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VERTEX COVER

A vertex cover of a graph G = (V ,E ) is a set S ⊆ V such that for
every edge in E , at least one of its endpoints belongs to S .

A minimum vertex cover of G is a vertex cover of G of minimum
cardinality and its cardinality is the vertex cover number of G ,
denoted by mvc(G).

Example :
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CONNECTED VERTEX COVER

A connected vertex cover of a graph G = (V ,E ) is a set S ⊆ V such
that S is a vertex cover and G [S ] is connected.

A minimum connected vertex cover of G is a connected vertex cover
of G of minimum cardinality and its cardinality is the connected
vertex cover number of G , denoted by cvc(G).

Example :
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Minimum Vertex Cover Problem (MIN-VC)

Instance: A graph G = (V ,E ).

Solution: A vertex cover D of minimum cardinality.

Minimum Vertex Cover Decision Problem
(DECIDE-VC)

Instance: A graph G = (V ,E ) and a positive integer k ≤ |V |.

Question: Does there exist a vertex cover of cardinality ≤ k?
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Minimum Connected Vertex Cover Problem
(MIN-CVC)

Instance: A graph G = (V ,E ).

Solution: A connected vertex cover D of minimum cardinality.

Minimum Connected Vertex Cover Decision Problem
(DECIDE-CVC)

Instance: A graph G = (V ,E ) and a positive integer k ≤ |V |.

Question: Does there exist a connected vertex cover of cardinality ≤ k?
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Eternal Vertex Cover

The Eternal Vertex Cover problem is a dynamic variant of the vertex
cover problem.

The setting is as follows

It is a 2 player game, (attacker & defender) on a simple undirected
graph G , which is played in rounds.

At Round 0, the defender can choose some vertices to place the
guards.
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Eternal Vertex Cover

At any round i > 0, the attacker gets to choose exactly one edge to
attack.

Then, at the same round, the defender defends this attack if she can
move the guards along the edges of the graph such that at least one
guard moves along the attacked edge.
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Eternal Vertex Cover

Hence, at any round i , for each guard, the defender needs to decide
from one of the following

1 To move from the current vertex to an adjacent vertex.
2 Not to move at all.

After the movement of guards, if some guards move through the
attacked edge and settle at the other end point of the attacked edge,
then the defender successfully defends the attack at round i .
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Eternal Vertex Cover

Note that at each round i ≥ 0, the set of underlying vertices of the
defensive configuration of the guards should form a vertex cover.
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Eternal Vertex Cover

If no such move exists, attacker wins.

If the defender can defend the graph against every infinite sequence of
attacks, then the defender wins.

Kaustav Paul, Arti Pandey February 17, 2024 CALDAM 2024



Eternal Vertex Cover

If no such move exists, attacker wins.

If the defender can defend the graph against every infinite sequence of
attacks, then the defender wins.

Kaustav Paul, Arti Pandey February 17, 2024 CALDAM 2024



Eternal Vertex Cover

If such a guard allocation exists for which the defender has a winning
strategy, the set of underlying vertices of the guards is called an
eternal vertex cover.

The minimum number of guards needed is called the eternal vertex
cover number of the graph G and is denoted by evc(G).

This problem was introduced in 2009 (Klostermeyer et al. (2009)).
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Eternal Connected Vertex Cover

If the additional condition is added to the Eternal Vertex Cover
problem:
Let at round i , if Si be the set of vertices in which the guards
are assigned, then G [Si ] needs to be connected graph.

If such a guard allocation exists for which the defender has a winning
strategy, the set of underlying vertices of the guards is called an
eternal connected vertex cover.

The minimum number of guards with which the defender can come
up with a winning strategy is called the eternal connected vertex
cover number of the graph G and is denoted by ecvc(G).
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Eternal Vertex Cover

Minimum Eternal Vertex Cover Problem (MIN-EVC)

Instance: A graph G = (V ,E ).

Solution: An eternal vertex cover D of minimum cardinality.

Minimum Eternal Vertex Cover Decision Problem
(DECIDE-EVC)

Instance: A graph G = (V ,E ) and a positive integer k ≤ |V |.

Question: Does there exist an eternal vertex cover of cardinality ≤ k?
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Eternal Connected Vertex Cover

Minimum Eternal Connected Vertex Cover Problem
(MIN-ECVC)

Instance: A graph G = (V ,E ).

Solution: An eternal connected vertex cover D of minimum cardinality.

Minimum Eternal Connected Vertex Cover Decision
Problem (DECIDE-ECVC)

Instance: A graph G = (V ,E ) and a positive integer k ≤ |V |.

Question: Does there exist an eternal connected vertex cover of cardinality
≤ k?
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Literature Overview | Eternal Vertex Cover

NP-Hardness results
EVC is NP-Hard for general graphs. (Fomin et al. (2010))
EVC is NP-Hard even for locally connected graphs. (Babu et al.(2021))
EVC problem is NP-Hard even for bipartite graphs. (Babu et al.
(2022))

Approximation results
A 2-approximation algorithm has been given for EVC on general
graphs. (Fomin et al. (2010))
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Literature Overview | Eternal Vertex Cover

Algorithmic results
EVC has been solved for paths, cycles and trees. (Klostermeyer et al.
(2009))
The eternal vertex cover number has been given for generalized trees,
where each edge of a tree is replaced by an elementary bipartite
graphs. (Hisashi et al. (2015))
Polynomial-time algorithms have been proposed for cactus graphs and
chordal graphs. (Babu et al. (2021))
A polynomial-time algorithm has been given to solve EVC for
co-bipartite graphs. (Babu et al. (2022))
Linear time solvable for chain graphs and split graphs and efficiently
solvable in P4-free graphs (Paul et al. (2023)).
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Literature Overview | Eternal Connected Vertex
Cover

Combinatorial results
For any undirected simple graph G , mvc(G ) ≤ evc(G ) ≤ 2mvc(G ).
(Klostermeyer et al. (2009))
A characterization has been given for graphs for which
evc(G ) = 2mvc(G ). (Klostermeyer et al. (2009))
An upper bound has been given for evc(G ), i.e. evc(G ) ≤ cvc(G ) + 1.
(Klostermeyer et al. (2009))
A characterization has also been given for graphs satisfying some
certain property, for which evc(G ) = mvc(G ). (Babu et al. (2021))
Recently, all the bipartite graphs have been characterized for which
evc(G ) = mvc(G ). (Neeldhara et al. (2023))
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Literature Overview | Eternal Connected Vertex
Cover

All the following results were given in (Fujito et al. (2020))

Efficiently solvable for chordal graphs.

Efficiently solvable for cactus graphs, block graphs, and any graphs in
which every block is either a simple cycle or a clique.

NP-hard for locally connected graphs.

A 2-approximation algorithm for general graphs
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Literature Overview | Eternal Connected Vertex
Cover

(Fujito et al. (2020)) also proved the following two theorems

Theorem 1

For any connected vertex cover C of any connected graph G , C ∪ {x}
(where x ∈ V \ C ) forms an initial configuration of eternal connected
vertex cover. Hence cvc(G ) ≤ cevc(G ) ≤ cvc(G ) + 1.

Theorem 2

Let G = (V ,E ) be a connected graph. If ecvc(G ) = cvc(G ), then for
every vertex v ∈ V , there exists a minimum connected vertex cover that
contains v .
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Our contribution

In this paper,

1 A linear time algorithm is proposed to compute cvc(G ) and ecvc(G )
for chain graph G .

2 We show
1 NP-hardness of the DECIDE-ECVC problem for Hamiltonian graphs.
2 cvc(µ(G )) can be computed efficiently, if at least one of the

Hamiltonian cycle of G is given (G = (V ,E ) is Hamiltonian).
3 mvc(µ(G )) = |V |+ 1 and ecvc(µ(G )) = |V |+ 2.

3 We propose a polynomial time algorithm to solve the MIN-ECVC
problem for cographs.
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Algorithm for Chain graphs
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Algorithm for Chain graphs

Chain graph

A bipartite graph G = (X ∪ Y ,E ) is said to be a chain graph if vertices in
X can be ordered (x1, x2, ..., x|X |), such that
N(x1) ⊆ N(x2) ⊆ ... ⊆ N(x|X |).

Example :
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Algorithm for Chain graphs

At first, we compute the minimum connected vertex cover number for
chain graphs.

Calculate mvc(G ) for the chain graph G = (X ∪ Y ,E ).

Then two cases may appear
1 mvc(G ) < |X |.
2 mvc(G ) = |X |.

Here we assume |X | ≤ |Y |.
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Algorithm for Chain graphs

Case -1 (mvc(G ) < |X |)

At first, we prove the following theorem

Theorem

For any minimum vertex cover S of G , if xi ∈ S , then xi+1 ∈ S , for each
i ∈ [p − 1]. Similarly if yi ∈ S , then yi−1 ∈ S , for each i ∈ {2, 3, . . . , q}.

xi xi+1

N(xi) N(xi+1)
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Algorithm for Chain graphs

Since mvc(G ) < |X |,

Any min vertex cover S has non empty intersection with X and Y .
So, by the above theorem y1, xp ∈ S , hence G [S ] is connected.

So, cvc(G ) = mvc(G ).
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Algorithm for Chain graphs

Case -2 (mvc(G ) = |X |)

Observation 1

If there exists an index i ∈ [p − 1], such that deg(xi ) = i , then
N(xi ) ∪ {xi+1, ..., xp} forms a connected vertex cover, hence
cvc(G ) = mvc(G ).

x1 xi xi+1 xp

y1 yi yq
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Algorithm for Chain graphs

Observation 2

If such an index i does not exist, then cvc(G ) = mvc(G ) + 1. Also,
X ∪ {y1} forms a minimum connected vertex cover.

Hence, the following theorem can be concluded.

Theorem

Given a chain graph G = (X ∪ Y ,E ), cvc(G ) can be computed in linear
time.
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Algorithm for Chain graphs

Now for computing ECVC (G ).

Calculate cvc(G ).

Now, two cases can arise
1 cvc(G ) ≤ |X |.
2 cvc(G ) > |X |.
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Case 1 (cvc(G ) ≤ |X |)

This implies mvc(G ) ≤ |X |.
Hence, there does not exist any connected vertex cover that contains
x1.

So, ecvc(G ) = cvc(G ) + 1.
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Frame Title

Case 2 (cvc(G ) > |X |)

In this case, we have proved the following
1 If |X | < |Y |, then ecvc(G ) = cvc(G ) + 1.
2 If |X | = |Y |, then ecvc(G ) = cvc(G ).

Hence, by the above cases, we conclude the following theorem.

Theorem

Given a chain graph G = (X ∪ Y ,E ), ecvc(G ) can be computed in linear
time.
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NP-hardness of the DECIDE-ECVC
problem for Hamiltonian graphs
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Definition

Hamiltonian graphs

Given a graph G , a Hamiltonian cycle is a cycle C , such that C contains
all the vertices of G . A graph that contains a Hamiltonian cycle is called a
Hamiltonian graph.

Example :
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The Reduction

The DECIDE-VC problem for Hamiltonian graphs is NP-hard.

We reduce the DECIDE-VC problem for Hamiltonian graphs to the
DECIDE-ECVC problem for Hamiltonian graphs.

Let (G , k) be an instance of the DECIDE-VC problem.

We construct H as follows:
H = (V (G )∪{u, v ,w},E (G )∪{lk |l ∈ {u, v}, k ∈ V (G )}∪{uw , vw}).
(H, k + 3) is an instance of the DECIDE-ECVC problem.
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The Reduction

Here is an example of the reduction

(a) A Hamiltonian graph G

u v

w

(b) The graph H

Figure: Visual depiction of the above reduction
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Idea of the proof

If S be a vertex cover of G , with |S | ≤ k , then S ∪ {u, v ,w} is a
eternal connected vertex cover of cardinality at most k + 3.

For the converse, we showed that if S ′ be any eternal connected
vertex cover of size k + 3, then S ′ contains u, v ,w .

Hence S ′ \ {u, v ,w} is a vertex cover of G of cardinality at most k .

This way, we show that the DECIDE-ECVC problem is NP-hard for
Hamiltonian graphs.
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More Results on Hamiltonian graphs

Mycielskian

Let G = (V ,E ) be a graph. The Mycielskian of G , denoted as µ(G )
contains G itself as a subgraph, together with n + 1 additional vertices: a
vertex ui corresponding to each vertex vi of G , and an extra vertex w .
Each vertex ui is adjacent to w . In addition, for each edge vivj of G , the
Mycielskian includes two edges, uivj and viuj .

Example:

G µ(G)
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More Results on Hamiltonian graphs

Moreover, we prove the following results

Theorem

Given a Hamiltonian graph G = (V ,E ), (where |V | = n)

mvc(µ(G )) = n + 1.

ecvc(µ(G )) = n + 2.

cvc(µ(G )) can be computed in linear time if at least one Hamiltonian cycle
representation of G is given.
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Algorithm to solve the MIN-ECVC problem for

cographs
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Algorithm for Cographs

Cograph

A graph G = (V ,E ) is called a cograph if it can be generated from K1 by
complementation and disjoint union. Recursively, the class of cographs can
be defined as follows

1 K1 is a cograph.

2 Complement of a cograph is a cograph.

3 G1 and G2 are cograph, then G1 ∪ G2 is a cograph.
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Algorithm for Cographs

Cographs are exactlty P4-free graphs.

Example :
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Algorithm for cographs

Theorem (Stewart, 1978)

Cographs can be represented as a join of k graphs, G1,G2, . . . ,Gk , where
each Gi is either K1 or a disconnected graph. This representation can be
found in time O(n2).

We introduce an algorithm ECVC CHECK to compute ecvc(G ),
when G has the property: Every minimum vertex cover of G is
connected.

This algorithm runs in O(n2) time.

If k ≥ 3, then every minimum vertex cover of G is also connected.
Hence ECVC CHECK works.

Kaustav Paul, Arti Pandey February 17, 2024 CALDAM 2024



Algorithm for cographs

If k = 2, then all the minimum vertex covers may not be connected.

Let G = G1 ⊕ G2, where G1,G2 are also cographs.

Then we did an exhaustive case analysis on the following cases
1 mis(G ) < |G1| = |G2|.
2 mis(G ) = |G1| = |G2|.
3 mis(G ) < |G1| < |G2|.
4 |G1| < mis(G ) < |G2|.
5 |G1| < mis(G ) = |G2|.
6 |G1| = mis(G ) < |G2|.

Hence we conclude the following theorem.

Theorem

Given a cograph G , ecvc(G ) can be computed in time O(n2).
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Future Aspects

One can try to solve the MIN-ECVC problem for the graphs where the
MIN-CVC problem is solvable.

Try to prove or disprove the following statement

Given a graph G (V ,E ); ecvc(G ) = cvc(G ), if for every vertex v ∈ V ,
there exists a minimum connected vertex cover that contains v .
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Thank You!
Questions?
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