CALDAM 2024

Impact of Diameter and Convex Ordering for Hamiltonicity and Domination

R Mahendra Kumar N Sadagopan

Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram.

Roadmap of the Talk

- Introduction
- Literature Survey
- Our results
- Conclusions \& Open problems

Introduction

Introduction

The Hamiltonian cycle problem asks for the presence of a cycle that visits each node exactly once.

More formally, Instance: A graph G
Question: Does there exist a cycle in G that visits each node exactly once?

Similarly, the Hamiltonian path problem asks for the presence of a path that visits each node exactly once.

Applications

Hamiltonian cycle (path) problem has various applications.

- Circuit designing (power gating design)
- Software testing (data flow graph)
- Genetic engineering (mapping genome)

Preliminaries

Distance

The distance $d(u, v)$ between u and v is defined as follows: $d(u, v)=$ length of a shortest path between (u, v), if u and v are connected.

Diameter

The diameter of $G, \operatorname{diam}(G)$, is defined by $\operatorname{diam}(G)=\max \{d(u, v): u, v \in V(G)\}$, if G is connected.
I.e., The diameter of graph is the maximum distance between the pair of vertices.

Examples

G_{2}

G_{2}

G_{3}

Examples

$$
\operatorname{diam}\left(G_{1}\right)=5
$$

$\operatorname{diam}\left(G_{3}\right)=7$

$\operatorname{diam}\left(G_{2}\right)=2$

$\operatorname{diam}\left(G_{5}\right)=5$

Special graph classes

A bipartite graph $G(X, Y)$ is called a tree convex bipartite graph with convexity on X if there is an associated tree T on X such that for each vertex u in Y, its neighborhood $N_{G}(u)$ induces a subtree in T

Special graph classes

A bipartite graph $G(X, Y)$ is called a tree convex bipartite graph with convexity on X if there is an associated tree T on X such that for each vertex u in Y, its neighborhood $N_{G}(u)$ induces a subtree in T

Tree-convex bipartite graphs
(Associated structure is a tree)

Path-convex bipartite graphs (Associated structure is a path)

$$
N_{G}\left(y_{2}\right)=\left\{x_{1}, x_{2}\right\} \quad x_{8}
$$

Star- convex bipartite graphs (Associated structure is a star)

Comb- convex bipartite graphs
(Associated structure is a comb)

$N_{G}\left(y_{2}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$

Special graph classes

A bipartite graph $G(X, Y)$ is called a tree convex bipartite graph with convexity on X if there is an associated tree T on X such that for each vertex u in Y, its neighborhood $N_{G}(u)$ induces a subtree in T

Tree-convex bipartite graphs
(Associated structure is a tree)

Path-convex bipartite graphs (Associated structure is a path)

$N_{G}\left(y_{2}\right)=\left\{x_{1}, x_{2}\right\} \quad \begin{array}{ll}x_{1} \\ x_{2}\end{array}$ 。

Star- convex bipartite graphs (Associated structure is a star)

Comb- convex bipartite graphs
(Associated structure is a comb)

$N_{G}\left(y_{2}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$

Special graph classes

- It is natural to explore this line of study on graphs having two partitions. A natural choice after bipartite graphs is the class of split graphs.
- G is split $\Longleftrightarrow V(G)$ can be partitioned into a clique (K) and an independent set (I)
- A split graph $G(K, I)$ is called a star (comb) convex split graph with convexity on K if there is an associated star (comb) T on K such that for each vertex u in I, its neighborhood $N_{G}(u)$ induces a subtree in T.
- A split graph $G(K, I)$ is called a star (comb) convex split graph with convexity on I if there is an associated star (comb) T on I such that for each vertex u in K, its neighborhood $N_{G}^{\prime}(u)$ induces a subtree in T.

Literature Survey

An overview

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Graph classes
Bipartite
Split

Hamiltonian cycle Hamiltonian path
$\begin{array}{ll}\text { NPC [a] } & \text { NPC [b] } \\ \text { NPC [b] } & \text { NPC [b] }\end{array}$
[a] M.S. Krisnamoorthy, 1975 [b] H. Müller et al., 1996

An overview

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Graph classes

 Hamiltonian cycle Hamiltonian path| Bipartite | NPC [a] | NPC [b] |
| :--- | :--- | :--- |
| Split | NPC [b] | NPC [b] |
| Star (comb) convex bipartite | NPC [b] | NPC [b] |

Bipartite
Split
Star (comb) convex bipartite

NPC [a]
NPC [b]
NPC [b]
[a] M.S. Krisnamoorthy, 1975 [b] H. Müller et al., 1996 [b] H
Chen et al., 2016

An overview

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Graph classes

 Hamiltonian cycle Hamiltonian path| Bipartite | NPC [a] | NPC [b] |
| :--- | :---: | :---: |
| Split | NPC [b] | NPC [b] |
| Star (comb) convex bipartite | NPC [b] | NPC [b] |
| Star (comb) convex split | $?$ | $?$ |

[a] M.S. Krisnamoorthy, 1975 [b] H. Müller et al., 1996 [b] H
Chen et al., 2016

Our results

Our results

- It is known that HC (HP) is NPC on star convex bipartite.
- We wish to perform a fine-grained analysis of the complexity of HC (HP) with respect to a graph parameter.
- Diameter is one of the popular parameters
- We study the structural and algorithmic aspects of star convex bipartite graphs with respect to the diameter

Results on star convex bipartite graphs

Structural results:

- For a connected star convex bipartite graphs with convexity on $X(Y), \operatorname{diam}(G)$ is at most 6 .
- A graph G is star convex bipartite with diameter at most 2 if and only if G is complete bipartite.
- Let $G(X, Y)$ be a star convex bipartite graph. If $\operatorname{diam}(G)$ is 5, then there exists at least one pendant vertex in Y.
- Let $G(X, Y)$ be a star convex bipartite graph. If $\operatorname{diam}(G)$ is 6 , then there exists at least two pendant vertices in Y.

Results on star convex bipartite graphs

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k					
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	
Hamiltonian cycle						
Hamiltonian path						

Results on star convex bipartite graphs

> Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k				
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
Hamiltonian cycle			NPC [a]		
Hamiltonian path			NPC [a]		

[a]-Chen H et al., 2016

Results on star convex bipartite graphs

> Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k				
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
Hamiltonian cycle	P		NPC [a]		
Hamiltonian path	P		NPC [a]		

[a]-Chen H et al., 2016

Results on star convex bipartite graphs

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k				
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
Hamiltonian cycle	P		NPC [a]	$*$	$*$
Hamiltonian path	P		NPC [a]		

[a]-Chen H et al., 2016

* always a NO instance

Results on star convex bipartite graphs

Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k				
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
Hamiltonian cycle	P	$?$	NPC [a]	$*$	$*$
Hamiltonian path	P	$?$	NPC [a]	$?$	$?$

[a]-Chen H et al., 2016

* always a NO instance

Results on star convex bipartite graphs

Theorem 1
For star convex bipartite graphs with diameter 3, the Hamiltonian cycle problem is NP-complete.

Results on star convex bipartite graphs

Theorem 1

For star convex bipartite graphs with diameter 3, the Hamiltonian cycle problem is NP-complete.

Construction

Mapping: HP in bipartite graphs $\Rightarrow \mathrm{HC}$ in star convex bipartite graph with diameter 3

Results on star convex bipartite graphs

Theorem 1

For star convex bipartite graphs with diameter 3, the Hamiltonian cycle problem is NP-complete.

Construction

Mapping: HP in bipartite graphs $\Rightarrow \mathrm{HC}$ in star convex bipartite graph with diameter 3

Results on star convex bipartite graphs

Theorem 1

For star convex bipartite graphs with diameter 3, the Hamiltonian cycle problem is NP-complete.

Construction

Mapping: HP in bipartite graphs $\Rightarrow \mathrm{HC}$ in star convex bipartite graph with diameter 3

Results on star convex bipartite graphs

Theorem 2
For star convex bipartite graphs with diameter 3, the Hamiltonian path problem is NP-complete.

Results on star convex bipartite graphs

Theorem 2

For star convex bipartite graphs with diameter 3, the Hamiltonian path problem is NP-complete.

Construction

Mapping: HP in bipartite graphs $\Rightarrow \mathrm{HP}$ in star convex bipartite graph with diameter 3

Results on star convex bipartite graphs

Theorem 3
For star convex bipartite graphs with diameter 6, the Hamiltonian path problem is NP-complete.

Results on star convex bipartite graphs

Theorem 3

For star convex bipartite graphs with diameter 6, the Hamiltonian path problem is NP-complete.

Construction

Mapping: HP in bipartite graphs $\Rightarrow \mathrm{HP}$ in star convex bipartite graph with diameter 6

Results on star convex bipartite graphs

> Complexity of Hamiltoian cycle (HC) and Hamiltonian Path (HP)

Problems	Star convex bipartite graphs with diameter k				
	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
Hamiltonian cycle	P	NPC	$\mathrm{NPC}[\mathrm{a}]$	P	P
Hamiltonian path	P	NPC	NPC [a]	NPC	NPC

[a]-Chen H et al., 2016

Results on star (comb) convex split graphs

Results on star (comb) convex split graphs

- We study HC and HP in star convex split graph with convexity on $I(K)$
- We need a specific instance of split graphs with $|K|=|I|$ to establish a dichotomy for HC in star convex split graphs with convexity on I.
- Also we look at other cases - For HC we consider the case $|K|>$ $|I|$ and for HP we consider $|K|=|I|$ and $|K|>|I|$.

Results on star (comb) convex split graphs

Theorem 4

For star convex split graphs $G(K, I)$ with convexity on I, the Hamiltonian cycle problem is NP-complete.

What next?

Results on star (comb) convex split graphs

Lemma 5

Let G be a $K_{1,3}$-free star convex split graph with convexity on I. If $\Delta_{G}^{\prime}=2$ then $|I| \leq 3$.

Lemma 6

Let G be a split graph. G is $K_{1,3}$-free star convex split graph with convexity on I if and only if one of the following conditions holds.

1. $\Delta_{G}^{\prime} \leq 1$
2. If there exists a vertex $u \in K$ such that $d_{G}^{\prime}(u)=2$, then for all $v \in K, N_{G}^{\prime}(u) \cap N_{G}^{\prime}(v) \neq \emptyset$

Results on star (comb) convex split graphs

Observation 1

Let G be a $K_{1,3}$-free star convex split graph with convexity on I. Then for all $u, v \in K, N_{G}^{\prime}(u) \cap N_{G}^{\prime}(v) \leq 2$.

Lemma 7

Let G be a $K_{1,4}$-free star convex split graph with convexity on I. For any $u \in K$, the graph H induced on the vertex set $V(G) \backslash N_{G}^{\prime}(u)$ is a l-split graph for some $0 \leq I \leq 2$.

Lemma 8

Let G be a $K_{1,5}$-free star convex split graph with convexity on I.
For any $u \in K$, the graph H induced on the vertex set $V(G) \backslash N_{G}^{\prime}(u)$ is a l-split graph for some $0 \leq I \leq 3$.

Results on star (comb) convex split graphs

Theorem 9

For $K_{1,5}$-free star convex split graphs with convexity on I, the Hamiltonian cycle problem is polynomial-time solvable.

Sketch: Since G is $K_{1,5}$-free star convex split, we have the following five cases (1) $\Delta_{G}^{\prime}=0$, (2) $\Delta_{G}^{\prime}=1$ (3) $\Delta_{G}^{\prime}=2$, (4) $\Delta_{G}^{\prime}=3$, and (5) $\Delta_{G}^{\prime}=4$.

Results on star (comb) convex split graphs

Theorem 9

For $K_{1,5}$-free star convex split graphs with convexity on I, the Hamiltonian cycle problem is polynomial-time solvable.

Sketch: Since G is $K_{1,5}$-free star convex split, we have the following five cases (1) $\Delta_{G}^{\prime}=0$, (2) $\Delta_{G}^{\prime}=1$ (3) $\Delta_{G}^{\prime}=2$, (4) $\Delta_{G}^{\prime}=3$, and (5) $\Delta_{G}^{\prime}=4$.

Case 4: $\Delta_{G}^{\prime}=3$

- For a star convex split graph G with $\Delta^{\prime}=3$, let $v \in K$, $d_{l}(v)=3$, and $U=N^{\prime}(v)$. If G is $K_{1,5}$-free, then $|N(U)| \geq|K| / 2$.
- For a $K_{1,5}$-free split graph G with $\Delta^{\prime}=3$, let $v \in K$ such that $d^{\prime}(v)=3$, and the split graph $H=G-N^{\prime}(v)$. Then, $\Delta_{H}^{\prime} \leq 2$

Results on star (comb) convex split graphs

Short cycle in a $K_{1,5}-$ free star convex split graph G
Consider the subgraph H of G where

$$
\begin{aligned}
& X=\{u \in I \mid d(u)=2\}, Y=N(X), V(H)=X \cup Y \text { and } \\
& E(H)=\{\{u, v\} \mid u \in X ; v \in Y\} .
\end{aligned}
$$

Clearly, H is a bipartite subgraph of G.
Let C be an induced cycle in H such that $V(K) \backslash V(C) \neq \emptyset$. We refer to C in H as a short cycle in G.

- Let G be a $K_{1,5}$-free star convex split graph with $\Delta^{\prime}=3$. Then G has a Hamiltonian cycle if and only if there are no short cycles in G

Results on star (comb) convex split graphs

Theorem 10

For comb convex split graphs $G(K, I)$ with convexity on K, the Hamiltonian path problem is NP-complete.

Results on star (comb) convex split graphs

Theorem 10

For comb convex split graphs $G(K, I)$ with convexity on K, the Hamiltonian path problem is NP-complete.

Construction

Associated comb
Mapping: HP in split graph $\Rightarrow \mathrm{HP}$ in star convex split graph with convexity on K

Summary of our results

Graph classes	Problems	Ordering on K	Ordering on I
Star convex split graphs	H.Cycle	NPC	NPC
	H.Path	NPC	NPC
Comb convex split graphs	H.Cycle	NPC	NPC
	H.Path	NPC	NPC

Summary of our results

Graph classes	Problems	Ordering on K	Ordering on I
Star convex split graphs	H.Cycle	NPC	NPC
	H.Path	NPC	NPC
Comb convex split graphs	H.Cycle	NPC	NPC
	H.Path	NPC	NPC

$\underbrace{\underbrace{\text { Split }+ \text { Star convexity }}_{N P C}+\text { forbidden structure }\left(K_{1,5}\right)}_{H C-\text { is polynomial - time solvable }}$

Domination and its variants

- A set D is a dominating set in G if every vertex of G is either in D or has a neighbor in D.
- A dominating set is connected (CDS), paired (PDS), and total (TDS), respectively, if the set induces a connected subgraph, induces a perfect matching, and induces a subgraph with no isolated vertex, respectively.

Cont'd.

Classical complexity

- Chen et al.,(2016) showed that the domination and its variants are NP-complete on star convex bipartite graphs with diameter at most 4.
- Having shown that the diameter of a star convex bipartite graph is at most six, it is natural to study the complexity of domination on star convex bipartite graphs with diameter k, $2 \leq k \leq 6$.
- For star convex bipartite graphs with diameter 2, the domination and its variants are polynomial-time solvable.

Cont'd.

- We show that the domination is NP-complete on diameter 3 star convex bipartite graphs, which strengthens the result of Chen et al.,

Construction

An example reduction instance G^{\prime} - star convex bipartite graph with diameter 3 and convexity on X^{\prime}.

Cont'd.

- We use a construction similar to the construction presented for star convex bipartite graphs with diameter three to prove the following results.

1. Domination is NP-complete on star convex bipartite graphs with diameter $k=5$, and 6 .
2. Domination variants (CDS/PDS/TDS) are also NP-complete on star convex bipartite graphs with diameter $k, 3 \leq k \leq 6$.

Cont'd.

Parameterized complexity

- The parameterized version of the domination problem with solution size k as the parameter is defined below:
- Instance: A graph G.

Parameter: A positive integer k.
Question: Does G have a dominating set $D \subseteq(G)$ such that $|D| \leq k$.

Cont'd.

- We prove that the parameterized version of the domination problem is W[2]-hard (not fixed-parameter tractable - FPT) with parameter being solution size on star convex bipartite graphs.
- If the degree of the star is bounded then we obtain a FPT algorithm.

Conclusions \& Open Problems

Conclusions \& Open Problems

We made an attempt to reduce the gap between P vs. NPC for the problems Hamiltonian cycle (path) and Domination problem for the following graphs
(i) Star convex bipartite graphs with diameter as a parameter
(ii) Star (comb) convex split graphs

One can look at the other convex ordering on these graph classes

- Path convex
- Triad convex
- Circular convex

Conclusions \& Open Problems

We made an attempt to reduce the gap between P vs. NPC for the problems Hamiltonian cycle (path) and Domination problem for the following graphs
(i) Star convex bipartite graphs with diameter as a parameter
(ii) Star (comb) convex split graphs

One can look at the other convex ordering on these graph classes

- Path convex
- Triad convex
- Circular convex

References

目 Chen H, Lei Z, Liu T, Tang Z, Wang C and Xu K. Complexity of domination, hamiltonicity and treewidth for tree convex bipartite graphs. Journal of Combinatorial Optimization. 32(1), pp. 95-110 (2016)
H. Müller: Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156(1-3), pp. 291-298 (1996)
目 A. A. Bertossi and M. A. Bonuccelli: Hamiltonian circuits in interval graph generalizations. Information Processing Letters, 23(4), pp. 195-200 (1986)
Itai, Alon and Papadimitriou, Christos H and Szwarcfiter, Jayme Luiz.: Hamiltonian paths in grid graphs, SIAM Journal of Computing, 11 (4), 676-686 (1982)
R. W. Hung and M. S. Chang: Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs. Theoretical Computer Science, 341(1-3), pp. 411-440 (2005)

References

围 J．S．Deogun and G．Steiner．Hamiltonian cycle is polynomial on cocomparability graphs．Discrete Applied Mathematics，39（2），pp． 165－172（1992）
囦 J．Spinrad，A．Brandstädt and L．Stewart．Bipartite permutation graphs．Discrete Applied Mathematics，18（3），pp．279－292（1987）
E M．S．Krishnamoorthy：An NP－hard problem in bipartite graphs． SIGACT News，7（1），pp．26－26（1975）
目 A．Brandstädt and R．Mosca：On the structure and stability number of P_{5}－and co－chair－free graphs．Discrete Applied Mathematics， 132（1－3），pp．47－65（2003）
W．Jiang，T．Liu，C．Wang and Xu K：Feedback vertex sets on restricted bipartite graphs．Theoretical Computer Science，507，PP． 41－51（2013）

Thank you

Questions?

