Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs

MANOJ CHANGAT

Department of Futures Studies University of Kerala

CALDAM 2024

Joined Work With

Ameera V Shanavas, Marc Hellmuth and Peter F Stadler

February 16, 2024

< □ > < 同 >

- DAGs and Phylogenetics
- 2 Transit functions and Cluster systems on DAGs
- 3 DAGs with Ica- and k-Ica- Property
- OAGs with Strict and Strong k-lca-Property

5 References

< □ > < 同 >

• Directed Acyclic graph (DAG)

• • • • • • • •

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0
- Phylogenetic Network

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0

• Phylogenetic Network

- No vertex with indegree ≤ 1 and out degree 1

Image: A matrix and a matrix

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0
- Phylogenetic Network
 - No vertex with indegree ≤ 1 and out degree 1
- (Rooted) Phylogenetic tree

Image: A matrix and a matrix

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0
- Phylogenetic Network
 - No vertex with indegree ≤ 1 and out degree 1

• (Rooted) Phylogenetic tree

- Phylogenetic network without $\ensuremath{\textbf{Hybrid}}\xspace$ vertices, with indegree >1

A D > A B > A

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0
- Phylogenetic Network
 - No vertex with indegree ≤ 1 and out degree 1

• (Rooted) Phylogenetic tree

- Phylogenetic network without Hybrid vertices, with indegree > 1
- They represents speciation only

• • • • • • • • • • • •

• Directed Acyclic graph (DAG)

- Directed graph G = (V, E) where $E \subset V \times V \setminus \{(x, x) : x \in V\}$
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes

• (Rooted) Network

- DAG with Unique root vertex, with indegree 0
- Phylogenetic Network
 - No vertex with indegree ≤ 1 and out degree 1

• (Rooted) Phylogenetic tree

- Phylogenetic network without Hybrid vertices, with indegree > 1
- They represents speciation only

DAG with hybrid vertices

Network

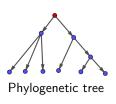


Image: Image:

• Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.

Ξ.

Image: A image: A

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an **ancestor** of z and z is a **descendant** of v

æ

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an **ancestor** of z and z is a **descendant** of v

A D > A A

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an **ancestor** of z and z is a **descendant** of v

• $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.

A D > A A

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

• $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.

• X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)

Image: Image:

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_G := \{\mathsf{C}(v) \mid v \in V(G)\}$

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_G := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: $Anc(v) = \{w \in V(G) \mid v \leq w\}$

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_{G} := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: $Anc(v) = \{w \in V(G) \mid v \leq w\}$
- set of common ancestors of $Y \subseteq V$: $Anc(Y) \coloneqq \bigcap_{w \in Y} Anc(w)$

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_{G} := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: Anc $(v) = \{w \in V(G) \mid v \leq w\}$
- set of common ancestors of $Y \subseteq V$: $Anc(Y) \coloneqq \bigcap_{w \in Y} Anc(w)$
- A least common ancestor (LCA) of Y ⊆ V is a ∠-minimal element in Anc(Y). (Bender, Pemmasani, Skiena, Sumazin, 2001)

Image: A math the second se

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an ancestor of z and z is a descendant of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_{G} := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: Anc $(v) = \{w \in V(G) \mid v \leq w\}$
- set of common ancestors of $Y \subseteq V$: $Anc(Y) \coloneqq \bigcap_{w \in Y} Anc(w)$
- A least common ancestor (LCA) of Y ⊆ V is a ∠-minimal element in Anc(Y). (Bender, Pemmasani, Skiena, Sumazin, 2001)
- The set LCA(Y) comprises all least common ancestors of Y in G.

Image: A math the second se

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an **ancestor** of z and z is a **descendant** of v

- $u, v \in V(G)$ are incomparable if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_{G} := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: Anc $(v) = \{w \in V(G) \mid v \leq w\}$
- set of common ancestors of $Y \subseteq V$: $Anc(Y) \coloneqq \bigcap_{w \in Y} Anc(w)$
- A least common ancestor (LCA) of Y ⊆ V is a ∠-minimal element in Anc(Y). (Bender, Pemmasani, Skiena, Sumazin, 2001)
- The set LCA(Y) comprises all least common ancestors of Y in G.
- LCA($\{v\}$) = $\{v\}$ for all $v \in V(G)$ & LCA(Y) = \emptyset if and only if Anc(Y) = \emptyset

イロト イヨト イヨト

- Partial order \leq on V(G): $z \leq_G v \iff$ there is a directed path from v to z.
- $z \preceq_G v$: v is an **ancestor** of z and z is a **descendant** of v

- $u, v \in V(G)$ are **incomparable** if neither $u \leq v$ nor $v \leq u$ is true.
- X: Set of minimal vertices of G w.r.t \leq (Set of leaves of G)
- $C(v) := \{x \in X \mid x \leq v\}$ denote the set of descendant leaves of v
- We write $\mathscr{C}_{G} := \{ C(v) \mid v \in V(G) \}$
- set of ancestors of v: Anc $(v) = \{w \in V(G) \mid v \leq w\}$
- set of common ancestors of $Y \subseteq V$: $Anc(Y) \coloneqq \bigcap_{w \in Y} Anc(w)$
- A least common ancestor (LCA) of Y ⊆ V is a ∠-minimal element in Anc(Y). (Bender, Pemmasani, Skiena, Sumazin, 2001)
- The set LCA(Y) comprises all least common ancestors of Y in G.
- $LCA(\{v\}) = \{v\}$ for all $v \in V(G)$ & $LCA(Y) = \emptyset$ if and only if $Anc(Y) = \emptyset$
- In a network, $LCA(Y) \neq \emptyset$.

イロト イボト イヨト イヨ

|ca(Y) is defined if and only if |LCA(Y)| = 1 and we write |ca(Y) = q

э.

イロト イヨト イヨト イヨト

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

• (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies

Ξ.

イロン イ団 とく ヨン イヨン

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies

イロト イヨト イヨト

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies

イロト イポト イヨト イヨト

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies
- (Hellmuth, Schaller, Stadler, 2022): Correspondence between strong lca networks and weak hierarchies

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies
- (Hellmuth, Schaller, Stadler, 2022): Correspondence between strong lca networks and weak hierarchies
- We characterize the following special types of DAGs, in terms of their cluster systems:

3

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies
- (Hellmuth, Schaller, Stadler, 2022): Correspondence between strong lca networks and weak hierarchies
- We characterize the following special types of DAGs, in terms of their cluster systems:

G with (PCC) and k-lca Property

3

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies
- (Hellmuth, Schaller, Stadler, 2022): Correspondence between strong lca networks and weak hierarchies
- We characterize the following special types of DAGs, in terms of their cluster systems:
 - G with (PCC) and k-lca Property
 - G with Strict k-lca Property

3

lca(Y) is defined if and only if |LCA(Y)| = 1 and we write lca(Y) = q

- (Semple and Steel, 2003): Correspondence between rooted phylogenetic trees and hierarchies
- (C, Nezhad, Stadler, 2018): Correspondence between transit functions on the leaf set of phylogenetic trees and hierarchies
- (C, Narasimha-Shenoi, Stadler, 2019): Correspondence between transit functions and weak hierarchies
- (Hellmuth, Schaller, Stadler, 2022): Correspondence between strong lca networks and weak hierarchies
- We characterize the following special types of DAGs, in terms of their cluster systems:
 - G with (PCC) and k-lca Property
 - *G* with Strict *k*-lca Property
 - 3 G with Strong k-lca Property

3

k-ary transit function

k-ary transit function

• A *k*-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

k-ary transit function

• A k-ary transit function on X is a function $R : X^k \mapsto 2^X$ satisfying: (t1) $u_1 \in R(u_1, u_2, \dots, u_k)$

A D > A A

k-ary transit function

• A *k*-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

(t1)
$$u_1 \in R(u_1, u_2, \dots, u_k)$$

(t2) $R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k))$

• A *k*-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

(t1)
$$u_1 \in R(u_1, u_2, \dots, u_k)$$

(t2) $R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k))$
(t3) $R(u, u, \dots, u) = \{u\}$ for all $u \in X$

• A *k*-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

(t1)
$$u_1 \in R(u_1, u_2, ..., u_k)$$

(t2) $R(u_1, u_2, ..., u_k) = R(\pi(u_1, u_2, ..., u_k))$
(t3) $R(u, u, ..., u) = \{u\}$ for all $u \in X$
• (t1) : $u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\}$

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

(t1)
$$u_1 \in R(u_1, u_2, ..., u_k)$$

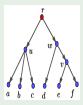
(t2) $R(u_1, u_2, ..., u_k) = R(\pi(u_1, u_2, ..., u_k))$
(t3) $R(u, u, ..., u) = \{u\}$ for all $u \in X$
• (t1) : $u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\}$
• (t3) : $R(\{u\}) = \{u\} \ \forall u \in X$

(

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}) : \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}) : \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

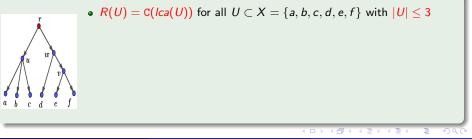


< 17 ▶

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}) : \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}) : \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)



• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}) : \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}) : \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

• R(U) = C(Ica(U)) for all $U \subset X = \{a, b, c, d, e, f\}$ with $|U| \leq 3$

• $R({x}) = {x}$ for all $x \in X$

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}): \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}): \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

• R(U) = C(Ica(U)) for all $U \subset X = \{a, b, c, d, e, f\}$ with $|U| \leq 3$

•
$$R({x}) = {x}$$
 for all $x \in X$

•
$$R(\{a, b, c\}) = R(\{a, b\}) = R(\{a, c\}) = R(\{b, c\}) = C(u) = \{a, b, c\}$$

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}) : \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}) : \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

• R(U) = C(Ica(U)) for all $U \subset X = \{a, b, c, d, e, f\}$ with $|U| \leq 3$

•
$$R({x}) = {x}$$
 for all $x \in X$

•
$$R(\{a, b, c\}) = R(\{a, b\}) = R(\{a, c\}) = R(\{b, c\}) = C(u) = \{a, b, c\}$$

• $R(\{d, e, f\}) = R(\{d, e\}) = R(\{d, f\}) = C(w) = \{d, e, f\}$

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}): \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}): \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

• R(U) = C(Ica(U)) for all $U \subset X = \{a, b, c, d, e, f\}$ with $|U| \leq 3$

•
$$R({x}) = {x}$$
 for all $x \in X$

•
$$R(\{a, b, c\}) = R(\{a, b\}) = R(\{a, c\}) = R(\{b, c\}) = C(u) = \{a, b, c\}$$

•
$$R(\{d, e, f\}) = R(\{d, e\}) = R(\{d, f\}) = C(w) = \{d, e, f\}$$

•
$$R(\{e, f\}) = C(v) = \{e, f\}$$

• A k-ary transit function on X is a function $R: X^k \mapsto 2^X$ satisfying:

$$\begin{array}{l} (\mathbf{t1}) \ u_1 \in R(u_1, u_2, \dots, u_k) \\ (\mathbf{t2}) \ R(u_1, u_2, \dots, u_k) = R(\pi(u_1, u_2, \dots, u_k)) \\ (\mathbf{t3}) \ R(u, u, \dots, u) = \{u\} \ \text{for all } u \in X \\ \bullet \ (\mathbf{t1}) : \ u \in U \implies u \in R(U) \ \forall U \in X^{(k)} := \{\emptyset \neq A \subseteq X : |A| \le k\} \\ \bullet \ (\mathbf{t3}) : \ R(\{u\}) = \{u\} \ \forall u \in X \end{array}$$

Example (3-ary transit function)

• R(U) = C(Ica(U)) for all $U \subset X = \{a, b, c, d, e, f\}$ with $|U| \leq 3$

•
$$R({x}) = {x}$$
 for all $x \in X$

•
$$R(\{a, b, c\}) = R(\{a, b\}) = R(\{a, c\}) = R(\{b, c\}) = C(u) = \{a, b, c\}$$

•
$$R(\{d, e, f\}) = R(\{d, e\}) = R(\{d, f\}) = C(w) = \{d, e, f\}$$

•
$$R(\{e, f\}) = C(v) = \{e, f\}$$

•
$$R(U) = C(r) = X$$
 for all other $U \in X^{(3)}$

æ

メロト メロト メヨト メヨト

(KS)
$$\{x\} \in \mathscr{C}$$
 for all $x \in X$

æ

メロト メロト メヨト メヨト

(KS) $\{x\} \in \mathscr{C} \text{ for all } x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$

(KS) $\{x\} \in \mathscr{C} \text{ for all } x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$

(KC) For every $U \subseteq X$ with $|U| \le k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

Image: A matrix

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

• k-ary \mathcal{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)

A D > A A P >

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

- k-ary \mathscr{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)
- Clustering system if it holds (KS) and (K1)

Image: A matrix and a matrix

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

- k-ary \mathscr{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)
- Clustering system if it holds (KS) and (K1)
- Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k

Image: A matrix and a matrix

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

- k-ary \mathcal{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)
- Clustering system if it holds (KS) and (K1)
- Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
- **Closed** if for all non-empty set $A \in 2^X$ holds $A \in \mathscr{C} \iff cl(A) = A$ where

Image: A matrix and a matrix

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

- k-ary \mathcal{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)
- Clustering system if it holds (KS) and (K1)
- Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
- Closed if for all non-empty set A ∈ 2^X holds A ∈ C ⇔ cl(A) = A where the closure function cl : 2^X → 2^X of a set systems C is defined by cl(A) := ∩{C ∈ C | A ⊆ C} ∀A ∈ 2^X

(KS) $\{x\} \in \mathscr{C}$ for all $x \in X$ (KR) For all $C \in \mathscr{C}$ there is a set $T \subseteq C$ with $|T| \leq k$ such that $T \subseteq C'$ implies $C \subseteq C'$ for all $C' \in \mathscr{C}$ (KC) For every $U \subseteq X$ with $|U| \leq k$ holds $\bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \in \mathscr{C}$ (K1) $X \in \mathscr{C}$

A set system $\mathscr{C} \subset 2^X$ of non-empty subsets of X is a

- k-ary \mathscr{T} -system for $k \ge 2$ if it satisfies (KS), (KR) and (KC)
- Clustering system if it holds (KS) and (K1)
- Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
- Closed if for all non-empty set A ∈ 2^X holds A ∈ C ⇔ cl(A) = A where the closure function cl : 2^X → 2^X of a set systems C is defined by cl(A) := ∩{C ∈ C | A ⊆ C} ∀A ∈ 2^X
 (C is closed under pairwise intersections) For all A, B ∈ C with A ∩ B ≠ Ø we have A ∩ B ∈ C

Manoj Changat (University of Kerala)

Unique LCAs and Clusters in DAGs

• A *k*-ary transit function *R* is **monotone** if it satisfies:

• A k-ary transit function R is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

• A *k*-ary transit function *R* is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone *k*-ary transit functions and *k*-ary \mathscr{T} -systems mediated by the set system $\mathscr{C}_R := \{R(U) \mid U \in X^{(k)}\}$ called the System of transit sets of *R* and the canonical transit function $R_{\mathscr{C}}$ of \mathscr{C} defined by $R_{\mathscr{C}} : X^{(k)} \to 2^X$ where

$$R_{\mathscr{C}}(U) \coloneqq \bigcap \{C \in \mathscr{C} \mid U \subseteq C\} \quad \forall U \in X^{(k)}$$

8/33

• A *k*-ary transit function *R* is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone *k*-ary transit functions and *k*-ary \mathscr{T} -systems mediated by the set system $\mathscr{C}_R := \{R(U) \mid U \in X^{(k)}\}$ called the System of transit sets of *R* and the canonical transit function $R_{\mathscr{C}}$ of \mathscr{C} defined by $R_{\mathscr{C}} : X^{(k)} \to 2^X$ where

$$\mathcal{R}_{\mathscr{C}}(U) \coloneqq \bigcap \{ C \in \mathscr{C} \mid U \subseteq C \} \quad \forall U \in X^{(k)} \}$$

• A set system $\mathscr{C} \subset 2^X$ is **identified by** a *k*-ary transit function if $\mathscr{C} = \mathscr{C}_{R_{\mathscr{C}}}$

8/33

• • • • • • • • • • •

• A *k*-ary transit function *R* is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone *k*-ary transit functions and *k*-ary \mathscr{T} -systems mediated by the set system $\mathscr{C}_R := \{R(U) \mid U \in X^{(k)}\}$ called the System of transit sets of *R* and the canonical transit function $R_{\mathscr{C}}$ of \mathscr{C} defined by $R_{\mathscr{C}} : X^{(k)} \to 2^X$ where

$$\mathcal{R}_{\mathscr{C}}(U) \coloneqq \bigcap \{ C \in \mathscr{C} \mid U \subseteq C \} \quad \forall U \in X^{(k)} \}$$

• A set system $\mathscr{C} \subset 2^X$ is identified by a k-ary transit function if $\mathscr{C} = \mathscr{C}_{R_{\mathscr{C}}}$

• $R_{\mathscr{C}}(U) = \operatorname{cl}(U) \ \forall U \text{ with } |U| \leq k$

8/33

< □ > < 同 > < 回 > < 回 >

• A *k*-ary transit function *R* is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone *k*-ary transit functions and *k*-ary \mathscr{T} -systems mediated by the set system $\mathscr{C}_R := \{R(U) \mid U \in X^{(k)}\}$ called the System of transit sets of *R* and the canonical transit function $R_{\mathscr{C}}$ of \mathscr{C} defined by $R_{\mathscr{C}} : X^{(k)} \to 2^X$ where

$$\mathcal{R}_{\mathscr{C}}(U)\coloneqq igcap \{C\in \mathscr{C}\mid U\subseteq C\} \quad orall U\in X^{(k)}$$

- A set system $\mathscr{C} \subset 2^X$ is **identified by** a *k*-ary transit function if $\mathscr{C} = \mathscr{C}_{R_{\mathscr{C}}}$
- $R_{\mathscr{C}}(U) = \operatorname{cl}(U) \ \forall U \text{ with } |U| \leq k$
- Transit axiom corresponding to (K1) is

8/33

< □ > < 同 > < 回 > < 回 >

• A *k*-ary transit function *R* is **monotone** if it satisfies:

(m)
$$w_1, \ldots, w_k \in R(u_1, \ldots, u_k) \implies R(w_1, \ldots, w_k) \subseteq R(u_1, \ldots, u_k)$$

 $(W \subseteq R(U) \text{ implies } R(W) \subseteq R(U) \quad \forall U, W \in X^{(k)})$

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

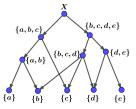
There is a 1-1 correspondence between monotone *k*-ary transit functions and *k*-ary \mathscr{T} -systems mediated by the set system $\mathscr{C}_R := \{R(U) \mid U \in X^{(k)}\}$ called the System of transit sets of *R* and the canonical transit function $R_{\mathscr{C}}$ of \mathscr{C} defined by $R_{\mathscr{C}} : X^{(k)} \to 2^X$ where

$$\mathcal{R}_{\mathscr{C}}(U) \coloneqq \bigcap \{ C \in \mathscr{C} \mid U \subseteq C \} \quad \forall U \in X^{(k)} \}$$

- A set system $\mathscr{C} \subset 2^X$ is **identified by** a *k*-ary transit function if $\mathscr{C} = \mathscr{C}_{R_{\mathscr{C}}}$
- $R_{\mathscr{C}}(U) = \operatorname{cl}(U) \ \forall U \text{ with } |U| \leq k$
- Transit axiom corresponding to (K1) is
 (a') there exists U ∈ X^(k) such that R(U) = X

(日)

The Hasse diagram $\mathfrak{H}(\mathscr{C})$ of a set system \mathscr{C} corresponds to the Hasse diagram of Poset (\mathscr{C}, \subseteq) (it is the DAG with vertex set \mathscr{C} and directed edges from $A \in \mathscr{C}$ to $B \in \mathscr{C}$ if (i) $B \subsetneq A$ and (ii) there is no $C \in \mathscr{C}$ with $B \subsetneq C \subsetneq A$.)



 $\{\{a\},\{b\},\{c\},\{d\},\{e\},\{a,b\},\{b,c,d\},\{d,e\},\{a,b,c\},\{b,c,d,e\},X\}$

Standard Clustering Systems

∃ ► < ∃ ►</p>

2

• Hierarchy

2

E + + E +

A B + A
 B + A
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

æ

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

• Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989)

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

• Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989)

for any three sets $A, B, C \in \mathscr{C}$ holds $A \cap B \cap C \in \{A \cap B, A \cap C, B \cap C\}$

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

- Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989) for any three sets $A, B, C \in \mathscr{C}$ holds $A \cap B \cap C \in \{A \cap B, A \cap C, B \cap C\}$
- k-Weak hierarchy (Bandelt and Dress, 1994)

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

- Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989) for any three sets $A, B, C \in \mathscr{C}$ holds $A \cap B \cap C \in \{A \cap B, A \cap C, B \cap C\}$
- k-Weak hierarchy (Bandelt and Dress, 1994)

for any k+1 sets $A_1, A_2, \ldots, A_{k+1} \in \mathscr{C}$ there is $1 \leq j \leq k+1$ such that $\bigcap_{i=1}^{k+1} A_i = \bigcap_{i=1, i \neq j}^{k+1} A_i$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Hierarchy

for any two sets $A, B \in \mathscr{C}$ holds $A \cap B \in \{A, B, \emptyset\}$

- Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989) for any three sets $A, B, C \in \mathscr{C}$ holds $A \cap B \cap C \in \{A \cap B, A \cap C, B \cap C\}$
- k-Weak hierarchy (Bandelt and Dress, 1994)

for any k + 1 sets $A_1, A_2, \ldots, A_{k+1} \in \mathscr{C}$ there is $1 \le j \le k+1$ such that $\bigcap_{i=1}^{k+1} A_i = \bigcap_{i=1, i \ne j}^{k+1} A_i$

- Weak hierarchy = 2-weak hierarchy
 - \implies k-weak hierarchy
 - \implies (k+1)-weak hierarchy for all $k \ge 3$.

10/33

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Correspondence between Hierarchy and Rooted Phylogenetic tree

2

メロト メタト メヨト メヨト

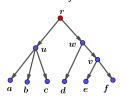
2

• Consider a Rooted phylogenetic tree G with vertex set V and leaf set X

• Consider a Rooted phylogenetic tree G with vertex set V and leaf set X

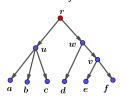
$$\implies \mathscr{C}_{\mathsf{G}} = \{\mathtt{C}(v): v \in V\}$$
 is a hierarchy

Consider a Rooted phylogenetic tree G with vertex set V and leaf set X
 ⇒ C_G = {C(v) : v ∈ V} is a hierarchy



 $\mathscr{C}_{G} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{e, f\}, \{a, b, c\}, \{d, e, f\}, X\}$

Consider a Rooted phylogenetic tree G with vertex set V and leaf set X
 ⇒ C_G = {C(v) : v ∈ V} is a hierarchy

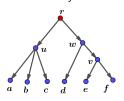


 $\mathscr{C}_{G} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{e, f\}, \{a, b, c\}, \{d, e, f\}, X\}$

• \mathscr{C} is Hierarchy on X

11/33

Consider a Rooted phylogenetic tree G with vertex set V and leaf set X
 ⇒ C_G = {C(v) : v ∈ V} is a hierarchy



 $\mathscr{C}_{G} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{e, f\}, \{a, b, c\}, \{d, e, f\}, X\}$

- \mathscr{C} is Hierarchy on X
 - \implies Hasse Diagram $\mathscr{H}(\mathscr{C})$ is a rooted phylogenetic tree with leaf set X

Observation 1 (Bertrand and Diatta, 2017)

A set system \mathscr{C} is a *k*-weak hierarchy if and only if for every $A \in 2^X$ with |A| > k there is $z \in A$ such that $z \in cl(A \setminus \{z\})$.

Observation 1 (Bertrand and Diatta, 2017)

A set system \mathscr{C} is a *k*-weak hierarchy if and only if for every $A \in 2^X$ with |A| > k there is $z \in A$ such that $z \in cl(A \setminus \{z\})$.

Proposition 1

A set system \mathscr{C} on X is a k-weak hierarchy if and only if for every $\emptyset \neq A \subseteq X$ there exists $U \subseteq A$ with $|U| \leq k$ such that cl(A) = cl(U).

э.

・ロト ・回ト ・ヨト ・ヨト

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, $\emptyset \neq A \subseteq X$, and suppose lca(A) is defined. Then the following hold:

13/33

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, $\emptyset \neq A \subseteq X$, and suppose lca(A) is defined. Then the following hold:

(i) $lca(A) \preceq_G v$ for all v with $A \subseteq C(v)$.

Image: A matching of the second se

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, $\emptyset \neq A \subseteq X$, and suppose lca(A) is defined. Then the following hold:

- (i) $lca(A) \preceq_G v$ for all v with $A \subseteq C(v)$.
- (ii) C(lca(A)) is the unique inclusion-minimal cluster in C_G containing A.

Image: A matching of the second se

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, $\emptyset \neq A \subseteq X$, and suppose lca(A) is defined. Then the following hold:

- (i) $lca(A) \preceq_G v$ for all v with $A \subseteq C(v)$.
- (ii) C(lca(A)) is the unique inclusion-minimal cluster in C_G containing A.

(iii) lca(C(lca(A))) = lca(A).

13/33

イロト イヨト イヨト

• Lemma 17: Hellmuth, Schaller, Stadler, 2022

Lemma 1

Let G be a DAG. Then $v \preceq_G w$ implies $C(v) \subseteq C(w)$ for all $v, w \in V(G)$.

• Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, $\emptyset \neq A \subseteq X$, and suppose lca(A) is defined. Then the following hold:

- (i) $lca(A) \preceq_G v$ for all v with $A \subseteq C(v)$.
- (ii) C(lca(A)) is the unique inclusion-minimal cluster in C_G containing A.
- (iii) lca(C(lca(A))) = lca(A).

Lemma 2

Let R be a k-ary transit function. Then $G = \mathfrak{H}(\mathscr{C}_R)$ is a network if and only if R satisfies (a') for k.

Manoj Changat (University of Kerala)

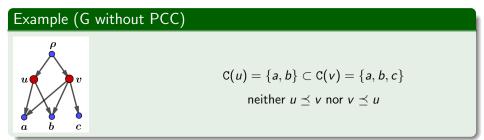
Path-Cluster-Comparability (PCC) Property

u and v are \preceq_G -comparable if and only if $\mathtt{C}(u)\subseteq \mathtt{C}(v)$ or $\mathtt{C}(v)\subseteq \mathtt{C}(u)$ for all $u,v\in V$

Image: Image:

Path-Cluster-Comparability (PCC) Property

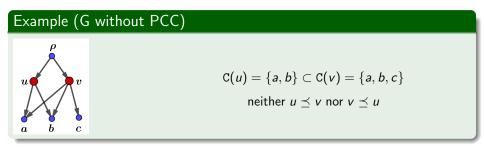
u and v are \preceq_G -comparable if and only if $\mathtt{C}(u)\subseteq \mathtt{C}(v)$ or $\mathtt{C}(v)\subseteq \mathtt{C}(u)$ for all $u,v\in V$



• • • • • • • • • • •

Path-Cluster-Comparability (PCC) Property

u and v are \preceq_G -comparable if and only if $\mathtt{C}(u)\subseteq \mathtt{C}(v)$ or $\mathtt{C}(v)\subseteq \mathtt{C}(u)$ for all $u,v\in V$



• Hasse diagram G of a clustering system \mathscr{C} satisfies (PCC) and $\mathscr{C}_{G} = \mathscr{C}$

Manoj Changat (University of Kerala)

Unique LCAs and Clusters in DAGs

イロト イヨト イヨト

Ica-Property

A DAG with leaf set X has the lca-**property** if lca(A) is defined for all non-empty $A \subseteq X$.

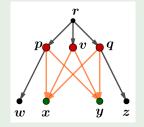
Ica-Property

A DAG with leaf set X has the lca-**property** if lca(A) is defined for all non-empty $A \subseteq X$.

Lemma 3

If a DAG G has the lca-property, then its clustering system \mathscr{C}_G is closed.

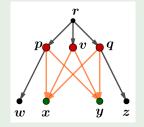
Example (\mathscr{C}_G is closed \Rightarrow G is lca network)



16/33

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

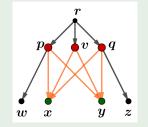
Example (\mathscr{C}_G is closed \Rightarrow G is lca network)



• (Lemma 41, Hellmuth, Schaller, Stadler, 2022)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example (\mathscr{C}_G is closed \Rightarrow G is lca network)



• (Lemma 41, Hellmuth, Schaller, Stadler, 2022)

Definition

A DAG G with leaf set X has the k-lca-property if lca(A) is defined for all $A \in X^{(k)}$.

æ

• • • • • • • •

Definition

A DAG G with leaf set X has the k-lca-property if lca(A) is defined for all $A \in X^{(k)}$.

• We define the k-ary map $R_G: X^k \to 2^X$ by

 $R_G(u_1,\ldots,u_k)\coloneqq C(\mathsf{lca}(u_1,\ldots,u_k))$ for all $U\in X^{(k)}$

Image: A math the second se

Definition

A DAG G with leaf set X has the k-lca-property if lca(A) is defined for all $A \in X^{(k)}$.

• We define the k-ary map $R_G: X^k \to 2^X$ by

 $R_G(u_1,\ldots,u_k)\coloneqq C(\mathsf{lca}(u_1,\ldots,u_k))$ for all $U\in X^{(k)}$

• Remember the canonical transit function of $\mathscr{C}_{\mathcal{G}}$:

 $R_{\mathscr{C}_{G}}(u_{1}, u_{2}, \ldots, u_{k}) \coloneqq \bigcap \{ C(v) \mid v \in V(G), u_{1}, u_{2}, \ldots, u_{k} \in C(v) \}$

• • • • • • • • • • •

Definition

A DAG G with leaf set X has the k-lca-property if lca(A) is defined for all $A \in X^{(k)}$.

• We define the k-ary map $R_G: X^k \to 2^X$ by

 $R_G(u_1,\ldots,u_k)\coloneqq C(\mathsf{lca}(u_1,\ldots,u_k))$ for all $U\in X^{(k)}$

• Remember the canonical transit function of \mathscr{C}_{G} :

 $R_{\mathscr{C}_{G}}(u_{1}, u_{2}, \ldots, u_{k}) \coloneqq \bigcap \{ C(v) \mid v \in V(G), u_{1}, u_{2}, \ldots, u_{k} \in C(v) \}$

Proposition 2

Let G be a DAG with k-lca-property. Then R_G is a monotone k-ary transit function that satisfies $R_G = R_{\mathscr{C}_G}$. Moreover, \mathscr{C}_G is pre-k-ary.

< □ > < 同 > < 回 > < 回 >

• Suppose G: DAG with k-lca-property with leaf set X

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(\mathsf{lca}(x_1, \dots, x_k))$$

$$\implies \mathsf{lca}(u_1, \dots, u_k) \preceq \mathsf{lca}(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(\mathsf{lca}(u_1, \dots, u_k)) \subseteq C(\mathsf{lca}(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(\mathsf{lca}(x_1, \dots, x_k))$$

$$\implies \mathsf{lca}(u_1, \dots, u_k) \preceq \mathsf{lca}(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(\mathsf{lca}(u_1, \dots, u_k)) \subseteq C(\mathsf{lca}(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in \mathcal{C}_G containing U

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(lca(x_1, \dots, x_k))$$

$$\implies lca(u_1, \dots, u_k) \preceq lca(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(lca(u_1, \dots, u_k)) \subseteq C(lca(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in C_G containing U • $C(lca(U)) = cl(U) \in C_G - - - (1)$

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(\mathsf{lca}(x_1, \dots, x_k))$$

$$\implies \mathsf{lca}(u_1, \dots, u_k) \preceq \mathsf{lca}(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(\mathsf{lca}(u_1, \dots, u_k)) \subseteq C(\mathsf{lca}(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

C(lca(U)) is the unique inclusion minimal cluster in C_G containing U
C(lca(U)) = cl(U) ∈ C_G - - - (1) ⇒ R_G = R_{C_G}

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(lca(x_1, \dots, x_k))$$

$$\implies lca(u_1, \dots, u_k) \preceq lca(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(lca(u_1, \dots, u_k)) \subseteq C(lca(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in \mathscr{C}_G containing U

- $C(lca(U)) = cl(U) \in \mathscr{C}_G - (1)$ $\implies R_G = R_{\mathscr{C}_G}$
- $U \in X^{(k)}$, Ica(U) is defined

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(\mathsf{lca}(x_1, \dots, x_k))$$

$$\implies \mathsf{lca}(u_1, \dots, u_k) \preceq \mathsf{lca}(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(\mathsf{lca}(u_1, \dots, u_k)) \subseteq C(\mathsf{lca}(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in \mathscr{C}_G containing U

- $C(lca(U)) = cl(U) \in \mathscr{C}_G - (1)$
 - \implies $R_G = R_{\mathscr{C}_G}$
- $U \in X^{(k)}$, Ica(U) is defined
- (1) \implies $cl(U) \in \mathscr{C}_{G}$

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(\mathsf{lca}(x_1, \dots, x_k))$$

$$\implies \mathsf{lca}(u_1, \dots, u_k) \preceq \mathsf{lca}(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(\mathsf{lca}(u_1, \dots, u_k)) \subseteq C(\mathsf{lca}(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in \mathscr{C}_G containing U

•
$$C(lca(U)) = cl(U) \in \mathscr{C}_G - - - (1)$$

 $\implies R_G = R_{\mathscr{C}_G}$

• $U \in X^{(k)}$, Ica(U) is defined

• (1)
$$\implies cl(U) \in \mathscr{C}_G$$

 $\implies \mathscr{C}_G$ satisfies **(KC)**

- Suppose G: DAG with k-lca-property with leaf set X
- Uniqueness of $lca(U) \implies R_G$ is a k-ary transit function.
- *R_G* is monotone:

$$u_1, \dots, u_k \in R_G(x_1, \dots, x_k)$$

$$\implies \{u_1, \dots, u_k\} \subseteq C(lca(x_1, \dots, x_k))$$

$$\implies lca(u_1, \dots, u_k) \preceq lca(x_1, \dots, x_k) \text{ (from Obs. 2)}$$

$$\implies C(lca(u_1, \dots, u_k)) \subseteq C(lca(x_1, \dots, x_k)) \text{ (from Lemma 1)}$$

$$\implies R_G(u_1, \dots, u_k) \subseteq R_G(x_1, \dots, x_k)$$

• C(lca(U)) is the unique inclusion minimal cluster in \mathscr{C}_G containing U

•
$$C(lca(U)) = cl(U) \in \mathscr{C}_G - - - (1)$$

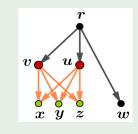
 $\implies R_G = R_{\mathscr{C}_G}$

• $U \in X^{(k)}$, Ica(U) is defined

• (1)
$$\implies cl(U) \in \mathscr{C}_G$$

 $\implies \mathscr{C}_G$ satisfies (KC)

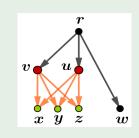
$$\implies \mathscr{C}_{G}$$
 is pre-*k*-ary



2

・ロト ・回ト ・ヨト ・ヨト

• Consider the DAG G with leaf set $X = \{x, y, z, w\}$

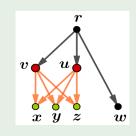


æ

< □ > < □ > < □ > < □ > < □ >

• Consider the DAG G with leaf set $X = \{x, y, z, w\}$

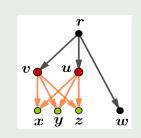
•
$$\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}$$



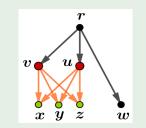
2

< □ > < □ > < □ > < □ > < □ >

- Consider the DAG G with leaf set $X = \{x, y, z, w\}$
- $\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}.$
- \mathscr{C}_G is **pre-binary** since \mathscr{C}_G satisfies **(KS)** and **(KC)** for k = 2.



- Consider the DAG G with leaf set $X = \{x, y, z, w\}$
- $\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}.$
- \mathscr{C}_G is **pre-binary** since \mathscr{C}_G satisfies **(KS)** and **(KC)** for k = 2.
- G is not a pairwise lca-network since lca(x, y), lca(x, z), and lca(y, z) are not defined.



A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

9/33

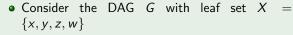
w

- $\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}.$
- \mathscr{C}_G is **pre-binary** since \mathscr{C}_G satisfies **(KS)** and **(KC)** for k = 2.
- G is not a pairwise lca-network since lca(x, y), lca(x, z), and lca(y, z) are not defined.
- \$\mathcal{C}_G\$ also satisfies (KC) for \$k = 3\$ but \$G\$ is not a 3-lca-network since \$lca(x, y, z)\$ is not defined.

A D > A B > A

19/33

w



- $\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}.$
- \mathscr{C}_G is **pre-binary** since \mathscr{C}_G satisfies **(KS)** and **(KC)** for k = 2.
- G is not a pairwise lca-network since lca(x, y), lca(x, z), and lca(y, z) are not defined.
- *C_G* also satisfies (KC) for k = 3 but G is not a 3-lca-network since lca(x, y, z) is not defined.

Proposition 3

Let G be a DAG that satisfies (PCC). Then, G satisfies the k-lca-property if and only if \mathcal{C}_G is pre-k-ary.

19/33

<.≣>	æ	

• 'If part' by Prop. 2

э.

メロト メロト メヨト メヨト

• 'If part' by Prop. 2

• Suppose G: (PCC) & C_G : pre-k-ary

э.

イロト イヨト イヨト イヨト

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$

Ξ.

< □ > < □ > < □ > < □ > < □ >

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$

 \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - - (1)$

Ξ.

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$

Ξ.

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)

Ξ.

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)
 - $\implies u, v$ incomparable & $U \subseteq C(u) \cap C(v) \implies C(u) \cap C(v) \neq \emptyset$

э

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)
 - $\implies u,v \text{ incomparable } \& \ U \subseteq \mathtt{C}(u) \cap \mathtt{C}(v) \implies \mathtt{C}(u) \cap \mathtt{C}(v) \neq \emptyset$
 - \implies C(u) \Diamond C(v) - (2) by (PCC)

3

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_G}(U) \in \mathscr{C}_G$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)
 - $\implies u, v \text{ incomparable } \& U \subseteq C(u) \cap C(v) \implies C(u) \cap C(v) \neq \emptyset$ $\implies C(u) \notin C(v) - (2) \text{ by (PCC)}$
- (1) \implies C(z) \subseteq C(u) \cap C(v)

3

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)
 - $\implies u, v \text{ incomparable } \& U \subseteq C(u) \cap C(v) \implies C(u) \cap C(v) \neq \emptyset$ $\implies C(u) \notin C(v) - (2) \text{ by (PCC)}$
- (1) \implies C(z) \subseteq C(u) \cap C(v)
- (2) \implies C(z) \subset C(u) & C(z) \subset C(v)

3

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$
- *u*, *v* ∈ LCA(*U*)
 - $\implies u, v \text{ incomparable } \& U \subseteq C(u) \cap C(v) \implies C(u) \cap C(v) \neq \emptyset$ $\implies C(u) \notin C(v) - (2) \text{ by (PCC)}$
- (1) \implies C(z) \subseteq C(u) \cap C(v)
- (2) \implies C(z) \subset C(u) & C(z) \subset C(v)
- By (PCC) z ≺ u & z ≺ v, Contradiction to the minimality of u & v

- 'If part' by Prop. 2
- Suppose G: (PCC) & \mathscr{C}_G : pre-k-ary
- Let $U \in X^{(k)}$. Then, $R_{\mathscr{C}_{G}}(U) \in \mathscr{C}_{G}$
 - \implies there exists some $z \in V(G)$, $R_{\mathscr{C}_G}(U) = C(z) - (1)$
 - \implies Anc(U) $\neq \emptyset \implies$ LCA(U) $\neq \emptyset$

● *u*, *v* ∈ LCA(*U*)

- $\implies u, v \text{ incomparable } \& U \subseteq C(u) \cap C(v) \implies C(u) \cap C(v) \neq \emptyset$ $\implies C(u) \notin C(v) - (2) \text{ by (PCC)}$
- (1) \implies C(z) \subseteq C(u) \cap C(v)

• (2)
$$\implies$$
 C(z) \subset C(u) & C(z) \subset C(v)

 By (PCC) z ≺ u & z ≺ v, Contradiction to the minimality of u & v

$$\implies |\mathsf{LCA}(U)| = 1 \implies k - \mathsf{lca-property}$$

3

20/33

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

A D > A B > A

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

• Suppose \mathscr{C} is pre-*k*-ary

• • • • • • • •

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

- Suppose *C* is pre-*k*-ary
- Hasse diagram G of \mathscr{C} satisfies (PCC) and $\mathscr{C}_{G} = \mathscr{C}$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

- Suppose *C* is pre-*k*-ary
- Hasse diagram G of $\mathscr C$ satisfies (PCC) and $\mathscr C_G = \mathscr C$
- $\implies \mathscr{C}_G$ is pre-*k*-ary

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

- Suppose *C* is pre-*k*-ary
- Hasse diagram G of $\mathscr C$ satisfies (PCC) and $\mathscr C_G = \mathscr C$
- $\implies \mathscr{C}_G$ is pre-*k*-ary
- By Proposition 3, G satisfies the k-lca-property

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

- Suppose *C* is pre-*k*-ary
- Hasse diagram G of $\mathscr C$ satisfies (PCC) and $\mathscr C_G = \mathscr C$
- $\implies \mathscr{C}_G$ is pre-*k*-ary
- By Proposition 3, G satisfies the k-lca-property
- Converse by Proposition 2

A clustering system \mathscr{C} is pre-*k*-ary if and only if there is a DAG *G* with $\mathscr{C} = \mathscr{C}_G$ and *k*-lca-property.

Proof.

- Suppose *C* is pre-*k*-ary
- Hasse diagram G of $\mathscr C$ satisfies (PCC) and $\mathscr C_G = \mathscr C$
- $\implies \mathscr{C}_G$ is pre-*k*-ary
- By Proposition 3, G satisfies the k-lca-property
- Converse by Proposition 2

Theorem 2

Let *R* be a *k*-ary transit function. Then *R* is monotone if and only if there is a DAG *G* with *k*-lca-property, which satisfies $\mathscr{C}_G = \mathscr{C}_R$ and $R = R_{\mathscr{C}_G}$.

(日) (四) (日) (日) (日)

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

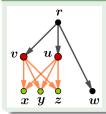
Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

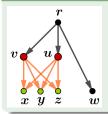
Example (Network without CL Property)



Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Example (Network without CL Property)

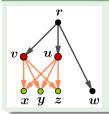


•
$$C(u) = \{x, y, z\}$$

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Example (Network without CL Property)



- $C(u) = \{x, y, z\}$
- lca(C(u)) = lca({x, y, z}) = {u, v} since u, v are both minimal common ancestors of {x, y, z}

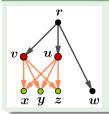
22/33

• • • • • • • • • • •

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Example (Network without CL Property)



- $C(u) = \{x, y, z\}$
- lca(C(u)) = lca({x, y, z}) = {u, v}
 since u, v are both minimal common ancestors of {x, y, z}
- lca(C(u)) is not defined

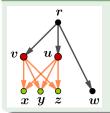
22/33

• • • • • • • • • • •

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Example (Network without CL Property)



- $C(u) = \{x, y, z\}$
- lca(C(u)) = lca({x, y, z}) = {u, v} since u, v are both minimal common ancestors of {x, y, z}
- lca(C(u)) is not defined

• lca-property \implies (CL)

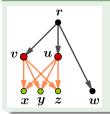
22/33

(日) (四) (日) (日) (日)

Cluster-Ica Property (Hellmuth, Schaller, Stadler, 2022)

(CL) For every $v \in V(G)$, lca(C(v)) is defined.

Example (Network without CL Property)



- $C(u) = \{x, y, z\}$
- lca(C(u)) = lca({x, y, z}) = {u, v} since u, v are both minimal common ancestors of {x, y, z}
- lca(C(u)) is not defined

• Ica-property \implies (CL)

Observation 4

Let G be a DAG satisfying **(CL)**. Then C(lca(C(v))) = C(v) for all $v \in V(G)$.

メロト スポト メヨト メヨ

Correspondence between Strict k-lca-property and k-ary \mathcal{T} -system

Ξ.

Image: A matrix and a matrix

Definition

Let G be a DAG with leaf set X and k-lca property. Then, G has the **strict k-lcaproperty** if G satisfies (CL), and for every $w \in V(G)$, there is $U \in X^{(k)}$ such that lca(C(w)) = lca(U).

Definition

Let G be a DAG with leaf set X and k-lca property. Then, G has the **strict k-lcaproperty** if G satisfies (CL), and for every $w \in V(G)$, there is $U \in X^{(k)}$ such that lca(C(w)) = lca(U).

Definition

Let G be a DAG with leaf set X and k-lca property. Then, G has the strict k-lcaproperty if G satisfies (CL), and for every $w \in V(G)$, there is $U \in X^{(k)}$ such that lca(C(w)) = lca(U).

Proposition 4

Let G be a DAG with leaf set X and k-lca-property. Then G has the strict k-lcaproperty if and only if \mathscr{C}_G is a k-ary \mathscr{T} -system. In this case, \mathscr{C}_G is identified by R_G .

23/33

(日) (四) (日) (日) (日)

Hellmuth, Schaller, Stadler, 2022 Strong Ica-property

Definition

Let G be DAG with leaf set X and lca-property. Then, G has the **strong** lcaproperty if, for every non-empty subset $A \subseteq X$, there exists $x, y \in A$ such that lca(A) = lca(x, y).

Hellmuth, Schaller, Stadler, 2022 Strong Ica-property

Definition

Let G be DAG with leaf set X and lca-property. Then, G has the **strong** lcaproperty if, for every non-empty subset $A \subseteq X$, there exists $x, y \in A$ such that lca(A) = lca(x, y).

• *G* is a strong lca-network if and only if *G* has the lca-property and \mathscr{C}_G is a weak hierarchy.

Strong k-lca-property

Generalizing the strong lca-property

Definition

Let G be DAG with leaf set X and lca-property. Then, G has the **strong k**-lca**property** if, for every non-empty subset $A \subseteq X$, there is $U \in X^{(k)}$ such that lca(U) = lca(A).

Strong k-lca-property

Generalizing the strong lca-property

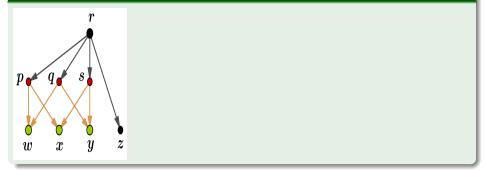
Definition

Let G be DAG with leaf set X and lca-property. Then, G has the **strong k**-lca**property** if, for every non-empty subset $A \subseteq X$, there is $U \in X^{(k)}$ such that lca(U) = lca(A).

Lemma 5

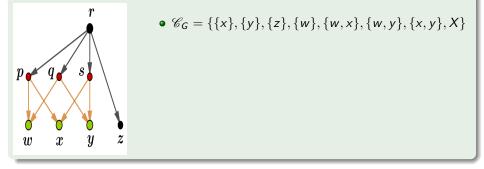
If a DAG G has the strong k-lca-property, then it has the strict k-lca-property.

(日) (四) (日) (日) (日)

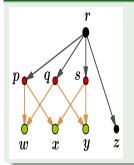


2

• • • • • • • •



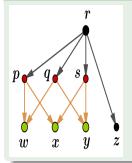
э



- $\mathscr{C}_{G} = \{\{x\}, \{y\}, \{z\}, \{w\}, \{w, x\}, \{w, y\}, \{x, y\}, X\}$
- {*w*, *x*}, {*w*, *y*}, {*x*, *y*} violates the condition of weak hierarchy

26/33

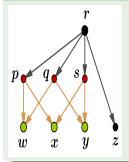
• • • • • • • • • • •



- $\mathscr{C}_{G} = \{\{x\}, \{y\}, \{z\}, \{w\}, \{w, x\}, \{w, y\}, \{x, y\}, X\}$
- {*w*, *x*}, {*w*, *y*}, {*x*, *y*} violates the condition of weak hierarchy
- G is an Ica-network

26/33

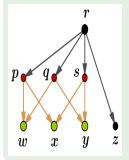
Image: A math the second se



- $\mathscr{C}_{G} = \{\{x\}, \{y\}, \{z\}, \{w\}, \{w, x\}, \{w, y\}, \{x, y\}, X\}$
- {*w*, *x*}, {*w*, *y*}, {*x*, *y*} violates the condition of weak hierarchy
- G is an Ica-network
- $lca(\{w, x, y\}) = r \neq lca(\{u, v\})$ for any $u, v \in \{w, x, y\}$

26/33

• • • • • • • • • • •



- $\mathscr{C}_{G} = \{\{x\}, \{y\}, \{z\}, \{w\}, \{w, x\}, \{w, y\}, \{x, y\}, X\}$
- {*w*, *x*}, {*w*, *y*}, {*x*, *y*} violates the condition of weak hierarchy
- G is an Ica-network
- $lca(\{w, x, y\}) = r \neq lca(\{u, v\})$ for any $u, v \in \{w, x, y\}$
- not strong lca

(日) (四) (日) (日) (日)

Let G be a DAG with leaf set X and the lca-property. Then G has the strong k-lca-property if and only if \mathscr{C}_G holds the following condition. (U, A, X): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

Proof.

• Assume G has the strong k-lca-property

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$
- \implies lca(A) = lca(U) for some $U \subseteq X$ with $|U| \le k$

Let G be a DAG with leaf set X and the lca-property. Then G has the strong k-lca-property if and only if \mathscr{C}_G holds the following condition. (U, A, X): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$
- \implies lca(A) = lca(U) for some $U \subseteq X$ with $|U| \le k$
- Obs. 3 \implies cl(A) = C(lca(A)) = C(lca(U)) = cl(U)

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$
- \implies lca(A) = lca(U) for some $U \subseteq X$ with $|U| \le k$
- Obs. 3 \implies cl(A) = C(lca(A)) = C(lca(U)) = cl(U)
- Assume that for every Ø ≠ A ⊆ X, there exists U ⊆ A with |U| ≤ k such that cl(A) = cl(U) in C_G.

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$
- \implies lca(A) = lca(U) for some $U \subseteq X$ with $|U| \le k$
- Obs. 3 \implies cl(A) = C(lca(A)) = C(lca(U)) = cl(U)
- Assume that for every Ø ≠ A ⊆ X, there exists U ⊆ A with |U| ≤ k such that cl(A) = cl(U) in C_G.
- Let $A \subseteq X$ be non-empty

Let *G* be a DAG with leaf set *X* and the lca-property. Then *G* has the strong *k*-lca-property if and only if \mathscr{C}_G holds the following condition. (*U*, *A*, *X*): for every non-empty subset $A \subseteq X$ there exists $U \subseteq A$ in $X^{(k)}$ such that cl(A) = cl(U).

Proof.

- Assume G has the strong k-lca-property
- Let $\emptyset \neq A \subseteq X$
- \implies lca(A) = lca(U) for some $U \subseteq X$ with $|U| \le k$
- Obs. 3 \implies cl(A) = C(lca(A)) = C(lca(U)) = cl(U)
- Assume that for every $\emptyset \neq A \subseteq X$, there exists $U \subseteq A$ with $|U| \leq k$ such that cl(A) = cl(U) in \mathscr{C}_{G} .
- Let $A \subseteq X$ be non-empty
- Obs. 2(iii) & Obs. 3 \implies

 $\mathsf{lca}(A) = \mathsf{lca}(\mathsf{C}(\mathsf{lca}(A))) = \mathsf{lca}(\mathsf{cl}(A)) = \mathsf{lca}(\mathsf{cl}(U)) = \mathsf{lca}(\mathsf{C}(\mathsf{lca}(U))) = \mathsf{lca}(U)$

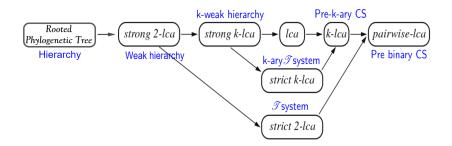
Correspondence between Strong k-lca-property and k-weak hierarchy

Theorem 3

G is a DAG with the strong *k*-lca-property if and only if *G* has the lca-property and \mathscr{C}_G is a *k*-weak hierarchy.

Proof.

- Suppose G has the strong k-lca-property
- G has the lca-property
- Prop. 5 \implies (U, A, X)
- Prop. 1 $\implies \mathscr{C}_{\mathcal{G}}$ is a k-weak hierarchy
- Let \mathscr{C}_G be a k-weak hierarchy
- By Prop. 1 \implies Condition (U, A, X)
- Prop. 5 \implies G has the strong k-lca-property



A B > 4
 B > 4
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

References

[1] Bandelt, H.J., Dress, A.W.M.: Weak hierarchies associated with similarity measures — an additive clustering technique. Bull. Math. Biol. 51, 133–166 (1989). https://doi.org/10.1007/BF02458841

[2] Bandelt, H.J., Dress, A.W.M.: An order theoretic framework for overlapping clustering. Discrete Mathematics 136, 21–37 (1994). https://doi.org/10.1016/0012- 365X(94)00105-R

[3] Barthèlemy, J.P., Brucker, F.: Binary clustering. Discr. Appl. Math. 156(8), 1237–1250 (2008). https://doi.org/10.1016/j.dam.2007.05.024

[4] Bender, M.A., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common ancestors in directed acyclic graphs. In: SODA '01: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 845–853. Society for Industrial and Applied Mathematics, Washington, D.C., USA (2001). https://doi.org/10.5555/365411.365795

[5] Bertrand, P., Diatta, J.: Multilevel clustering models and interval convexities.
 Discr. Appl. Math. 222, 54–66 (2017).
 https://doi.org/10.1016/j.dam.2016.12.019

イロト イヨト イヨト イヨト

э.

[6] Changat, M., Mathews, J., Peterin, I., Narasimha-Shenoi, P.G.: n-ary transit functions in graphs. Discussiones Math. Graph Th. 30(4), 671–685 (2010), http://eudml.org/doc/270794

[7] Changat, M., Narasimha-Shenoi, P.G., Stadler, P.F.: Axiomatic characterization of transit functions of weak hierarchies. Art Discr. Appl. Math. 2, P1.01 (2019). https://doi.org/10.26493/2590-9770.1260.989

[8] Changat, M., Shanavas, A.V., Stadler, P.F.: Transit functions and pyramidlike binary clustering systems. Tech. Rep. 2212.08721, arXiv (2023). https://doi.org/10.48550/arXiv.2212.08721

[9] Dress, A.: Towards a theory of holistic clustering. In: Mirkin, B., McMorris, F.R., Roberts, F.S., Rzhetsky, A. (eds.) Mathematical Hierarchies and Biology.
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 37, pp. 271–290. American Mathematical Society (1996)

э.

(日)

[10] Hellmuth, M., Schaller, D., Stadler, P.F.: Clustering systems of phylogenetic networks. Theory in Biosciences 142(4), 301–358 (2023). https://doi.org/10.1007/s12064-023-00398-w

[11] Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol. 3, 23–35 (2011). https://doi.org/10.1093/gbe/evq077

 [12] Nakhleh, L., Wang, L.S.: Phylogenetic networks: Properties and relationship to trees and clusters. In: Priami, C., Zelikovsky, A. (eds.) Transactions on Computational Systems Biology II. Lect. Notes Comp. Sci., vol. 3680, pp. 82–99.
 Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11567752 6

[13] Nebeskỳ, L.: On a certain numbering of the vertices of a hypergraph.Czechoslovak Math. J. 33, 1–6 (1983).https://doi.org/10.21136/CMJ.1983.101849

3

イロト 不得 トイヨト イヨト

THANK YOU!

2

33/33

メロト メタト メヨト メヨト