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- Directed graph G = (V, E) where E C V x V\ {(x,x) : x € V}
- Directed edges, No directed cycle
- DAGs are models for all complex evolutionary relationships and processes
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- DAG with Unique root vertex, with indegree 0
@ Phylogenetic Network

- No vertex with indegree < 1 and out degree 1
o (Rooted) Phylogenetic tree

- Phylogenetic network without Hybrid vertices, with indegree > 1
- They represents speciation only

DAG with hybrid vertices Network Phylogenetic tree
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The set LCA(Y') comprises all least common ancestors of Y in G.
o LCA({v}) ={v} forall ve V(G) & LCA(Y) =0 if and only if Anc(Y) =0
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{a,b,c}
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r

=
(]

=
[
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(t2) R(uy,uo,...,uk) = R(m(u1, ug,. .., ug))
(t3) R(u,u,...,u)={u} forallue X

o (tl) i ueclU = ueRU) YU XW ={)£AACX:|A <k}
o (t3) : RH{u})={u} YVue X

Example (3-ary transit function)

o R(U) = C(lca(U)) for all U C X ={a,b,c,d, e, f} with [U| <3
o R({x}) = {x} forall x e X
R({a b, c}) = R({a,b}) = R({a, c}) = R({b, c}) = C(u) = {a, b, c}
v o R({d,e,f})=R({d,e}) = R({d, f}) =C(w) = {d, e, }
o R({e, f})=c(v) ={e, f}
o R(U) =c(r) = X for all other U € X®

r
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Set Systems
(KS) {x} € € forall xe X
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Set Systems

(KS) {x} € € forall xe X

(KR) For all C € € thereisaset T C C with |T| < k such that
T C C'impliess CC C'forall C'e®
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(KC) For every U C X with [U| < k holds ([ {C €% |UC C}e%
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A set system ¢ C 2X of non-empty subsets of X is a
o k-ary .7-system for k > 2 if it satisfies (KS), (KR) and (KC)
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Set Systems

(KS) {x} € € forall xe X
(KR) For all C € € thereisaset T C C with |T| < k such that
T C C'impliess CC C'forall C'e®
(KC) For every U C X with [U| < k holds ([ {C €% |UC C}e%
(K1) X e¥
A set system ¢ C 2X of non-empty subsets of X is a

o k-ary .7-system for k > 2 if it satisfies (KS), (KR) and (KC)

o Clustering system if it holds (KS) and (K1)

@ Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
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Set Systems

(KS) {x} € € forall xe X
(KR) For all C € € thereisaset T C C with |T| < k such that
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Set Systems

(KS) {x} € € forall xe X
(KR) For all C € € thereisaset T C C with |T| < k such that
T C C'impliess CC C'forall C'e®

(KC) For every U C X with [U| < k holds ([ {C €% |UC C}e%

(K1) X e¥
A set system ¢ C 2X of non-empty subsets of X is a
k-ary .7-system for k > 2 if it satisfies (KS), (KR) and (KC)
Clustering system if it holds (KS) and (K1)
Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
Closed if for all non-empty set A € 2% holds A € ¢ <= cl(A) = A where

the closure function cl : 2X — 2% of a set systems € is defined by
cd(A)=N{Ce€|ACC} VAec2X
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Set Systems

(KS) {x} € € forall xe X
(KR) For all C € € thereisaset T C C with |T| < k such that
T C C'impliess CC C'forall C'e®

(KC) For every U C X with [U| < k holds ([ {C €% |UC C}e%

(K1) X e¥
A set system ¢ C 2X of non-empty subsets of X is a
k-ary .7-system for k > 2 if it satisfies (KS), (KR) and (KC)
Clustering system if it holds (KS) and (K1)
Pre-k ary clustering system if it holds (KS), (K1) and (KC) for k
Closed if for all non-empty set A € 2% holds A € ¢ <= cl(A) = A where

the closure function cl : 2X — 2% of a set systems € is defined by
cd(A)=N{Ce€|ACC} VAec2X

(¢ is closed under pairwise intersections)

For all A,B € € with ANB # ) we have ANB €%
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Connection between Set Systems and Transit Functions
@ A k-ary transit function R is monotone if it satisfies:

(m) Wi, ..., W € R(ul,...,uk) — R(Wl,...,Wk) - R(ul,...,uk)
(W C R(U) implies R(W) C R(U) YU, W € X))
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Connection between Set Systems and Transit Functions
@ A k-ary transit function R is monotone if it satisfies:

(m) Wi, ..., W € R(ul,...,uk) — R(Wl,...,Wk) - R(ul,...,uk)
(W C R(U) implies R(W) C R(U) YU, W € X))

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone k-ary transit functions and k-
ary .7-systems mediated by the set system %z = {R(U) | U € X} called the
System of transit sets of R and the canonical transit function Ry of & defined by
Ry : X(K) — 2X where

Re(U) =({Cez|UCC}H VUexW
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Connection between Set Systems and Transit Functions
@ A k-ary transit function R is monotone if it satisfies:

(m) Wi, ..., W € R(ul,...,uk) — R(Wl,...,Wk) - R(ul,...,uk)
(W C R(U) implies R(W) C R(U) YU, W € X))

Barthelemy, Brucker, 2008; C, Narasimha-Shenoi, Stadler, 2019

There is a 1-1 correspondence between monotone k-ary transit functions and k-
ary .7-systems mediated by the set system %z = {R(U) | U € X} called the
System of transit sets of R and the canonical transit function Ry of & defined by
Ry : X(K) — 2X where

Re(U) =({Cez|UCC}H VUexW

e A set system ¢ C 2% is identified by a k-ary transit function if € = 6k,
@ Ry (U) =cl(U) VU with |U| < k
@ Transit axiom corresponding to (K1) is

(a’) there exists U € X9 such that R(U) = X
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The Hasse diagram $(%) of a set system % corresponds to the Hasse diagram
of Poset (%, C) (it is the DAG with vertex set € and directed edges from A € ¥
to Be % if (i) B C A and (ii) thereis no C € € with BC C C A)

{{a}, {b}, {c}, {d}, {e}, {a, b}, {b,c,d},{d,e},{a, b,c}, {b,c,d, e}, X}
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Standard Clustering Systems

@ Hierarchy

for any two sets A, B € ¢ holds AN B € {A, B, ()}

o Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989)
for any three sets A,B,C € € holds AnNBNCe {AnB,ANC,BNC}

o k-Weak hierarchy (Bandelt and Dress, 1994)

for any k + 1 sets A1, Ap, ..., Akr1 € € thereis 1 < j < k + 1 such that
k+1 k+1

Na= N A

i=1 i=1,i#j
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Standard Clustering Systems
@ Hierarchy
for any two sets A, B € ¢ holds AN B € {A, B, ()}
o Weak hierarchy (Batbedat, 1988, Bandelt and Dress, 1989)
for any three sets A,B,C € € holds AnNBNCe {AnB,ANC,BNC}
o k-Weak hierarchy (Bandelt and Dress, 1994)
for any k + 1 sets A1, Ap, ..., Akr1 € € thereis 1 < j < k + 1 such that

k+1 k+1
Na= 0 4
i=1 i=1,i#j

@ Weak hierarchy = 2-weak hierarchy
— k-weak hierarchy
= (k + 1)-weak hierarchy for all k > 3.
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Correspondence between Hierarchy and Rooted Phylogenetic tree
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Correspondence between Hierarchy and Rooted Phylogenetic tree

Semple and Steel, 2003
o Consider a Rooted phylogenetic tree G with vertex set V and leaf set X
= % = {C(v) : v € V} is a hierarchy

r

6 = {{a}, {b}, {c} {d}, {e}, {f} {e f},{a,b,c} {d e F} X}

@ ¥ is Hierarchy on X
= Hasse Diagram (%) is a rooted phylogenetic tree with leaf set X

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs February 16, 2024



Observation 1 (Bertrand and Diatta, 2017)

A set system % is a k-weak hierarchy if and only if for every A € 2X with |A| > k
there is z € A such that z € cl(A\ {z}).
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Observation 1 (Bertrand and Diatta, 2017)

A set system % is a k-weak hierarchy if and only if for every A € 2X with |A| > k
there is z € A such that z € cl(A\ {z}).

Proposition 1

A set system % on X is a k-weak hierarchy if and only if for every () # A C X there
exists U C A with |U| < k such that cl(A) = cl(U).
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Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).
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Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).

@ Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, f £ A C X, and suppose Ica(A) is defined. Then
the following hold:

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs February 16, 2024



Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).

@ Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, f £ A C X, and suppose Ica(A) is defined. Then
the following hold:

(i) lca(A) <¢ v for all v with A C C(v).
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Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).

@ Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, f £ A C X, and suppose Ica(A) is defined. Then
the following hold:

(i) lca(A) <¢ v for all v with A C C(v).

(i) C(Ica(A)) is the unique inclusion-minimal cluster in é¢ containing A.
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Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).

@ Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, f £ A C X, and suppose Ica(A) is defined. Then
the following hold:

(i) lca(A) <¢ v for all v with A C C(v).
(i) C(Ica(A)) is the unique inclusion-minimal cluster in é¢ containing A.
(iii) lca(c(lca(A))) = lca(A).
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Results for Network generalized to DAGs
o Lemma 17: Hellmuth, Schaller, Stadler, 2022

Let G be a DAG. Then v <¢ w implies C(v) C C(w) for all v,w € V(G).

@ Obs. 12 & 13: Hellmuth, Schaller, Stadler, 2022

Observation 2

Let G be a DAG with leaf set X, f £ A C X, and suppose Ica(A) is defined. Then
the following hold:

(i) lca(A) <¢ v for all v with A C C(v).
(i) C(Ica(A)) is the unique inclusion-minimal cluster in é¢ containing A.
(iii) lca(c(lca(A))) = lca(A).

Let R be a k-ary transit function. Then G = $(%R) is a network if and only if R
satisfies (a’) for k.
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Hellmuth, Schaller, Stadler, 2022

Path-Cluster-Comparability (PCC) Property

u and v are <g-comparable if and only if C(u) C C(v) or C(v) C C(u) for all
u,veV
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Hellmuth, Schaller, Stadler, 2022

Path-Cluster-Comparability (PCC) Property

u and v are <g-comparable if and only if C(u) C C(v) or C(v) C C(u) for all
uveV

Example (G without PCC)

p

. » C(u) ={a,b} cC(v)={a,b,c}

neither u < vnorv < u
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Hellmuth, Schaller, Stadler, 2022

Path-Cluster-Comparability (PCC) Property

u and v are <g-comparable if and only if C(u) C C(v) or C(v) C C(u) for all
uveV

Example (G without PCC)

p

. » C(u) ={a,b} cC(v)={a,b,c}

neither u < vnorv < u

o Hasse diagram G of a clustering system ¢ satisfies (PCC) and ¢; = ¢
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DAGs with Ica- and k-Ica- property

Hellmuth, Schaller, Stadler, 2022

Ica-Property

A DAG with leaf set X has the Ica-property if Ica(A) is defined for all non-empty
AC X.
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DAGs with Ica- and k-Ica- property

Hellmuth, Schaller, Stadler, 2022

Ica-Property

A DAG with leaf set X has the Ica-property if Ica(A) is defined for all non-empty
AC X.

If a DAG G has the Ica-property, then its clustering system %5 is closed.
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Example (%5 is closed # G is Ica network)

%o = {{w}, (<}, {r}, (v Aw.x v} {xy. 2} {w,x,y, 2}}

%c is closed. However, G does not have the Ica-property since
LCA({x, y}) ={p,v.q}
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Example (%5 is closed # G is Ica network)

%o = {{w}, (<}, {r}, (v Aw.x v} {xy. 2} {w,x,y, 2}}

%c is closed. However, G does not have the Ica-property since
LCA({x, y}) ={p,v.q}

o (Lemma 41, Hellmuth, Schaller, Stadler, 2022)
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Example (%5 is closed # G is Ica network)

%o = {{w}, (<}, {r}, (v Aw.x v} {xy. 2} {w,x,y, 2}}

%c is closed. However, G does not have the Ica-property since
LCA({x, y}) ={p,v.q}

o (Lemma 41, Hellmuth, Schaller, Stadler, 2022)

Observation 3

If G is a DAG with leaf set X and the Ica-property, then C(lca(Y)) = cl(Y) for all
0+YCX.
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Definition
A DAG G with leaf set X has the k-Ica-property if Ica(A) is defined for all A € X(¥).
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Definition

A DAG G with leaf set X has the k-Ica-property if Ica(A) is defined for all A € X(¥).

o We define the k-ary map Rg : X¥ — 2X by

Re(u1, ..., u) = C(lca(uy,...,u)) for allUe X®
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Definition

A DAG G with leaf set X has the k-Ica-property if Ica(A) is defined for all A € X(¥).

o We define the k-ary map Rg : X¥ — 2X by

Re(u1, ..., u) = C(lca(uy,...,u)) for allUe X®

@ Remember the canonical transit function of %¢:

Req(ur, ;.. i) = (J{C(v) | v € V(G), un, i, ..., i € C(v)}
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Definition

A DAG G with leaf set X has the k-Ica-property if Ica(A) is defined for all A € X(¥).

o We define the k-ary map Rg : X¥ — 2X by

Re(u1, ..., u) = C(lca(uy,...,u)) for allUe X®

@ Remember the canonical transit function of %¢:

Req(ur, ;.. i) = (J{C(v) | v € V(G), un, i, ..., i € C(v)}

Proposition 2

Let G be a DAG with k-lca-property. Then Rg is a monotone k-ary transit function
that satisfies R = R¢,.. Moreover, € is pre-k-ary.
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@ Suppose G: DAG with k-Ica-property with leaf set X
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs



@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € Rg(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)

— RG(ul,...,uk) - RG(Xl,...,Xk)
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € RG(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)

@ C(lca(U)) is the unique inclusion minimal cluster in € containing U
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € RG(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)

@ C(lca(U)) is the unique inclusion minimal cluster in € containing U
e C(lca(V)) =cl(U) € €6 — — — (1)
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € RG(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)

@ C(lca(U)) is the unique inclusion minimal cluster in € containing U
e C(lca(V)) =cl(U) € €6 — — — (1)
— RG = R<gc
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € RG(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)
@ C(lca(U)) is the unique inclusion minimal cluster in € containing U
e C(lca(V)) =cl(U) € €6 — — — (1)
= Rc = Ry,
o U XK Ica(U) is defined
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:
Uy, ..., U, € RG(Xl,...,Xk)

= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)

— RG(ul,...,uk) - RG(Xl,...,Xk)

C(lca(V)) is the unique inclusion minimal cluster in € containing U
C(lca(V)) = cl(U) € 66 — — — (1)

= R¢ = R<gc

U e X%, Ica(U) is defined

(1) = d(U) € 6¢
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:

Uiy ..oy Uk € Re(xa, ..y Xk)
= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)

C(lca(V)) is the unique inclusion minimal cluster in € containing U
C(lca(V)) = cl(U) € 66 — — — (1)

= R¢ = R<gc

U e X%, Ica(U) is defined

(1) = d(U) € 6¢

= % satisfies (KC)
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@ Suppose G: DAG with k-Ica-property with leaf set X
o Uniqueness of Ica(U) = Rg is a k-ary transit function.

@ R¢ is monotone:

Uiy ..oy Uk € Re(xa, ..y Xk)
= {u,...,ux} CC(lca(x, ..., xk))
= lca(uy, ..., ux) X lca(xq,...,xk) (from Obs. 2)
= C(lca(un, ..., ux)) C C(lca(x1,...,xk)) (from Lemma 1)
= Re(u1,...,uk) C Ro(x1,- -, xk)

C(lca(V)) is the unique inclusion minimal cluster in € containing U
C(lca(V)) = cl(U) € 66 — — — (1)

= R¢ = R<gc

U e X%, Ica(U) is defined

(1) = d(U) € 6¢

= % satisfies (KC)

= % is pre-k-ary
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Example (6 is pre-k-ary # G is k-lca (k=2,3))
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Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with leaf set X =
{x,y,z,w}
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Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with leaf set X =
{x,y,z,w}

° 6= {{X}v {y}’{z}v {W}v {Xv}/az}vx}'
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Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with
{x,y,z,w}

(KC) for k = 2.

leaf set X

° 6= {{X}v {y}’{z}v {W}v {Xv}/az}vx}'

@ ¢ is pre-binary since % satisfies (KS) and
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Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with
{x,y,z,w}

(KC) for k = 2.

leaf set X

° 6= {{X}v {y}’{z}v {W}v {Xv}/az}vx}'

@ ¢ is pre-binary since % satisfies (KS) and

@ G is not a pairwise |ca-network since Ica(x, y),
Ica(x, z), and Ica(y, z) are not defined.
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Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with leaf set X =
{x,y,z,w}

° b = {{X}v {}/}, {Z}a {W}v {X,y,Z},X}.

@ ¢ is pre-binary since % satisfies (KS) and
(KC) for k = 2.

@ G is not a pairwise |ca-network since Ica(x, y),
Ica(x, z), and Ica(y, z) are not defined.

@ % also satisfies (KC) for k =3
but G is not a 3-Ica-network since Ica(x, y, z) is
not defined.

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs February 16, 2024



Example (6 is pre-k-ary # G is k-lca (k=2,3))

o Consider the DAG G with leaf set X =
{x,y,z,w}

° b = {{X}v {}/}, {Z}, {W}v {X,y,Z},X}.

@ ¢ is pre-binary since % satisfies (KS) and
(KC) for k = 2.

@ G is not a pairwise |ca-network since Ica(x, y),
Ica(x, z), and Ica(y, z) are not defined.

@ % also satisfies (KC) for k =3

but G is not a 3-Ica-network since Ica(x, y, z) is
not defined.

v

Let G be a DAG that satisfies (PCC). Then, G satisfies the k-lca-property if and
only if ¢¢ is pre-k-ary.

v
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o 'If part’ by Prop. 2
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U € XK. Then, Ry, (V) € ¢
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
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o 'If part’ by Prop. 2

@ Suppose G: (PCC) & %g: pre-k-ary

o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0
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o 'If part’ by Prop. 2

@ Suppose G: (PCC) & %g: pre-k-ary

o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0

e u,v e LCA(U)
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0
e u,v e LCA(U)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0
e u,v e LCA(U)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
— ¢(u) 0 6(v) — — — (2) by (PCC)
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0
e u,v e LCA(U)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
— ¢(u) 0 6(v) — — — (2) by (PCC)
o (1) = ¢C(z) Cc(u)nc(v)
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o 'If part’ by Prop. 2
@ Suppose G: (PCC) & %g: pre-k-ary
o Let U XK. Then, Ry, (V) € €6
= there exists some z € V(G), Rg,(U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0
e u,v e LCA(U)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
— ¢(u) 0 6(v) — — — (2) by (PCC)
o (1) = ¢C(z) Cc(u)nc(v)
@ (2) = C(z) cCc(u) & ¢(z) cc(v)
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o 'If part’ by Prop. 2

@ Suppose G: (PCC) & %g: pre-k-ary

o Let U € XK. Then, Ry, (V) € ¢
= there exists some z € V(G), Ry (U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0

e u,v e LCA(V)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
— ¢(u) 0 6(v) — — — (2) by (PCC)

e (1) = C(z) Cc(u)nc(v)

@ (2) = C(z) cCc(u) & ¢(z) cc(v)

@ By (PCC)z<u & z=<v,
Contradiction to the minimality of u & v
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o 'If part’ by Prop. 2

@ Suppose G: (PCC) & %g: pre-k-ary

o Let U € XK. Then, Ry, (V) € ¢
= there exists some z € V(G), Ry (U) =C(z) — — — (1)
= Anc(U) #0 = LCA(U) #0

e u,v e LCA(V)
= u,v incomparable & U C C(u)NC(v) = C(u)NC(v) #D
— ¢(u) 0 6(v) — — — (2) by (PCC)

e (1) = C(z) Cc(u)nc(v)

@ (2) = C(z) cCc(u) & ¢(z) cc(v)

@ By (PCC)z<u & z=<v,
Contradiction to the minimality of u & v

= |LCA(U)| =1 = k — Ica-property
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

D)
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

v

@ Suppose ¥ is pre-k-ary

A\,
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

@ Suppose ¥ is pre-k-ary
@ Hasse diagram G of € satisfies (PCC) and 65 = ¢

A\,
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

@ Suppose ¥ is pre-k-ary

@ Hasse diagram G of € satisfies (PCC) and 65 = ¢
@ — % is pre-k-ary

A\,
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

Suppose € is pre-k-ary

Hasse diagram G of ¢ satisfies (PCC) and é¢c = €
= % Is pre-k-ary

By Proposition 3, G satisfies the k-Ica-property

A\,
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

Suppose € is pre-k-ary

Hasse diagram G of ¢ satisfies (PCC) and é¢c = €
= % Is pre-k-ary

By Proposition 3, G satisfies the k-Ica-property

Converse by Proposition 2

A\,
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A clustering system % is pre-k-ary if and only if there is a DAG G with ¢ = %5
and k-Ica-property.

Suppose € is pre-k-ary

Hasse diagram G of ¢ satisfies (PCC) and é¢c = €
— % is pre-k-ary

By Proposition 3, G satisfies the k-Ica-property

Converse by Proposition 2

Let R be a k-ary transit function. Then R is monotone if and only if there is a
DAG G with k-lca-property, which satisfies 6 = g and R = Re,.
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs February 16, 2024



DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)

o C(u) = {x,y,z}
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)

o C(u) = {x,y,z}

o Ica(C(u)) = lca({x,y,z}) = {u, v}
since u, v are both minimal common
ancestors of {x, y, z}
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)

o C(u) = {x,y,z}

o Ica(C(u)) = lca({x,y,z}) = {u, v}
since u, v are both minimal common
ancestors of {x, y, z}

@ Ica(C(u)) is not defined
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)

o C(u) = {x,y,z}

o Ica(C(u)) = lca({x,y,z}) = {u, v}
since u, v are both minimal common
ancestors of {x, y, z}

@ Ica(C(u)) is not defined

o © ©O
r Y z w

@ Ica-property = (CL)
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DAGs with Strict and Strong k-lca-Property

Cluster-lca Property (Hellmuth, Schaller, Stadler, 2022)
(CL) For every v € V(G), Ica(C(v)) is defined.

Example (Network without CL Property)

o C(u) = {x,y,z}

o Ica(C(u)) = lca({x,y,z}) = {u, v}
since u, v are both minimal common
ancestors of {x, y, z}

@ Ica(C(u)) is not defined

o © ©O
r Y z w

@ Ica-property = (CL)

Observation 4
Let G be a DAG satisfying (CL). Then C(Ica(C(v))) = C(v) for all v € V(G).
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Correspondence between Strict k-Ica-property and k-ary .7 -system
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Correspondence between Strict k-Ica-property and k-ary .7 -system

Strict k-Ica-Property
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Correspondence between Strict k-Ica-property and k-ary .7 -system

Strict k-Ica-Property

Definition

Let G be a DAG with leaf set X and k-Ica property. Then, G has the strict k-Ica-
property if G satisfies (CL), and for every w € V/(G), there is U € X() such that
Ica(C(w)) = lca(V).
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Correspondence between Strict k-Ica-property and k-ary .7 -system

Strict k-Ica-Property

Definition

Let G be a DAG with leaf set X and k-Ica property. Then, G has the strict k-Ica-
property if G satisfies (CL), and for every w € V/(G), there is U € X() such that
Ica(C(w)) = lca(V).
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Correspondence between Strict k-Ica-property and k-ary .7 -system

Strict k-Ica-Property

Definition

Let G be a DAG with leaf set X and k-Ica property. Then, G has the strict k-Ica-
property if G satisfies (CL), and for every w € V/(G), there is U € X() such that
Ica(C(w)) = lca(V).

Proposition 4

Let G be a DAG with leaf set X and k-Ica-property. Then G has the strict k-Ica-
property if and only if € is a k-ary 7 -system. In this case, % is identified by Rg.
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Hellmuth, Schaller, Stadler, 2022
Strong Ica-property

Definition

Let G be DAG with leaf set X and Ica-property. Then, G has the strong Ica-
property if, for every non-empty subset A C X, there exists x,y € A such that
Ica(A) = lca(x, y).
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Hellmuth, Schaller, Stadler, 2022
Strong Ica-property

Definition

Let G be DAG with leaf set X and Ica-property. Then, G has the strong Ica-
property if, for every non-empty subset A C X, there exists x,y € A such that
Ica(A) = lca(x, y).

e G is a strong Ica-network if and only if G has the Ica-property and %
is a weak hierarchy.
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Strong k-Ica-property

Generalizing the strong Ica-property

Definition

Let G be DAG with leaf set X and Ica-property. Then, G has the strong k-Ica-
property if, for every non-empty subset A C X, there is U € X such that
Ica(U) = Ica(A).
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Strong k-Ica-property

Generalizing the strong Ica-property

Definition

Let G be DAG with leaf set X and Ica-property. Then, G has the strong k-Ica-
property if, for every non-empty subset A C X, there is U € X such that
Ica(U) = Ica(A).

If a DAG G has the strong k-Ica-property, then it has the strict k-lca-property.
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Example (Ica network which is not Strong k-Ica)
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Example (Ica network which is not Strong k-Ica)

P

o o = {{x}, {y} Az}, {w}, {w,x}, {w,y}, {x,y}, X}

Manoj Changat ( University of Kerala) Unique LCAs and Clusters in DAGs February 16, 2024



Example (Ica network which is not Strong k-Ica)

P

o o = {{x}, {y} Az}, {w}, {w,x}, {w,y}, {x,y}, X}

o {w,x},{w,y},{x, y} violates the condition of
weak hierarchy
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Example (Ica network which is not Strong k-Ica)

P

o o = {{x}, {y} Az}, {w}, {w,x}, {w,y}, {x,y}, X}

o {w,x},{w,y},{x, y} violates the condition of
weak hierarchy

@ G is an lca-network
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Example (Ica network which is not Strong k-Ica)

P

o o = {{x}, {y} Az}, {w}, {w,x}, {w,y}, {x,y}, X}

o {w,x},{w,y},{x, y} violates the condition of
weak hierarchy

@ G is an Ica-network
o lca({w,x,y}) =r #lca({u,v}) for any u,v €
{w,x,y}
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Example (Ica network which is not Strong k-Ica)

o o = {{x}, {y} Az}, {w}, {w,x}, {w,y}, {x,y}, X}

o {w,x},{w,y},{x, y} violates the condition of
weak hierarchy

@ G is an Ica-network

o lca({w,x,y}) =r #lca({u,v}) for any u,v €
{w,x,y}

@ not strong Ica

Manoj Changat ( University of Kerala)
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).
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Proposition 5
Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

@ Assume G has the strong k-lca-property
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Proposition 5
Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

@ Assume G has the strong k-lca-property
oletPAACX
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Proposition 5
Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

@ Assume G has the strong k-lca-property
oletPAACX
o — lIca(A) = Ica(U) for some U C X with |U| < k
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

Assume G has the strong k-Ica-property

let 0 £ACX

= Ica(A) = Ica(U) for some U C X with |U| < k
Obs. 3 = cl(A) = C(Ica(A)) = C(lca(V)) = cl(U)
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

Assume G has the strong k-Ica-property

let 0 £ACX

= Ica(A) = Ica(U) for some U C X with |U| < k

Obs. 3 = cl(A) = C(Ica(A)) = C(lca(V)) = cl(U)

Assume that for every (} # A C X, there exists U C A with |U| < k
such that cl(A) = cl(U) in 6.
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

Assume G has the strong k-Ica-property

let 0 £ACX

= Ica(A) = Ica(U) for some U C X with |U| < k

Obs. 3 = cl(A) = C(Ica(A)) = C(lca(V)) = cl(U)

Assume that for every (} # A C X, there exists U C A with |U| < k
such that cl(A) = cl(U) in 6.

@ Let AC X be non-empty
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Proposition 5

Let G be a DAG with leaf set X and the Ica-property. Then G has the strong
k-Ica-property if and only if ¢ holds the following condition.

(U, A, X): for every non-empty subset A C X there exists U C A in X(¥) such that
cl(A) = cl(U).

Assume G has the strong k-Ica-property

let 0 £ACX

= Ica(A) = Ica(U) for some U C X with |U| < k

Obs. 3 = cl(A) = C(Ica(A)) = C(lca(V)) = cl(U)

Assume that for every (} # A C X, there exists U C A with |U| < k
such that cl(A) = cl(U) in 6.

Let A C X be non-empty
Obs. 2(iii) & Obs. 3 =

Ica(A) = Ica(C(lca(A))) = Ica(cl(A)) = lca(cl(U)) = Ica(C(Ica(V))) = Ica(U)
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Correspondence between Strong k-Ica-property and k-weak hierarchy

G is a DAG with the strong k-Ica-property if and only if G has the Ica-property and
%G is a k-weak hierarchy.

Suppose G has the strong k-Ica-property
G has the Ica-property

Prop. 5 = (U, A, X)

Prop. 1 = % is a k-weak hierarchy

Let € be a k-weak hierarchy
By Prop. 1 = Condition (U, A, X)
Prop. 5 = G has the strong k-lca-property

.
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k-weak hierarchy Pre-k-ary CS

E,hylolgz:ﬁet:i Tme]—» (srrong 2-lcu)—>(strong k-lcu)—» —>

Hierarchy Weak hierarchy \k—ary,7system/ Pre binary CS

-

— | puirwise-lca

strict k-lca

Tsystem

strict 2-lca
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THANK YOU!
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