On Star Partition of Split Graphs

D Divya S Vijayakumar
IIITDM KANCHEEPURAM

Star
A graph that is isomorphic to $K_{1, r}$, for some $r \geq 0$, is called a star.

Star
A graph that is isomorphic to $K_{1, r}$, for some $r \geq 0$, is called a star.

Star

A graph that is isomorphic to $K_{1, r}$, for some $r \geq 0$, is called a star.

Note: Each star has a center vertex.

Stars in a Graph

A set S of vertices from a graph G is called a star of G if the induced subgraph $G[S]$ is a star.

Note: A star S in a graph G partitions into an independent set I and and singleton set $\{x\}: S=\{x\} \cup I$.

Example

Definition

Star Cover

A collection of stars $\mathcal{S}=\left\{V_{1}, \ldots, V_{k}\right\}$ of a graph G is called star cover of G if $V_{1} \cup \ldots \cup V_{k}=V(G)$.

Star Partition

A star cover $\mathcal{S}=\left\{V_{1}, \ldots, V_{k}\right\}$ of a graph G is called a star partition of G if the stars in it are disjoint.

$s c(G)$ and $s p(G)$

- The size of a minimum star cover of G is called the star cover number of G and is denoted $s c(G)$.
- The size of a minimum star partition of G is called the star partition number of G and is denoted $s p(G)$.

Note: The sizes of the stars do not matter!

Note: $s c(G) \leq s p(G)$.

Example

Figure: (i) $s c(G)=2$. (ii) $s p(G)=5$.

The Problems

Min Star Cover

Instance : A graph G.
Goal : A minimum star cover of G.

Min Star Partition
Instance : A graph G.
Goal : A minimum star partition of G.

The Decision Versions

Star Cover(D)

Instance: A graph G and a positive integer k. Question: Does G have star cover of size at most k ?

Star Partition(D)

Instance: A graph G and a positive integer k.
Question: Does G have star partition of size at most k ?

A Note on Triangle-free (K_{3}-free) Graphs

For any triangle-free graph G,

$$
s c(G)=s p(G)=\gamma(G)
$$

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Implications:

- Suffices to study Min Star Partition on split graphs.

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Implications:

- Suffices to study Min Star Partition on split graphs.
- Leads to three natural parameterized problems:
- $s p(G) \leq k$?

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Implications:

- Suffices to study Min Star Partition on split graphs.
- Leads to three natural parameterized problems:
- $s p(G) \leq k$?
- $s p(G) \leq\lceil\omega(G) / 2\rceil+k$?

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Implications:

- Suffices to study Min Star Partition on split graphs.
- Leads to three natural parameterized problems:
- $s p(G) \leq k$?
- $s p(G) \leq\lceil\omega(G) / 2\rceil+k$?
- $s p(G) \leq \omega(G)-k$? (assume G connected!)

Some Facts

- For any graph G :
- $s p(G) \geq s c(G) \geq\lceil\omega(G) / 2\rceil$.
- For any split graph $G: s c(G)=s p(G)$.
- For any connected split graph $G:\lceil\omega(G) / 2\rceil \leq s p(G) \leq \omega(G)$.

Implications:

- Suffices to study Min Star Partition on split graphs.
- Leads to three natural parameterized problems:
- $s p(G) \leq k$?
- $s p(G) \leq\lceil\omega(G) / 2\rceil+k$?
- $s p(G) \leq \omega(G)-k$? (assume G connected!)

Min Star Partition on Split Graphs: Known Results

- NP-hard for $K_{1,5}$-free split graphs.

Min Star Partition on Split Graphs: Known Results

- NP-hard for $K_{1,5}$-free split graphs.
- Has a simple 2-approximation algorithm.

Min Star Partition on Split Graphs: Known Results

- NP-hard for $K_{1,5}$-free split graphs.
- Has a simple 2-approximation algorithm.
- Has linear time exact algorithms for claw-free split graphs.

Min Star Partition on Split Graphs: Known Results

- NP-hard for $K_{1,5}$-free split graphs.
- Has a simple 2-approximation algorithm.
- Has linear time exact algorithms for claw-free split graphs.
- Complexity Status open for $K_{1,4}$-free split graphs.

Note

A split graph $G=(C \cup I, E)$ is $K_{1, r}$-free: Each vertex x in C has at most $r-1$ neighbours in l.

Note

A split graph $G=(C \cup I, E)$ is $K_{1, r}$-free: Each vertex x in C has at most $r-1$ neighbours in l.

In This Talk: We mainly study those split graphs G for which each vertex z in I has at most a constant number of neighbours, in I : i.e., $d(z) \leq s$ for a small fixed s.

Definition

Let $G=(C \cup I, E)$ be a split graph and let r and $r_{1} \leq \ldots \leq r_{k}$ be non-negative integers. Then:
(1) G is called an r-split graph if $d(v)=r$ for each $v \in I$.

Definition

Let $G=(C \cup I, E)$ be a split graph and let r and $r_{1} \leq \ldots \leq r_{k}$ be non-negative integers. Then:
(1) G is called an r-split graph if $d(v)=r$ for each $v \in I$.
(2) G is called an $\left(r_{1}, \ldots, r_{k}\right)$-split graph if $d(v)$ equals one of r_{1}, \ldots, r_{k} for each $v \in I$.

Literature Survey
 NP-hardness Results

Star Cover(D) and Star Partition(D) are NP-hard for

- Chordal bipartite graphs [15]
- ($C_{4}, C_{6}, \ldots, C_{2 t}$)-free bipartite graphs for every fixed $t \geq 2$ [7]
- Subcubic bipartite planar graphs [9, 19]
- $K_{1,5}$-free split graphs [19]
- Line graphs $[5,19]$
- Co-tripartite graphs [11, 19].

Also:

- Deciding whether an input graph can be covered by or partitioned into three stars is NP-complete [19].
- Deciding whether an input graph can be covered by or partitioned into at most two stars has polynomial time algorithms.

Literature Survey

Pollynomial Time Algorithms

Star Cover(D) and Star Partition(D) have polynomial time algorithms for

- bipartite permutation graphs $[2,8]$.
- convex bipartite graphs [1, 4].
- doubly-convex bipartite graphs [1].
- trees [3].
- trivially perfect graphs [12].
- co-trivially perfect graphs [12].
- claw-free split graphs [14].
- double-split graphs [13].

Literature Survey

Approximation and Inapproximation Results

- It is NP-hard to approximate Star Partition(D) within $n^{1 / 2-\epsilon}$ for all $\epsilon>0[19,21]$.
- Star Cover(D) and Star Partition(D) do not have any polynomial time $c \log n$-approximation algorithm for some constant
$c>0$ unless $\mathrm{P}=\mathrm{NP}$ [20].
- For $K_{1, r}$-free graphs
(1) Star Partition(D) has a polynomial time $r / 2$-approximation algorithm [10, 19].
(2) Star $\operatorname{Cover}(\mathrm{D})$ has a polynomial time H_{r}-approximation algorithm [12]
- Star Cover(D) and Star Partition(D) have a polynomial time
(1) A 2-approximation algorithm for split graphs [19];
(2) $O(\log n)$-approximation algorithms for triangle-free graphs [20];
(3) $(d+1)$-approximation algorithm for triangle-free graphs of degree at most d [20].

Literature Survey

Parameterized Complexity Results

- With solution size as the parameter, both $\operatorname{Star} \operatorname{Cover}(\mathrm{D})$ and Star Partition(D) are
(1) W [2]-complete for bipartite graphs.
(2) Fixed parameter tractable for graphs of girth at least five.
- With respect to structural parameters:
(1) With vertex cover number as the parameter, the star partition problem is fixed parameter tractable.
(2) With treewidth as the parameter, the star partition is fixed parameter tractable on bounded treewidth graphs.

Structure of Stars in a Split Graph

Structure of Stars in a Split Graph

$s=\#$ stars in star partition with one vertex from C. $t=\#$ stars in star partition with two vertices from C.

Here $s=2$ and $t=2$.
Note: $s+2 t=|C|$.

Better if the centers can always be in C!

Structure of Star Partitions of Split Graphs

Lemma

Let $G=(C \cup I, E)$ be a connected split graph. If G has a star partition of size k, then it also has a star partition \mathcal{S} of size at most k such that each star in \mathcal{S} has its center in C.

Proof

Suppose a star partition \mathcal{S} has a $\operatorname{star} Z=\{z\} \cup J$ with its center z in I.

Proof

Suppose a star partition \mathcal{S} has a $\operatorname{star} Z=\{z\} \cup J$ with its center z in I.

- If $Z=\{z, x\}$, then $x \in C$ can be the center of Z.

Proof

Suppose a star partition \mathcal{S} has a $\operatorname{star} Z=\{z\} \cup J$ with its center z in I.

- If $Z=\{z, x\}$, then $x \in C$ can be the center of Z.
- Else $Z=\{z\}$. And at least one vertex, say x^{\prime}, in $N(z)$ is a non-center vertex of some star in \mathcal{S}.

Proof

Suppose a star partition \mathcal{S} has a $\operatorname{star} Z=\{z\} \cup J$ with its center z in I.

- If $Z=\{z, x\}$, then $x \in C$ can be the center of Z.
- Else $Z=\{z\}$. And at least one vertex, say x^{\prime}, in $N(z)$ is a non-center vertex of some star in \mathcal{S}.

Implication

If $G=(C \cup I, E)$ is a connected split graph, enough to consider those stars for which the centers are in C.

Implication

If $G=(C \cup I, E)$ is a connected split graph, enough to consider those stars for which the centers are in C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique:

Implication

If $G=(C \cup I, E)$ is a connected split graph, enough to consider those stars for which the centers are in C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,
(a) For any $u \in C, X=\{u\} \cup N_{l}(u)$ is the maximal star of G with only its center u from C.

Implication

If $G=(C \cup I, E)$ is a connected split graph, enough to consider those stars for which the centers are in C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,
(a) For any $u \in C, X=\{u\} \cup N_{l}(u)$ is the maximal star of G with only its center u from C.
(b) For any ordered pair $v, w \in C, X=\{v, w\} \cup\left[N_{l}(v) \backslash N_{l}(w)\right]$ is the maximal star of G with v and w as the center-non-center pair from C.

Implication

If $G=(C \cup I, E)$ is a connected split graph, enough to consider those stars for which the centers are in C.

Also any such star has only its center or only a center-non-center pair from C since C is a clique: Moreover,
(a) For any $u \in C, X=\{u\} \cup N_{l}(u)$ is the maximal star of G with only its center u from C.
(b) For any ordered pair $v, w \in C, X=\{v, w\} \cup\left[N_{l}(v) \backslash N_{l}(w)\right]$ is the maximal star of G with v and w as the center-non-center pair from C.
Thus, such a star partition \mathcal{S} suggests a special three-way partition of C.

Example

$s=\#$ stars in star partition with one vertex from C. $t=\#$ stars in star partition with two vertices from C.

Here $s=2$ and $t=2$.
Note: $s+2 t=|C|$.

An (s, t)-partition of C

Definition

Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$. Suppose C partitions into three ordered sets

$$
S=\left\{u_{1}, \ldots, u_{s}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{t}\right\}, T_{2}=\left\{w_{1}, \ldots, w_{t}\right\}
$$

such that

$$
N_{l}\left(u_{1}\right) \cup \ldots \cup N_{l}\left(u_{s}\right) \cup\left[N_{l}\left(v_{1}\right) \backslash N_{l}\left(w_{1}\right)\right] \cup \ldots \cup\left[N_{l}\left(v_{t}\right) \backslash N_{l}\left(w_{t}\right)\right]=l .
$$

Then $\left(S, T_{1}, T_{2}\right)$ is called an (s, t)-partition of C.

An (s, t)-partition of C

Definition

Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$. Suppose C partitions into three ordered sets

$$
S=\left\{u_{1}, \ldots, u_{s}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{t}\right\}, T_{2}=\left\{w_{1}, \ldots, w_{t}\right\}
$$

such that

$$
N_{l}\left(u_{1}\right) \cup \ldots \cup N_{l}\left(u_{s}\right) \cup\left[N_{l}\left(v_{1}\right) \backslash N_{l}\left(w_{1}\right)\right] \cup \ldots \cup\left[N_{l}\left(v_{t}\right) \backslash N_{l}\left(w_{t}\right)\right]=I .
$$

Then $\left(S, T_{1}, T_{2}\right)$ is called an (s, t)-partition of C.

Note: The ordering of the vertices in T_{1} and T_{2} are important.

An (s, t)-partition of C

Definition

Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$. Suppose C partitions into three ordered sets

$$
S=\left\{u_{1}, \ldots, u_{s}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{t}\right\}, T_{2}=\left\{w_{1}, \ldots, w_{t}\right\}
$$

such that

$$
N_{l}\left(u_{1}\right) \cup \ldots \cup N_{l}\left(u_{s}\right) \cup\left[N_{l}\left(v_{1}\right) \backslash N_{l}\left(w_{1}\right)\right] \cup \ldots \cup\left[N_{l}\left(v_{t}\right) \backslash N_{l}\left(w_{t}\right)\right]=l .
$$

Then $\left(S, T_{1}, T_{2}\right)$ is called an (s, t)-partition of C.

Note: The ordering of the vertices in T_{1} and T_{2} are important.

An (s, t)-partition of C corresponds to a star partition of of G of size $s+t$.

Results on (s, t)-partition of C

> Lemma
> Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$. Let s and t be non-negative integers such that $s+2 t=q$. Then G has a star partition of size $k=s+t$ if and only if C has an (s, t)-partition.

Results on (s, t)-partition of C

$$
\begin{aligned}
& \text { Lemma } \\
& \text { Let } G=(C \cup I, E) \text { be a connected split graph with }|C|=q \text {. Let } s \text { and } t \\
& \text { be non-negative integers such that } s+2 t=q \text {. Then } G \text { has a star } \\
& \text { partition of size } k=s+t \text { if and only if } C \text { has an }(s, t) \text {-partition. }
\end{aligned}
$$

Note: The existence of an (s, t)-partition of C implies that $s p(G) \leq q-t$.

Results on (s, t)-partition of C

> Lemma
> Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$. Let s and t be non-negative integers such that $s+2 t=q$. Then G has a star partition of size $k=s+t$ if and only if C has an (s, t)-partition.

Note: The existence of an (s, t)-partition of C implies that $s p(G) \leq q-t$.

Lemma

Let $G=(C \cup I, E)$ be a connected split graph with $|C|=q$ and $|I|=p$ and let s, t be any non-negative integers. Then we can decide whether C has an (s, t)-partition in time $O\left(q^{2 t+1} p\right)$. LEX Reference.

A Characterization of Split Graphs with $\operatorname{sp}(G)=\omega(G)$

Theorem

Let $G=(C \cup I, E)$ be a connected split graph with $C=\left\{x_{1}, \ldots, x_{q}\right\}$ as a maximum clique of G so that $\omega(G)=|C|=q$. Then $\operatorname{sp}(G)=\omega(G)$ if and only if for every ordered pair (i, j) with $1 \leq i, j \leq q$ and $i \neq j$,

- either $N_{l}\left(x_{j}\right)$ has a vertex of degree one
- or $N_{l}\left(x_{j}\right) \cap N_{l}\left(x_{j}\right)$ has a vertex of degree two (or both).

The Case of 2-Split Graphs

Definition

Let $G=(V, E)$ be any graph. Then the split division of G, denoted G_{S}, is the 2-split graph $G_{S}=\left(C \cup I, E_{S}\right)$ obtained from G by taking
$C=V(G)$ as the clique part and $I=E(G)$ as the independent part and making each vertex $e=u v$ in $I=E(G)$ adjacent to its end vertices u and v in $C=V(G)$.

G

G_{S}

The Case of 2-Split Graphs

Definition

Let $G=(C \cup I, E)$ be a 2-split graph. Then the kernel of G, denoted G_{K}, is the graph $G_{K}=\left(V_{K}, E_{K}\right)$ with vertex set $V_{K}=C$ and edge set $E_{K}=\left\{v w \mid N_{G}(u)=\{v, w\}\right.$ for some $\left.u \in I\right\}$.

The Case of 2-Split Graphs

Lemma

Let $G=(C \cup I, E)$ be a 2-split graph and let $G_{K}=\left(V_{K}, E_{K}\right)$ be its kernel. Then G has $S=\left\{u_{1}, \ldots, u_{s}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$ and $T_{2}=\left\{w_{1}, \ldots, w_{t}\right\}$ as an (s, t)-partition of C if and only if G_{K} has

- $v_{j} w_{j}$ as a non-edge for each $1 \leq j \leq t$;
- $\left\{w_{1}, \ldots, w_{t}\right\}$ as an independent set.

(s, t)-partition of C.

Improved NP-completeness Results

Theorem
Star Partition(D) is NP-complete even when restricted to $K_{1,5}$-free 2-split graphs.

The Reduction

Reduction from the following NP-complete problem.

2-3-INDEPENDENT SET
Input : A graph $G=(V, E)$ with $|V|=2 \ell$ and $d(v)=2$ or 3 , for all $v \in V$, also G has a perfect matching.
Question : Does G have an independent set of size k, where $k \leq \ell-2$.

- This NP-completeness result on independent sets follows from a simple reduction from the Max2Sat problem restricted to those instances in which
- each clause has exactly two literals,
- each variable occurs exactly thrice,
- each literal occurs at least once.
- Max2Sat restricted to this instances is NP-hard [17].

The Reduction

Let (G, k) be an instance of the 2-3 independent set problem.
Transformed instance $\left(G^{\prime}, k^{\prime}\right)$ with $G_{s}=\left(C \cup I, E_{s}\right)$ and $k^{\prime}=2 \ell-k$. Note: $G_{s}=\left(C \cup I, E_{s}\right)$ is $K_{1,5}$-free split graph.

Claim: G has an independent set of size k if and only if G_{s} has a star partition of size $k^{\prime}=2 \ell-k$.

Suppose G has an independent set of size k, say A

- $k=|A|=4$.
$A \quad B$

- Let $B=V(G) \backslash A$.

Suppose G has an independent set of size k, say A

- Let $H=\left(A \cup B, E_{H}\right)$ be the bipartite graph with

$$
E_{H}=\{a b: a \in A, b \in B \text { and } a b \notin E(G)\} .
$$

- H satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Suppose G has an independent set of size k, say A

- Let $H=\left(A \cup B, E_{H}\right)$ be the bipartite graph with

$$
E_{H}=\{a b: a \in A, b \in B \text { and } a b \notin E(G)\} .
$$

- H satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Suppose G has an independent set of size k, say A

- Let $H=\left(A \cup B, E_{H}\right)$ be the bipartite graph with

$$
E_{H}=\{a b: a \in A, b \in B \text { and } a b \notin E(G)\} .
$$

- H satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Matching of non-edges in G

Suppose G has an independent set of size k, say A

- Let $H=\left(A \cup B, E_{H}\right)$ be the bipartite graph with

$$
E_{H}=\{a b: a \in A, b \in B \text { and } a b \notin E(G)\} .
$$

- H satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Matching of non-edges in G

Suppose G has an independent set of size k, say A

- Let $H=\left(A \cup B, E_{H}\right)$ be the bipartite graph with

$$
E_{H}=\{a b: a \in A, b \in B \text { and } a b \notin E(G)\} .
$$

- H satisfies Hall's condition.
- So, H has a matching, say M, saturating A.

Matching of non-edges in G

- Form an $(2(\ell-k), k)$-partition of the clique part C of the 2 -split graph G_{S}.
- Then, by Lemma, G_{S} has a star partition of size $2 \ell-k$.

Converse

Suppose $G_{S}=\left(C \cup I, E_{S}\right)$ has a star partition of size $2 \ell-k$.

Now, since $|C|=|V(G)|=2 \ell, C$ has an $(2(\ell-k), \ell)$-partition, say $S=\left\{u_{1}, \ldots, u_{2(\ell-k)}\right\}, T_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $T_{2}=\left\{w_{1}, \ldots, w_{k}\right\}$.

But G_{S} is a 2-split graph with G as its kernel.

So, by Lemma, $\left\{w_{1}, \ldots, w_{k}\right\}$ is an independent set of G of size k.

More NP-completeness Results

Theorem

It is NP-complete to decide whether $\operatorname{sp}(G)=\lceil\omega(G) / 2\rceil$ even when the instances are restricted to $K_{1,6}-$ free 2 -split graphs.

Theorem

Star Partition (D) is NP-complete even when restricted to $(1, r)$-split graphs for each fixed $r \geq 2$.

Parameterized Complexity Results

We study the problems in the Parameterized Complexity Framework and consider three natural parameterizations.

Parameterization I: Solution Size as the Parameter.

Star Partition(D)

Instance : A connected split graph G and a positive integer k.
Parameter: k.
Question : Does G have a star partition of size k ?

Theorem

Star Partition(D) is fixed parameter tractable. In fact, it has an $O\left((2 k)^{2 k+1} n\right)$ time algorithm.

Proof.

- Let $G=(C \cup I, E)$ and suppose $|C|=q$ and $|I|=p$.
- Then $q / 2 \leq s p(G) \leq q$. So, we now assume that $q / 2 \leq k \leq q$.
- By Lemma 4, G has a star partition of size k if and only if C has an (s, t)-partition for $(s, t)=(2 k-q, q-k)$.
- Now $q \leq 2 k$ and $t=q-k \leq k$.
- Lemma 5, for any non-negative integer pair (s, t), we can decide whether C has an (s, t)-partition in time $O\left(q^{2 t+1} p\right)$.
- This implies that deciding whether C has an (s, t)-partition with $(s, t)=(2 k-q, q-k)$ can be decided in time $O\left((2 k)^{2 k+1} n\right)$

Parameterization II: Parameterizing above a Quaranteed Value

Note: For any graph $G, s p(G) \geq\lceil\omega(G) / 2\rceil$.

Star Partition (AQ)

Instance : A graph G and a positive interger k.
Parameter: k.
Question : Is $s p(G) \leq\lceil\omega(G) / 2\rceil+k$? .

Theorem

Star Partition (AQ) is para-NP-hard even when restricted to either (1) $K_{1,6}$-free (0,2)-split graphs or (2) $K_{1,5}$-free ($0,1,3$)-split graphs.

Parameterization III: Saving k Stars

Note: For any connected split graph $G, \operatorname{sp}(G) \leq \omega(G)$.

```
Star Partition ( }\omega-k
Instance : A connected split graph G and a positive integer k.
Parameter: k.
Question : Does G have a star partition of size }\omega(G)-k\mathrm{ ?
```


Theorem

Star Partition $(\omega-k)$ is $W[1]$-hard even for (1, 2)-split graphs.

W[1]-hardness: The Reduction

- We give a polynomial time FPT reduction from the independent set problem parameterized by the solution size k.
- The latter problem is W [1]-complete [6].

The Reduction

Let (G, k) be an instance of the independent set problem.
We transform this into a split graph $G^{\prime}=\left(C \cup I, E^{\prime}\right)$, preserving the parameter k.

$$
G \rightarrow G_{s}=\left(C_{1} \cup I_{1}, E\right) \rightarrow G^{\prime}=G_{s} \cup k K_{2}
$$

$$
(G, k=2)
$$

- $\omega\left(G^{\prime}\right)=n+k$

Claim: G has an independent set of size k if and only if $s p\left(G^{\prime}\right) \leq \omega\left(G^{\prime}\right)-k$
(1) G has an independent set of size k if and only if it has a vertex cover of size $n-k$.
(2) G has a vertex cover of size $n-k$ if and only if, in $G^{\prime}, n-k$ vertices of C_{1} are adjacent to all vertices in I_{1}.
(3) The latter happens if and only if $s p\left(G^{\prime}\right) \leq n=\omega\left(G^{\prime}\right)-k$.

Theorem

Star Partition $(\omega-k)$ is in the class $W[3]$.

Proof: We construct a circuit \mathcal{C} such that it has a satisfying assignment of size k if and only if G has a star partition of size $\omega(G)-k$.

Or, if and only if, G has an (s, t)-partition with $t=k$.

Fact

Suppose $\left(S, T_{1}, T_{2}\right)$ is an (s, t)-partition of C, where $C=\left\{c_{1}, \ldots, c_{q}\right\}$.
Without loss of generality, let:

- $S=\left\{c_{1}, \ldots, c_{s}\right\}$.
- $T_{1}=\left\{c_{s+1}, \ldots, c_{s+t}\right\}$.
- $T_{2}=\left\{c_{s+t+1}, \ldots, c_{s+2 t=q}\right\}$.

Then $s+1, \ldots, s+t, s+t+1, \ldots, s+2 t=q$ are distinct.

The Construction of the Circuit

We have $C=\left\{c_{1}, \ldots, c_{q}\right\}$. Let $I=\left\{z_{1}, \ldots, z_{p}\right\}$.
Notation: $X_{i}=N_{l}\left(c_{i}\right)$ and $X_{i j}=X_{i} \backslash X_{j}=N_{l}\left(c_{i}\right) \backslash N_{l}\left(c_{j}\right) \quad(i \neq j)$.
The ciruit will have an input variable corresponding to each $X_{i j}$.
A satisfying assignment of size k pick the sets T_{1} and T_{2} of an (s, t)-partition for which $\left|T_{1}\right|=\left|T_{2}\right|=k$.

The Construction of the Circuit: An Example

$$
\begin{array}{ll}
X_{1}=\left\{z_{1}, z_{2}\right\} ; & X_{1,2}=X_{1,3}=X_{1,4}=\left\{z_{1}\right\} ; \\
X_{2}=\left\{z_{2}\right\} ; & X_{2,1}=X_{2,3}=X_{2,4}=\emptyset ; \\
X_{3}=\left\{z_{2}, z_{3}\right\} ; & X_{3,1}=X_{3,2}=\left\{z_{3}\right\} ; X_{3,4}=\emptyset ; \\
X_{4}=\left\{z_{2}, z_{3}\right\} ; & X_{4,1}=X_{4,2}=\left\{z_{3}\right\} ; X_{4,3}=\emptyset ;
\end{array}
$$

Circuit

$$
\begin{array}{cccccccccccc}
x_{1,2} & x_{1,3} & x_{1,4} & x_{2,1} & x_{2,3} & x_{2,4} & x_{3,1} & x_{3,2} & x_{3,4} & x_{4,1} & x_{4,2} & x_{4,3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Circuit

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
X_{1,2} & X_{1,3} & X_{1,4} & X_{2,1} & X_{2,3} & X_{2,4} & X_{3,1} & X_{3,2} & X_{3,4} & X_{4,1} & X_{4,2} & X_{4,3} \\
0 & 0 & 0 & 0 & 0 & \circ & \circ & \circ & \circ & 0 & 0 & 0
\end{array} \\
& \odot \bigcirc
\end{aligned}
$$

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Circuit

Claim: The circuit \mathcal{C} has a satisfying assignment of size k if and only if $s p(G)=\omega(G)-k$.

Suppose the circuit \mathcal{C} has a satisfying assignment of size k.

- Without loss of generality, assume that the k variables $X_{s+1, s+k+1}, X_{s+2, s+k+2}, \ldots, X_{s+k, s+2 k}$ are assigned the value 1 .
- Then, by the design of the circuit $S=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$, $T_{1}=\left\{c_{s+1}, c_{s+2}, \ldots, c_{s+k}\right\}$ and $T_{2}=\left\{c_{s+k+1}, c_{s+k+2}, \ldots, c_{s+2 k=q}\right\}$ form an $(q-2 k, k)$ partition of C.
- So, $\operatorname{sp}(G)=q-k=\omega(G)-k$.

Converse

Suppose $s p(G)=\omega(G)-2 k$.

- Then C has a $(q-2 k, k)$-partition.
- Without loss of generality, assume that $S=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$,
$T_{1}=\left\{c_{s+1}, c_{s+2}, \ldots, c_{s+k}\right\}$ and $T_{2}=\left\{c_{s+k+1}, c_{s+k+2}, \ldots, c_{s+2 k=q}\right\}$ form a $(q-2 k, k)$ partition of C.
- Then, by the design of the circuit \mathcal{C}, assigning the k input nodes $X_{s+1, s+k+1}, X_{s+2, s+k+2}, \ldots, X_{s+k, s+2 k}$ to 1 and the rest to 0 provides a satisfying assignment of size k.

Polynomial Time Algorithmic Results

A polynomial time 3/2-approximation algorithm for certain 2-split graphs.

Definition

Let \mathcal{G} be any graph class. Then $\mathcal{S}(\mathcal{G})$ denotes the set of those 2-split graphs for which the kernel is in \mathcal{G}.

Theorem

Let \mathcal{G} be any graph class for which the maximum independent set problem has a polynomial time algorithm. Then Min Star Partition has a polynomial time 3/2-approximation algorithm for the graph class $\mathcal{S}(\mathcal{G})$.

The Idea

Let $G=(C \cup I, E)$ be a 2-split graph with $|C|=q$.
(1) Suppose an optimal star partition of G has
(1) s_{0} stars with one vertex from C;
(2) t_{0} stars with two vertices from C.
(2) Then $s p(G)=s_{0}+t_{0}$ and $s_{o}+2 t_{0}=q$.
(3) Also this solutions corresponds to an $\left(s_{o}, t_{0}\right)$-partition of C.

Now consider any (s, t)-partition of C.
We will have $s \geq s_{0}$ and $t \leq t_{0}$.

Now consider any (s, t)-partition of C.
We will have $s \geq s_{0}$ and $t \leq t_{0}$.
Let $\ell=t_{o}-t \geq 0$.
Then $s=s_{o}+2 \ell$ and $t=t_{o}-\ell$.
(since $s+2 t=q=s_{0}+2 t_{0}$.)

We have $s=s_{o}+2 \ell$ and $t=t_{o}-\ell$. Also

$$
t_{0}-\ell \geq \frac{t_{0}}{2} \Longleftrightarrow \ell \leq \frac{t_{0}}{2}
$$

Suppose $s_{o}=0$.

- Suppose $t=t_{o}-\ell \geq \frac{t_{0}}{2}$, then

$$
s+t \leq \frac{3}{2} s p(G)
$$

Also

$$
t_{0}-\ell \geq \frac{t_{0}-1}{2} \Longleftrightarrow \ell \leq \frac{t_{0}+1}{2}
$$

Suppose $s_{o} \geq 1$.

- Suppose $t=t_{0}-\ell \geq \frac{t_{0}-1}{2}$, then

$$
s+t \leq \frac{3}{2} s p(G)
$$

The Approximation Algorithm

Algorithm: Approximate-2-Split
Input: A 2-split graph $G=(C \cup I, E)$.
Output: A star partition of G.
(1) If $s_{o}=0$, find an (s, t)-partition of C with $t \geq t_{o} / 2$.
(2) If $s_{0} \geq 1$, find an (s, t)-partition of C with $t \geq\left(t_{o}-1\right) / 2$.
(3) Output a star partition of G corresponding to the (s, t)-partition of C found.

Finding a Suitable (s, t)-Partition

Let G_{K} be the kernel of the input 2-split graph.
Let $r=\alpha\left(G_{K}\right)$.
By property of $\left(s_{o}, t_{0}\right)$-partition:

$$
s_{o}=0 \Longrightarrow q=2 t_{o} \text { and } r \geq t_{0}
$$

So,

$$
s_{o}=0 \Longrightarrow q \text { is even and } r \geq q / 2
$$

And

$$
q \text { is odd or } r<q / 2 \Longrightarrow s_{0} \geq 1
$$

Classification of 2-Split Graphs

Idea for Suitable (s, t)-partition

Let $J=\left\{z_{1}, \ldots, z_{r}\right\}$ be a maximum independent set in the kernel G_{K}.

- Let $t=[r / 2]$. Then $t \geq k / 2 \geq t_{0} / 2$.
- Also $T_{1}=\left\{z_{1}, \ldots, z_{t}\right\}, T_{2}=\left\{z_{t+1}, \ldots, z_{2 t}\right\}$ and $S=C \backslash\left(T_{1} \cup T_{2}\right)$ provides an (s, t)-partition of C with $t \geq t_{0} / 2$.

Polynomial Time Algorithms

Lemma

Let G be any graph and let I be any set of vertices in G such that any pair of vertices in I are at distance three or more in G. Then $s p(G) \geq|I|$. Consequently, $s p(G) \geq \alpha\left(G^{2}\right)$.

Note: Computing $\alpha\left(G^{2}\right)$ is NP-hard even for 3-split graphs. This follows from a reduction from the NP-complete Exact3Cover problem [9].

Corollary

Let $G=(C \cup I, E)$ be a split graph and let I_{1} denote the set of all degree one vertices in the independent part I. Then $\operatorname{sp}(G) \geq\left|N\left(I_{1}\right)\right|$.

Corollary

If $G=(C \cup I, E)$ is a 1-split graph, then $|N(I)|=\alpha\left(G^{2}\right)$.

$s p(G)$ for 1-split graph

Theorem

If G is a 1 -split graph, then $s p(G)=\max \left(\lceil\omega(G) / 2\rceil, \alpha\left(G^{2}\right)\right)$.
Consequently, Min Star Partition has a linear time exact algorithm for (0, 1)-split graphs.

Further Scope

- Determine the computational complexity of star partition on r-split graphs for each fixed $r \geq 3$.
- It would be interesting to obtain a factor 3/2 (or better) polynomial time approximation algorithm for Min Star Partition on at least all of 2-split graphs.
- Designing better than factor 2 approximation algorithms for Min Star Partition on split graphs remains an interesting algorithmic problem.
- Does Star Partition $(\omega-k)$ is $W[3]$-hard?
- Complexity status remains open even for $K_{1,4}$-free split graphs.
(ris J. Bang-Jensen, J. Huang, G. MacGillivray, and A. Yeo. Domination in convex bipartite and convex-round graphs. Technical report, University of Southern Denmark, 1999.
(R. Brandstädt and D. Kratsch.

On the restriction of some np-complete graph problems to permutation graphs.
In Fundamentals of Computation Theory, Proc. 5th Int. Conf., Cottbus/Ger. 1985, Lecture Notes in Computer Science 199, 53-62, pages 53-62. Springer, 1985.
E. E. Cockayne, S. Goodman, and S. Hedetniemi.

A linear algorithm for the domination number of a tree. Information Processing Letters, 4:41-44, 1975.

國 P. Damaschke, H. Müller, and D. Kratsch.
Domination in convex and chordal bipartite graphs. Information Processing Letters, 36:231-236, 1990.
D. Dor and M. Tarsi.

Graph decomposition is np-complete: A complete proof of holyer's conjecture.
SIAM Journal on Computing, 26:1166-1187, 1997.
R.G. Downey and M.R. Fellows.

Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer London, 2013.
目 O. Duginov.
Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs.
Discrete Mathematics \& Theoretical Computer Science, 16:203-214, 2014.

图 M. Farber and J.M. Keil.
Domination in permutation graphs.
Journal of Algorithms, 6:309-321, 1985.
R.R. Garey and D.S. Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, New York, 1979.

围 A.K. Kelmans.
Optimal packing of induced stars in a graph.
Discrete Mathematics, 173:97-127, 1997.
F. Maffray and M. Preissmann.

On the np-completeness of the k-colorability problem for triangle-free graphs.
Discrete Mathematics, 162:313-317, 1996.
J. Mondal and S. Vijayakumar.

Star covers and star partitions of cographs and butterfly-free graphs. In Proc. 10th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2024. Accepted.
J. Mondal and S. Vijayakumar.

Star covers and star partitions of double-split graphs. Journal of Combinatorial Optimization. Accepted.
J. Mondal and S. Vijayakumar.

Star partition of certain hereditary graphs.

Manuscript．
（ H．Müller and A．Brandstädt．
The np－completeness of steiner tree and dominating set for chordal bipartite graphs．
Theoretical Computer Science，53：257－265， 1987.
周 X．T Nguyen．
Induced star partition of graphs with respect to structural parameters．
Technical report，Charles University in Prague， 2023.
目 V．Raman，B．Ravikumar，and S．Srinivasa Rao．
A simplified np－complete maxsat problem．
Inf．Process．Lett．，65：1－6， 1998.
雷 V．Raman and S．Saurabh．
Short cycles make w－hard problems hard：Fpt algorithms for w－hard problems in graphs with no short cycles．
Algorithmica，52：203－225， 2008.
围 M．A．Shalu，S．Vijayakumar，T．P．Sandhya，and J．Mondal． Induced star partition of graphs．

围 V.V. Vazirani.
Approximation Algorithms.
Springer, 2013.
图 D. Zuckerman.
Linear degree extractors and the inapproximability of max clique and chromatic number.
Theory of Computing, 3:103-128, 2007.

