On Star Partition of Split Graphs

D Divya S Vijayakumar

IIITDM KANCHEEPURAM

Star

A graph that is isomorphic to $K_{1,r}$, for some $r \ge 0$, is called a star.

Star

A graph that is isomorphic to $K_{1,r}$, for some $r \ge 0$, is called a star.

Star

A graph that is isomorphic to $K_{1,r}$, for some $r \ge 0$, is called a star.

Note: Each star has a center vertex.

A set S of vertices from a graph G is called a **star of** G if the induced subgraph G[S] is a star.

Note: A star S in a graph G partitions into an *independent set I* and and singleton set $\{x\}$: $S = \{x\} \cup I$.

Example

$$G = F_4$$

Star Cover

A collection of stars $S = \{V_1, \ldots, V_k\}$ of a graph G is called star cover of G if $V_1 \cup \ldots \cup V_k = V(G)$.

Star Partition

A star cover $S = \{V_1, \ldots, V_k\}$ of a graph G is called a *star partition* of G if the stars in it are disjoint.

- The size of a minimum star cover of G is called the star cover number of G and is denoted sc(G).
- The size of a minimum star partition of G is called the star partition number of G and is denoted sp(G).

Note: The sizes of the stars do not matter!

Note: $sc(G) \leq sp(G)$.

Example

Figure: (i) sc(G) = 2. (ii) sp(G) = 5.

MIN STAR COVER

Instance : A graph G.

Goal : A minimum star cover of *G*.

MIN STAR PARTITION

Instance : A graph G.

Goal : A minimum star partition of *G*.

$\operatorname{Star}\operatorname{Cover}(D)$

Instance: A graph G and a positive integer k. **Question:** Does G have star cover of size at most k?

STAR PARTITION(D)

Instance: A graph G and a positive integer k. **Question:** Does G have star partition of size at most k?

A Note on Triangle-free (K_3 -free) Graphs

For any triangle-free graph G,

$$sc(G) = sp(G) = \gamma(G).$$

• For any graph G:

•
$$sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$$
.

• For any graph G:

•
$$sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$$
.

• For any split graph G: sc(G) = sp(G).

• For any graph G:

- $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph $G: \lceil \omega(G)/2 \rceil \leq sp(G) \leq \omega(G)$.

- For any graph G:
 - $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph $G: \lceil \omega(G)/2 \rceil \leq sp(G) \leq \omega(G)$.

Implications:

• Suffices to study $\underline{\rm Min}\,\underline{\rm Star}\,\underline{\rm Partition}$ on split graphs.

- For any graph G:
 - $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph $G: \lceil \omega(G)/2 \rceil \leq sp(G) \leq \omega(G)$.

Implications:

- Suffices to study MIN STAR PARTITION on split graphs.
- Leads to three natural parameterized problems:

• $sp(G) \leq k?$

- For any graph G:
 - $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph $G: \lceil \omega(G)/2 \rceil \leq sp(G) \leq \omega(G)$.

Implications:

- Suffices to study MIN STAR PARTITION on split graphs.
- Leads to three natural parameterized problems:

•
$$sp(G) \leq k$$
?

• $sp(G) \leq \lceil \omega(G)/2 \rceil + k?$

- For any graph G:
 - $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph G: $[\omega(G)/2] \leq sp(G) \leq \omega(G)$.

Implications:

- Suffices to study MIN STAR PARTITION on split graphs.
- Leads to three natural parameterized problems:

•
$$sp(G) \leq k$$
?

•
$$sp(G) \leq \lceil \omega(G)/2 \rceil + k \rceil$$

sp(G) ≤ $\lceil \omega(G)/2 \rceil + k$?
sp(G) ≤ $\omega(G) - k$? (assume G connected!)

- For any graph G:
 - $sp(G) \ge sc(G) \ge \lceil \omega(G)/2 \rceil$.
- For any split graph G: sc(G) = sp(G).
- For any connected split graph G: $[\omega(G)/2] \leq sp(G) \leq \omega(G)$.

Implications:

- Suffices to study MIN STAR PARTITION on split graphs.
- Leads to three natural parameterized problems:

•
$$sp(G) \leq k$$
?

•
$$sp(G) \leq \lceil \omega(G)/2 \rceil + k \rceil$$

sp(G) ≤ $\lceil \omega(G)/2 \rceil + k$?
sp(G) ≤ $\omega(G) - k$? (assume G connected!)

$\operatorname{Min}\operatorname{Star}\operatorname{Partition}$ on Split Graphs: Known Results

• NP-hard for $K_{1,5}$ -free split graphs.

$\operatorname{Min}\operatorname{Star}\operatorname{Partition}$ on Split Graphs: Known Results

- NP-hard for $K_{1,5}$ -free split graphs.
- Has a simple 2-approximation algorithm.

$\operatorname{Min}\operatorname{Star}\operatorname{Partition}$ on Split Graphs: Known Results

- NP-hard for $K_{1,5}$ -free split graphs.
- Has a simple 2-approximation algorithm.
- Has linear time exact algorithms for claw-free split graphs.

- NP-hard for $K_{1,5}$ -free split graphs.
- Has a simple 2-approximation algorithm.
- Has linear time exact algorithms for claw-free split graphs.
- Complexity Status open for $K_{1,4}$ -free split graphs.

A split graph $G = (C \cup I, E)$ is $K_{1,r}$ -free: Each vertex x in C has at most r - 1 neighbours in I.

A split graph $G = (C \cup I, E)$ is $K_{1,r}$ -free: Each vertex x in C has at most r - 1 neighbours in I.

In This Talk: We mainly study those split graphs G for which each vertex z in I has at most a constant number of neighbours, in I: i.e., $d(z) \le s$ for a small fixed s.

Definition

Let $G = (C \cup I, E)$ be a split graph and let r and $r_1 \leq \ldots \leq r_k$ be non-negative integers. Then:

• G is called an r-split graph if d(v) = r for each $v \in I$.

Definition

Let $G = (C \cup I, E)$ be a split graph and let r and $r_1 \leq \ldots \leq r_k$ be non-negative integers. Then:

- G is called an r-split graph if d(v) = r for each $v \in I$.
- G is called an (r₁,..., r_k)-split graph if d(v) equals one of r₁,..., r_k for each v ∈ I.

NP-hardness Results

 $\operatorname{Star}\operatorname{COVER}(D)$ and $\operatorname{Star}\operatorname{Partition}(D)$ are NP-hard for

- Chordal bipartite graphs [15]
- (C_4, C_6, \ldots, C_{2t})-free bipartite graphs for every fixed $t \ge 2$ [7]
- Subcubic bipartite planar graphs [9, 19]
- K_{1,5}-free split graphs [19]
- Line graphs [5, 19]
- Co-tripartite graphs [11, 19].

Also:

- Deciding whether an input graph can be covered by *or* partitioned into three stars is NP-complete [19].
- Deciding whether an input graph can be covered by *or* partitioned into at most two stars has polynomial time algorithms.

Pollynomial Time Algorithms

 $\operatorname{Star}\operatorname{COVER}(D)$ and $\operatorname{Star}\operatorname{Partition}(D)$ have polynomial time algorithms for

- bipartite permutation graphs [2, 8].
- convex bipartite graphs [1, 4].
- doubly-convex bipartite graphs [1].
- trees [3].
- trivially perfect graphs [12].
- co-trivially perfect graphs [12].
- claw-free split graphs [14].
- double-split graphs [13].

Approximation and Inapproximation Results

- It is NP-hard to approximate STAR PARTITION(D) within $n^{1/2-\epsilon}$ for all $\epsilon > 0$ [19, 21].
- STAR COVER(D) and STAR PARTITION(D) do not have any polynomial time *c* log *n*-approximation algorithm for some constant c > 0 unless P = NP [20].
- For K_{1,r}-free graphs
 - STAR PARTITION(D) has a polynomial time r/2-approximation algorithm [10, 19].
 - STAR COVER(D) has a polynomial time H_r-approximation algorithm [12]
- $\bullet\ \operatorname{Star}\operatorname{COVER}(D)$ and $\operatorname{Star}\operatorname{Partition}(D)$ have a polynomial time
 - A 2-approximation algorithm for split graphs [19];
 - O(log n)-approximation algorithms for triangle-free graphs [20];
 - (d + 1)-approximation algorithm for triangle-free graphs of degree at most d [20].

Parameterized Complexity Results

- \bullet With solution size as the parameter, both ${\rm STAR}\, {\rm COVER}(D)$ and ${\rm STAR}\, {\rm PARTITION}(D)$ are
 - **1** W[2]-complete for bipartite graphs.
 - **②** Fixed parameter tractable for graphs of girth at least five.
- With respect to structural parameters:
 - With vertex cover number as the parameter, the star partition problem is fixed parameter tractable.
 - With treewidth as the parameter, the star partition is fixed parameter tractable on bounded treewidth graphs.

Structure of Stars in a Split Graph

Structure of Stars in a Split Graph

s = # stars in star partition with one vertex from C. t = # stars in star partition with two vertices from C.

Here s = 2 and t = 2.

Note: s + 2t = |C|.

Better if the centers can always be in C!

Lemma

Let $G = (C \cup I, E)$ be a connected split graph. If G has a star partition of size k, then it also has a star partition S of size at most k such that each star in S has its center in C.

Proof

Suppose a star partition S has a star $Z = \{z\} \cup J$ with its center z in I.
Proof

Suppose a star partition S has a star $Z = \{z\} \cup J$ with its center z in I. • If $Z = \{z, x\}$, then $x \in C$ can be the center of Z. Proof

Suppose a star partition S has a star $Z = \{z\} \cup J$ with its center z in I.

- If $Z = \{z, x\}$, then $x \in C$ can be the center of Z.
- Else $Z = \{z\}$. And at least one vertex, say x', in N(z) is a non-center vertex of some star in S.

Proof

Suppose a star partition S has a star $Z = \{z\} \cup J$ with its center z in I.

- If $Z = \{z, x\}$, then $x \in C$ can be the center of Z.
- Else $Z = \{z\}$. And at least one vertex, say x', in N(z) is a non-center vertex of some star in S.

Also any such star has only its center or only a center-non-center pair from C since C is a clique:

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,

(a) For any $u \in C$, $X = \{u\} \cup N_I(u)$ is the maximal star of G with only its center u from C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,

- (a) For any $u \in C$, $X = \{u\} \cup N_I(u)$ is the maximal star of G with only its center u from C.
- (b) For any ordered pair v, w ∈ C, X = {v, w} ∪ [N_I(v) \ N_I(w)] is the maximal star of G with v and w as the center-non-center pair from C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,

- (a) For any $u \in C$, $X = \{u\} \cup N_I(u)$ is the maximal star of G with only its center u from C.
- (b) For any ordered pair $v, w \in C$, $X = \{v, w\} \cup [N_l(v) \setminus N_l(w)]$ is the maximal star of G with v and w as the center-non-center pair from C.

Thus, such a star partition S suggests a **special** three-way partition of C.

Example

s = # stars in star partition with one vertex from C. t = # stars in star partition with two vertices from C.

Here s = 2 and t = 2.

Note: s + 2t = |C|.

An (s, t)-partition of C

Definition

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Suppose C partitions into three *ordered* sets

$$S = \{u_1, \ldots, u_s\}, T_1 = \{v_1, \ldots, v_t\}, T_2 = \{w_1, \ldots, w_t\}$$

such that

 $N_I(u_1) \cup \ldots \cup N_I(u_s) \cup [N_I(v_1) \setminus N_I(w_1)] \cup \ldots \cup [N_I(v_t) \setminus N_I(w_t)] = I.$

Then (S, T_1, T_2) is called an (s, t)-partition of C.

An (s, t)-partition of C

Definition

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Suppose C partitions into three *ordered* sets

$$S = \{u_1, \ldots, u_s\}, T_1 = \{v_1, \ldots, v_t\}, T_2 = \{w_1, \ldots, w_t\}$$

such that

 $N_I(u_1)\cup\ldots\cup N_I(u_s)\cup [N_I(v_1)\setminus N_I(w_1)]\cup\ldots\cup [N_I(v_t)\setminus N_I(w_t)]=I.$

Then (S, T_1, T_2) is called an (s, t)-partition of C.

Note: The ordering of the vertices in T_1 and T_2 are important.

An (s, t)-partition of C

Definition

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Suppose C partitions into three *ordered* sets

$$S = \{u_1, \ldots, u_s\}, T_1 = \{v_1, \ldots, v_t\}, T_2 = \{w_1, \ldots, w_t\}$$

such that

 $N_I(u_1)\cup\ldots\cup N_I(u_s)\cup [N_I(v_1)\setminus N_I(w_1)]\cup\ldots\cup [N_I(v_t)\setminus N_I(w_t)]=I.$

Then (S, T_1, T_2) is called an (s, t)-partition of C.

Note: The ordering of the vertices in T_1 and T_2 are important.

An (s, t)-partition of C corresponds to a star partition of of G of size s + t.

Results on (s, t)-partition of C

Lemma

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Let s and t be non-negative integers such that s + 2t = q. Then G has a star partition of size k = s + t if and only if C has an (s, t)-partition.

Results on (s, t)-partition of C

Lemma

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Let s and t be non-negative integers such that s + 2t = q. Then G has a star partition of size k = s + t if and only if C has an (s, t)-partition.

Note: The existence of an (s, t)-partition of C implies that $sp(G) \le q - t$.

Results on (s, t)-partition of C

Lemma

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q. Let s and t be non-negative integers such that s + 2t = q. Then G has a star partition of size k = s + t if and only if C has an (s, t)-partition.

Note: The existence of an (s, t)-partition of C implies that $sp(G) \le q - t$.

Lemma

Let $G = (C \cup I, E)$ be a connected split graph with |C| = q and |I| = pand let s, t be any non-negative integers. Then we can decide whether C has an (s, t)-partition in time $O(q^{2t+1}p)$. LEX Reference.

A Characterization of Split Graphs with $sp(G) = \omega(G)$

Theorem

Let $G = (C \cup I, E)$ be a connected split graph with $C = \{x_1, \ldots, x_q\}$ as a maximum clique of G so that $\omega(G) = |C| = q$. Then $sp(G) = \omega(G)$ if and only if for every ordered pair (i, j) with $1 \le i, j \le q$ and $i \ne j$,

- either $N_I(x_j)$ has a vertex of degree one
- or $N_I(x_j) \cap N_I(x_j)$ has a vertex of degree two (or both).

The Case of 2-Split Graphs

Definition

Let G = (V, E) be any graph. Then the **split division** of G, denoted G_S , is the 2-split graph $G_S = (C \cup I, E_S)$ obtained from G by taking C = V(G) as the clique part and I = E(G) as the independent part and making each vertex e = uv in I = E(G) adjacent to its end vertices u and v in C = V(G).

The Case of 2-Split Graphs

Definition

Let $G = (C \cup I, E)$ be a 2-split graph. Then the **kernel** of G, denoted G_K , is the graph $G_K = (V_K, E_K)$ with vertex set $V_K = C$ and edge set $E_K = \{vw \mid N_G(u) = \{v, w\}$ for some $u \in I\}$.

The Case of 2-Split Graphs

Lemma

Let $G = (C \cup I, E)$ be a 2-split graph and let $G_K = (V_K, E_K)$ be its kernel. Then G has $S = \{u_1, \ldots, u_s\}$, $T_1 = \{v_1, \ldots, v_t\}$ and $T_2 = \{w_1, \ldots, w_t\}$ as an (s, t)-partition of C if and only if G_K has

- $v_j w_j$ as a non-edge for each $1 \le j \le t$;
- $\{w_1, \ldots, w_t\}$ as an independent set.

(s, t)-partition of C.

Theorem

STAR PARTITION(D) is NP-complete even when restricted to $K_{1,5}$ -free 2-split graphs.

The Reduction

Reduction from the following NP-complete problem.

2-3-Independent Set

Input : A graph G = (V, E) with $|V| = 2\ell$ and d(v) = 2 or 3, for all $v \in V$, also G has a perfect matching.

Question : Does G have an independent set of size k, where $k \leq \ell - 2$.

- \bullet This NP-completeness result on independent sets follows from a simple reduction from the $\rm MAX2SAT$ problem restricted to those instances in which
 - each clause has exactly two literals,
 - each variable occurs exactly thrice,
 - each literal occurs at least once.
- MAX2SAT restricted to this instances is NP-hard [17].

Let (G, k) be an instance of the 2-3 independent set problem.

Transformed instance (G', k') with $G_s = (C \cup I, E_s)$ and $k' = 2\ell - k$. **Note:** $G_s = (C \cup I, E_s)$ is $K_{1,5}$ -free split graph.

Claim: G has an independent set of size k if and only if G_s has a star partition of size $k' = 2\ell - k$.

• k = |A| = 4.

٠

• Let $B = V(G) \setminus A$.

• Let $H = (A \cup B, E_H)$ be the bipartite graph with

 $E_H = \{ab : a \in A, b \in B \text{ and } ab \notin E(G)\}.$

- *H* satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

• Let $H = (A \cup B, E_H)$ be the bipartite graph with

 $E_H = \{ab : a \in A, b \in B \text{ and } ab \notin E(G)\}.$

- *H* satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

• Let $H = (A \cup B, E_H)$ be the bipartite graph with

 $E_H = \{ab : a \in A, b \in B \text{ and } ab \notin E(G)\}.$

• *H* satisfies Hall's condition.

.

• So, H has a matching, say M, saturating A.

Matching of non-edges in G

• Let $H = (A \cup B, E_H)$ be the bipartite graph with

 $E_H = \{ab : a \in A, b \in B \text{ and } ab \notin E(G)\}.$

• *H* satisfies Hall's condition.

.

• So, H has a matching, say M, saturating A.

Matching of non-edges in G

• Let $H = (A \cup B, E_H)$ be the bipartite graph with

 $E_H = \{ab : a \in A, b \in B \text{ and } ab \notin E(G)\}.$

- *H* satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Form an (2(ℓ − k), k)-partition of the clique part C of the 2-split graph G_S.

• Then, by Lemma, G_S has a star partition of size $2\ell - k$.

Suppose $G_S = (C \cup I, E_S)$ has a star partition of size $2\ell - k$.

Now, since
$$|C| = |V(G)| = 2\ell$$
, C has an $(2(\ell - k), \ell)$ -partition, say $S = \{u_1, \dots, u_{2(\ell-k)}\}$, $T_1 = \{v_1, \dots, v_k\}$ and $T_2 = \{w_1, \dots, w_k\}$.

But G_S is a 2-split graph with G as its kernel.

So, by Lemma, $\{w_1, \ldots, w_k\}$ is an independent set of G of size k.

Theorem

It is NP-complete to decide whether $sp(G) = \lceil \omega(G)/2 \rceil$ even when the instances are restricted to $K_{1,6}$ -free 2-split graphs.

Theorem

STAR PARTITION(D) is NP-complete even when restricted to (1, r)-split graphs for each fixed $r \ge 2$.

We study the problems in the Parameterized Complexity Framework and consider three natural parameterizations.

Parameterization I: Solution Size as the Parameter.

STAR PARTITION(D)

Instance : A connected split graph G and a positive integer k.
Parameter : k.
Question : Does G have a star partition of size k?

Theorem

STAR PARTITION(D) is fixed parameter tractable. In fact, it has an $O((2k)^{2k+1}n)$ time algorithm.

Proof.

- Let $G = (C \cup I, E)$ and suppose |C| = q and |I| = p.
- Then $q/2 \leq sp(G) \leq q$. So, we now assume that $q/2 \leq k \leq q$.
- By Lemma 4, G has a star partition of size k if and only if C has an (s, t)-partition for (s, t) = (2k q, q k).
- Now $q \leq 2k$ and $t = q k \leq k$.
- Lemma 5, for any non-negative integer pair (s, t), we can decide whether C has an (s, t)-partition in time O(q^{2t+1}p).
- This implies that deciding whether C has an (s, t)-partition with (s, t) = (2k q, q k) can be decided in time $O((2k)^{2k+1}n)$

Parameterization II: Parameterizing above a Quaranteed Value

Note: For any graph G, $sp(G) \ge \lceil \omega(G)/2 \rceil$.

STAR PARTITION (AQ)

Instance : A graph G and a positive interger k. **Parameter :** k. **Question :** Is $sp(G) \le \lceil \omega(G)/2 \rceil + k$?.

Theorem

STAR PARTITION (AQ) is para-NP-hard even when restricted to either (1) $K_{1,6}$ -free (0, 2)-split graphs or (2) $K_{1,5}$ -free (0, 1, 3)-split graphs.

Parameterization III: Saving k Stars

Note: For any connected split graph G, $sp(G) \le \omega(G)$.

STAR PARTITION $(\omega - k)$

Instance : A connected split graph *G* and a positive integer *k*. **Parameter** : *k*. **Question** : Does *G* have a star partition of size $\omega(G) - k$?

Theorem

STAR PARTITION $(\omega - k)$ is W[1]-hard even for (1, 2)-split graphs.

- We give a polynomial time FPT reduction from the independent set problem parameterized by the solution size *k*.
- The latter problem is W[1]-complete [6].

The Reduction

Let (G, k) be an instance of the independent set problem.

We transform this into a split graph $G' = (C \cup I, E')$, preserving the parameter k.

•
$$\omega(G') = n + k$$
Claim: G has an independent set of size k if and only if $sp(G') \le \omega(G') - k$

- G has an independent set of size k if and only if it has a vertex cover of size n − k.
- **2** G has a vertex cover of size n k if and only if, in G', n k vertices of C_1 are adjacent to all vertices in I_1 .
- So The latter happens if and only if $sp(G') \le n = \omega(G') k$.

Theorem

STAR PARTITION $(\omega - k)$ is in the class W[3].

Proof: We construct a circuit C such that it has a satisfying assignment of size k if and only if G has a star partition of size $\omega(G) - k$.

Or, if and only if, G has an (s, t)-partition with t = k.

Suppose (S, T_1, T_2) is an (s, t)-partition of C, where $C = \{c_1, \ldots, c_q\}$.

Without loss of generality, let:

•
$$S = \{c_1, \dots, c_s\}.$$

• $T_1 = \{c_{s+1}, \dots, c_{s+t}\}.$
• $T_2 = \{c_{s+t+1}, \dots, c_{s+2t=q}\}.$

Then $s + 1, \ldots, s + t, s + t + 1, \ldots, s + 2t = q$ are distinct.

The Construction of the Circuit

We have
$$C = \{c_1, ..., c_q\}$$
. Let $I = \{z_1, ..., z_p\}$.

Notation:
$$X_i = N_I(c_i)$$
 and $X_{ij} = X_i \setminus X_j = N_I(c_i) \setminus N_I(c_j)$ $(i \neq j)$.

The ciruit will have an input variable corresponding to each X_{ij} .

A satisfying assignment of size k pick the sets T_1 and T_2 of an (s, t)-partition for which $|T_1| = |T_2| = k$.

The Construction of the Circuit: An Example

 $\begin{array}{ll} X_1 = \{z_1, z_2\}; & X_{1,2} = X_{1,3} = X_{1,4} = \{z_1\}; \\ X_2 = \{z_2\}; & X_{2,1} = X_{2,3} = X_{2,4} = \emptyset; \\ X_3 = \{z_2, z_3\}; & X_{3,1} = X_{3,2} = \{z_3\}; X_{3,4} = \emptyset; \\ X_4 = \{z_2, z_3\}; & X_{4,1} = X_{4,2} = \{z_3\}; X_{4,3} = \emptyset; \end{array}$

Claim: The circuit C has a satisfying assignment of size k if and only if $sp(G) = \omega(G) - k$.

Suppose the circuit C has a satisfying assignment of size k.

- Without loss of generality, assume that the k variables $X_{s+1,s+k+1}, X_{s+2,s+k+2}, \dots, X_{s+k,s+2k}$ are assigned the value 1.
- Then, by the design of the circuit $S = \{c_1, c_2, ..., c_s\}$, $T_1 = \{c_{s+1}, c_{s+2}, ..., c_{s+k}\}$ and $T_2 = \{c_{s+k+1}, c_{s+k+2}, ..., c_{s+2k=q}\}$ form an (q - 2k, k) partition of C.
- So, $sp(G) = q k = \omega(G) k$.

Suppose $sp(G) = \omega(G) - 2k$.

- Then C has a (q 2k, k)-partition.
- Without loss of generality, assume that $S = \{c_1, c_2, ..., c_s\}$, $T_1 = \{c_{s+1}, c_{s+2}, ..., c_{s+k}\}$ and $T_2 = \{c_{s+k+1}, c_{s+k+2}, ..., c_{s+2k=q}\}$ form a (q - 2k, k) partition of C.
- Then, by the design of the circuit C, assigning the k input nodes $X_{s+1,s+k+1}, X_{s+2,s+k+2}, \ldots, X_{s+k,s+2k}$ to 1 and the rest to 0 provides a satisfying assignment of size k.

Polynomial Time Algorithmic Results

A polynomial time 3/2-approximation algorithm for *certain* 2-split graphs.

Definition

Let \mathcal{G} be any graph class. Then $\mathcal{S}(\mathcal{G})$ denotes the set of those 2-split graphs for which the kernel is in \mathcal{G} .

Theorem

Let \mathcal{G} be any graph class for which the maximum independent set problem has a polynomial time algorithm. Then MIN STAR PARTITION has a polynomial time 3/2-approximation algorithm for the graph class $\mathcal{S}(\mathcal{G})$.

The Idea

Let G = (C ∪ I, E) be a 2-split graph with |C| = q.
Suppose an optimal star partition of G has
s_o stars with one vertex from C;
t_o stars with two vertices from C.
Then sp(G) = s_o + t_o and s_o + 2t_o = q.
Also this solutions corresponds to an (s_o, t_o)-partition of C.

Now consider any (s, t)-partition of C.

We will have $s \ge s_o$ and $t \le t_o$.

Now consider any (s, t)-partition of C.

We will have $s \ge s_o$ and $t \le t_o$.

Let $\ell = t_o - t \ge 0$.

Then $s = s_o + 2\ell$ and $t = t_o - \ell$.

(since $s + 2t = q = s_o + 2t_o$.)

We have $s = s_o + 2\ell$ and $t = t_o - \ell$. Also

$$t_o - \ell \ge \frac{t_o}{2} \iff \ell \le \frac{t_o}{2}$$

Suppose $s_o = 0$.

• Suppose
$$t = t_o - \ell \geq rac{t_o}{2}$$
, then $s+t \leq rac{3}{2} sp(G).$

Also

$$t_o - \ell \ge rac{t_o - 1}{2} \iff \ell \le rac{t_o + 1}{2}$$

Suppose $s_o \ge 1$.

• Suppose
$$t = t_o - \ell \geq rac{t_o - 1}{2}$$
, then $s + t \leq rac{3}{2} sp(G).$

Algorithm: Approximate-2-Split

Input: A 2-split graph $G = (C \cup I, E)$. **Output:** A star partition of G.

1 If $s_o = 0$, find an (s, t)-partition of C with $t \ge t_o/2$.

- ② If $s_o \geq 1$, find an (s,t)-partition of C with $t \geq (t_o-1)/2$.
- Output a star partition of G corresponding to the (s, t)-partition of C found.

Finding a Suitable (s, t)-Partition

Let G_K be the kernel of the input 2-split graph.

Let $r = \alpha(G_K)$.

By property of (s_o, t_o) -partition:

$$s_o=0 \Longrightarrow q=2t_o ext{ and } r\geq t_o.$$
 So, $s_o=0 \Longrightarrow q$ is even and $r\geq q/2.$

And

$$q ext{ is odd } or \ r < q/2 \Longrightarrow s_0 \ge 1.$$

Idea for Suitable (s, t)-partition

Let $J = \{z_1, \ldots, z_r\}$ be a maximum independent set in the kernel G_K .

- Let t = [r/2]. Then $t \ge k/2 \ge t_o/2$.
- Also $T_1 = \{z_1, \ldots, z_t\}$, $T_2 = \{z_{t+1}, \ldots, z_{2t}\}$ and $S = C \setminus (T_1 \cup T_2)$ provides an (s, t)-partition of C with $t \ge t_o/2$.

Lemma

Let G be any graph and let I be any set of vertices in G such that any pair of vertices in I are at distance three or more in G. Then $sp(G) \ge |I|$. Consequently, $sp(G) \ge \alpha(G^2)$.

Note: Computing $\alpha(G^2)$ is NP-hard even for 3-split graphs. This follows from a reduction from the NP-complete EXACT3COVER problem [9].

Corollary

Let $G = (C \cup I, E)$ be a split graph and let I_1 denote the set of all degree one vertices in the independent part I. Then $sp(G) \ge |N(I_1)|$.

Corollary

If
$$G = (C \cup I, E)$$
 is a 1-split graph, then $|N(I)| = \alpha(G^2)$.

Theorem

If G is a 1-split graph, then $sp(G) = max(\lceil \omega(G)/2 \rceil, \alpha(G^2))$. Consequently, MIN STAR PARTITION has a linear time exact algorithm for (0, 1)-split graphs.

- Determine the computational complexity of star partition on *r*-split graphs for each fixed $r \ge 3$.
- It would be interesting to obtain a factor 3/2 (or better) polynomial time approximation algorithm for MIN STAR PARTITION on at least *all* of 2-split graphs.
- Designing better than factor 2 approximation algorithms for MIN STAR PARTITION on split graphs remains an interesting algorithmic problem.
- Does STAR PARTITION (ωk) is W[3]-hard?
- Complexity status remains open even for $K_{1,4}$ -free split graphs.
J. Bang-Jensen, J. Huang, G. MacGillivray, and A. Yeo. Domination in convex bipartite and convex-round graphs. Technical report, University of Southern Denmark, 1999.

A. Brandstädt and D. Kratsch.

On the restriction of some np-complete graph problems to permutation graphs.

In Fundamentals of Computation Theory, Proc. 5th Int. Conf., Cottbus/Ger. 1985, Lecture Notes in Computer Science 199, 53-62, pages 53–62. Springer, 1985.

E. Cockayne, S. Goodman, and S. Hedetniemi. A linear algorithm for the domination number of a tree. Information Processing Letters, 4:41–44, 1975.

P. Damaschke, H. Müller, and D. Kratsch. Domination in convex and chordal bipartite graphs. Information Processing Letters, 36:231–236, 1990.

D. Dor and M. Tarsi.

Graph decomposition is np-complete: A complete proof of holyer's conjecture.

SIAM Journal on Computing, 26:1166–1187, 1997.

- R.G. Downey and M.R. Fellows.
 Fundamentals of Parameterized Complexity.
 Texts in Computer Science. Springer London, 2013.
- 🚺 O. Duginov.

Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs.

Discrete Mathematics & Theoretical Computer Science, 16:203–214, 2014.

M. Farber and J.M. Keil. Domination in permutation graphs.

Journal of Algorithms, 6:309–321, 1985.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

A.K. Kelmans.

Optimal packing of induced stars in a graph. *Discrete Mathematics*, 173:97–127, 1997.

🔋 F. Maffray and M. Preissmann.

On the np-completeness of the k-colorability problem for triangle-free graphs.

Discrete Mathematics, 162:313-317, 1996.

- J. Mondal and S. Vijayakumar. Star covers and star partitions of cographs and butterfly-free graphs. In Proc. 10th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2024. Accepted.
- J. Mondal and S. Vijayakumar.

Star covers and star partitions of double-split graphs. Journal of Combinatorial Optimization. Accepted.

J. Mondal and S. Vijayakumar. Star partition of certain hereditary graphs.

Manuscript.

H. Müller and A. Brandstädt.

The np-completeness of steiner tree and dominating set for chordal bipartite graphs.

Theoretical Computer Science, 53:257–265, 1987.

X.T Nguyen.

Induced star partition of graphs with respect to structural parameters. Technical report, Charles University in Prague, 2023.

- V. Raman, B. Ravikumar, and S. Srinivasa Rao. A simplified np-complete maxsat problem. Inf. Process. Lett., 65:1–6, 1998.
- V. Raman and S. Saurabh.

Short cycles make w-hard problems hard: Fpt algorithms for w-hard problems in graphs with no short cycles. Algorithmica, 52:203-225, 2008.

M.A. Shalu, S. Vijayakumar, T.P. Sandhya, and J. Mondal. Induced star partition of graphs.

Discrete Applied Mathematics, 319:81–91, 2022.

1

V.V. Vazirani.

Approximation Algorithms. Springer, 2013.

D. Zuckerman.

Linear degree extractors and the inapproximability of max clique and chromatic number.

Theory of Computing, 3:103–128, 2007.