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Introduction



Introduction

The Hamiltonian cycle problem asks for the presence of a cycle
that visits each node exactly once.

More formally,
Instance: A graph G
Question: Does there exist a cycle in G that visits each node ex-
actly once?

Similarly, the Hamiltonian path problem asks for the presence of a
path that visits each node exactly once.
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Applications

Hamiltonian cycle (path) problem has various applications.

• Circuit designing (power gating design)
• Software testing (data flow graph)
• Genetic engineering (mapping genome)
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Preliminaries

Distance

The distance d(u, v) between u and v is defined as follows:
d(u, v) = length of a shortest path between (u, v), if u and v are
connected.

Diameter

The diameter of G , diam(G), is defined by
diam(G) = max{d(u, v) : u, v ∈ V (G)}, if G is connected.
I.e., The diameter of graph is the maximum distance between the
pair of vertices.
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Special graph classes

A bipartite graph G(X , Y ) is called a tree convex bipartite graph
with convexity on X if there is an associated tree T on X such
that for each vertex u in Y , its neighborhood NG(u) induces a
subtree in T
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Special graph classes

– It is natural to explore this line of study on graphs having two
partitions. A natural choice after bipartite graphs is the class of
split graphs.

– G is split ⇐⇒ V (G) can be partitioned into a clique (K ) and an
independent set (I)

– A split graph G(K , I) is called a star (comb) convex split graph
with convexity on K if there is an associated star (comb) T on K
such that for each vertex u in I, its neighborhood NG(u) induces a
subtree in T .

– A split graph G(K , I) is called a star (comb) convex split graph
with convexity on I if there is an associated star (comb) T on I
such that for each vertex u in K , its neighborhood N I

G(u) induces
a subtree in T . 9
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An overview

Complexity of Hamiltoian cycle (HC) and Hamiltonian
path(HP)

Graph classes Hamiltonian cycle Hamiltonian path

Bipartite NPC [a] NPC [b]
Split NPC [b] NPC [b]

Star (comb) convex bipartite NPC [b] NPC [b]
Star (comb) convex split ? ?

[a] M.S. Krisnamoorthy, 1975 [b] H. Müller et al., 1996

[b] H
Chen et al., 2016
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Our results



Our results

– It is known that HC (HP) is NPC on star convex bipartite.

– We wish to perform a fine-grained analysis of the complexity of
HC (HP) with respect to a graph parameter.

– Diameter is one of the popular parameters

– We study the structural and algorithmic aspects of star convex
bipartite graphs with respect to the diameter
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Results on star convex bipartite graphs

Structural results:

• For a connected star convex bipartite graphs with convexity
on X (Y ), diam(G) is at most 6.
• A graph G is star convex bipartite with diameter at most 2 if
and only if G is complete bipartite.
• Let G(X , Y ) be a star convex bipartite graph. If diam(G) is

5, then there exists at least one pendant vertex in Y .
• Let G(X , Y ) be a star convex bipartite graph. If diam(G) is

6, then there exists at least two pendant vertices in Y .
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Results on star convex bipartite graphs

Complexity of Hamiltoian cycle (HC) and Hamiltonian
path(HP)

Star convex bipartite graphs with diameter k
Problems

k = 2 k = 3 k = 4 k = 5 k = 6
Hamiltonian cycle

P ? NPC [a] * *

Hamiltonian path

P ? NPC [a] ? ?

[a]-Chen H et al., 2016
* always a NO instance
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Results on star convex bipartite graphs

Theorem 1
For star convex bipartite graphs with diameter 3, the Hamiltonian
cycle problem is NP-complete.

Construction
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Mapping: HP in bipartite graphs ⇒ HC in star convex bipartite
graph with diameter 3
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Results on star convex bipartite graphs

Theorem 2
For star convex bipartite graphs with diameter 3, the Hamiltonian
path problem is NP-complete.

Construction
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Results on star convex bipartite graphs

Theorem 3
For star convex bipartite graphs with diameter 6, the Hamiltonian
path problem is NP-complete.
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Results on star convex bipartite graphs

Complexity of Hamiltoian cycle (HC) and Hamiltonian
path(HP)

Star convex bipartite graphs with diameter k
Problems

k = 2 k = 3 k = 4 k = 5 k = 6
Hamiltonian cycle P NPC NPC [a] P P
Hamiltonian path P NPC NPC [a] NPC NPC

[a]-Chen H et al., 2016
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Results on star (comb) convex split graphs

20



Results on star (comb) convex split graphs

– We study HC and HP in star convex split graph with convexity
on I(K )

– We need a specific instance of split graphs with |K | = |I| to
establish a dichotomy for HC in star convex split graphs with con-
vexity on I.

– Also we look at other cases - For HC we consider the case |K | >
|I| and for HP we consider |K | = |I| and |K | > |I|.
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Results on star (comb) convex split graphs

Theorem 4
For star convex split graphs G(K , I) with convexity on I, the
Hamiltonian cycle problem is NP-complete.

What next?

Split + Star convexity︸ ︷︷ ︸
NPC

+forbidden structure (K1,5)

︸ ︷︷ ︸
?

K1,5
22



Results on star (comb) convex split graphs

Lemma 5
Let G be a K1,3-free star convex split graph with convexity on I. If
∆I

G = 2 then |I| ≤ 3.

Lemma 6
Let G be a split graph. G is K1,3-free star convex split graph with
convexity on I if and only if one of the following conditions holds.

1. ∆I
G ≤ 1

2. If there exists a vertex u ∈ K such that d I
G(u) = 2, then for

all v ∈ K, N I
G(u) ∩ N I

G(v) 6= ∅
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Results on star (comb) convex split graphs

Observation 1
Let G be a K1,3-free star convex split graph with convexity on I.
Then for all u, v ∈ K, N I

G(u) ∩ N I
G(v) ≤ 2.

Lemma 7
Let G be a K1,4-free star convex split graph with convexity on I.
For any u ∈ K, the graph H induced on the vertex set
V (G) \ N I

G(u) is a l-split graph for some 0 ≤ l ≤ 2.

Lemma 8
Let G be a K1,5-free star convex split graph with convexity on I.
For any u ∈ K, the graph H induced on the vertex set
V (G) \ N I

G(u) is a l-split graph for some 0 ≤ l ≤ 3.
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Results on star (comb) convex split graphs

Theorem 9

For K1,5-free star convex split graphs with convexity on I, the
Hamiltonian cycle problem is polynomial-time solvable.

Sketch: Since G is K1,5-free star convex split, we have the follow-
ing five cases (1) ∆I

G = 0, (2) ∆I
G = 1 (3) ∆I

G = 2, (4) ∆I
G = 3,

and (5) ∆I
G = 4.

Case 4: ∆I
G = 3

• For a star convex split graph G with ∆I = 3, let v ∈ K ,
dI(v) = 3, and U = N I(v). If G is K1,5-free, then
|N(U)| ≥ |K |/2.
• For a K1,5-free split graph G with ∆I = 3, let v ∈ K such
that d I(v) = 3, and the split graph H = G − N I(v). Then,
∆I

H ≤ 2
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Results on star (comb) convex split graphs

Short cycle in a K1,5-free star convex split graph G

Consider the subgraph H of G where

X = {u ∈ I | d(u) = 2}, Y = N(X ), V (H) = X ∪ Y and
E (H) = {{u, v} | u ∈ X ; v ∈ Y }.

Clearly, H is a bipartite subgraph of G .

Let C be an induced cycle in H such that V (K ) \ V (C) 6= ∅. We
refer to C in H as a short cycle in G .

• Let G be a K1,5-free star convex split graph with ∆I = 3.
Then G has a Hamiltonian cycle if and only if there are no
short cycles in G
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Results on star (comb) convex split graphs

Theorem 10

For comb convex split graphs G(K , I) with convexity on K, the
Hamiltonian path problem is NP-complete.

Construction

y1 y2 y3 y4

x1 x2 x3 x4

G H

I I ′

K ′K x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

Teeth Backbone

x5 x6 x7 x8

x1 x2 x3 x4

Associated comb

Mapping: HP in split graph ⇒ HP in star convex split graph with
convexity on K
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Summary of our results

Graph classes Problems Ordering on
K

Ordering on
I

Star convex split graphs
H.Cycle NPC NPC
H.Path NPC NPC

Comb convex split graphs
H.Cycle NPC NPC
H.Path NPC NPC

Split + Star convexity︸ ︷︷ ︸
NPC

+forbidden structure (K1,5)

︸ ︷︷ ︸
HC−is polynomial−time solvable
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Domination and its variants

• A set D is a dominating set in G if every vertex of G is either
in D or has a neighbor in D.

• A dominating set is connected (CDS), paired (PDS), and
total (TDS), respectively, if the set induces a connected
subgraph, induces a perfect matching, and induces a
subgraph with no isolated vertex, respectively.

29



Cont’d.

Classical complexity

• Chen et al.,(2016) showed that the domination and its
variants are NP-complete on star convex bipartite graphs with
diameter at most 4.
• Having shown that the diameter of a star convex bipartite
graph is at most six, it is natural to study the complexity of
domination on star convex bipartite graphs with diameter k,
2 ≤ k ≤ 6.
• For star convex bipartite graphs with diameter 2, the
domination and its variants are polynomial-time solvable.

30



Cont’d.

• We show that the domination is NP-complete on diameter 3
star convex bipartite graphs, which strengthens the result of
Chen et al.,

Construction

x1 u7u5 u6

z3x2 v1 v2 z1 z2

u1 u2 u3 u4

G′

Y Y ′

X ′X

z3

v1 v2

z1
z2

Imaginary

starT

u8

x3

e1 e2

u9 u10

An example reduction instance G ′ - star convex bipartite
graph with diameter 3 and convexity on X ′.
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Cont’d.

– We use a construction similar to the construction presented for
star convex bipartite graphs with diameter three to prove the fol-
lowing results.

1. Domination is NP-complete on star convex bipartite graphs
with diameter k = 5, and 6.

2. Domination variants (CDS/PDS/TDS) are also NP-complete
on star convex bipartite graphs with diameter k, 3 ≤ k ≤ 6.
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Cont’d.

Parameterized complexity

• The parameterized version of the domination problem with
solution size k as the parameter is defined below:
• Instance: A graph G .

Parameter: A positive integer k.
Question: Does G have a dominating set D ⊆ (G) such that
|D| ≤ k.
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Cont’d.

• We prove that the parameterized version of the domination
problem is W[2]-hard (not fixed-parameter tractable - FPT)
with parameter being solution size on star convex bipartite
graphs.
• If the degree of the star is bounded then we obtain a FPT
algorithm.
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Conclusions & Open Problems

We made an attempt to reduce the gap between P vs. NPC for
the problems Hamiltonian cycle (path) and Domination problem
for the following graphs
(i) Star convex bipartite graphs with diameter as a parameter
(ii) Star (comb) convex split graphs

One can look at the other convex ordering on these graph classes

• Path convex
• Triad convex
• Circular convex

35



Conclusions & Open Problems

We made an attempt to reduce the gap between P vs. NPC for
the problems Hamiltonian cycle (path) and Domination problem
for the following graphs
(i) Star convex bipartite graphs with diameter as a parameter
(ii) Star (comb) convex split graphs

One can look at the other convex ordering on these graph classes

• Path convex
• Triad convex
• Circular convex

35



References

Chen H, Lei Z, Liu T, Tang Z, Wang C and Xu K. Complexity of
domination, hamiltonicity and treewidth for tree convex bipartite
graphs. Journal of Combinatorial Optimization. 32(1), pp. 95–110
(2016)

H. Müller: Hamiltonian circuits in chordal bipartite graphs. Discrete
Mathematics, 156(1-3), pp. 291–298 (1996)

A. A. Bertossi and M. A. Bonuccelli: Hamiltonian circuits in interval
graph generalizations. Information Processing Letters, 23(4), pp.
195–200 (1986)

Itai, Alon and Papadimitriou, Christos H and Szwarcfiter, Jayme
Luiz.: Hamiltonian paths in grid graphs, SIAM Journal of
Computing, 11 (4), 676–686 (1982)

R. W. Hung and M. S. Chang: Linear-time algorithms for the
Hamiltonian problems on distance-hereditary graphs. Theoretical
Computer Science, 341(1-3), pp. 411–440 (2005) 36



References

J. S. Deogun and G. Steiner. Hamiltonian cycle is polynomial on
cocomparability graphs. Discrete Applied Mathematics, 39(2), pp.
165–172 (1992)
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Thank you
Questions?
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