generalizing NP-completeness proofs for bipartite graphs and chordal graphs. PhD thesis, Clemson University, USA.

References

References III

- Pfaff, J., Laskar, R. C., and Hedetniemi, S. T. (1983). NP-completeness of total and connected domination and irredundance for bipartite graphs. *Technical Report 428, Department of Mathematical Sciences, Clemson University.*
- Rall, D. F. (2005). Total domination in categorical products of graphs. *Discussiones Mathematicae Graph Theory*, 25:35–44.
- Ramos, I., Santos, V. F., and Szwarcfiter, J. L. (2014). Complexity aspects of the computation of the rank of a graph. *Discrete Mathematics & Theoretical Computer Science*, 16.
- Renjith, P. and Sadagopan, N. (2020). The steiner tree in $K_{1,r}$ -free split graphs—a dichotomy. *Discrete Applied Mathematics*, 280:246–255.
- Shalu, M. A. and Kirubakaran, V. K. (2023). Total domination number and its lower bound in some subclasses of bipartite graphs. Manusript-UnderReview.
- Shalu, M. A., Vijayakumar, S., and Sandhya, T. P. (2017). A lower bound of the cd-chromatic number and its complexity. In Gaur, D. and Narayanaswamy, N., editors, *Algorithms and Discrete Applied Mathematics*, pages 344–355. Springer.
- White, K., Farber, M., and Pulleyblank, W. (1985). Steiner trees, connected domination and strongly chordal graphs. *Networks*, 15(1):109–124.

