Total Coloring of Some Graph Operations

Sreelakshmi Sukumaran and T. Kavaskar
Department of Mathematics
School of Mathematics \& Computer Sciences
Central University of Tamil Nadu Thiruvarur - 610005.

Presentation for CALDAM 2024, IIT Bhilai on February 15, 2024.

Outline of the Presentation

1 Priliminary Definitions

2 TCC : Some known Results

3 New Results

4 References

Priliminary Definitions

- Total coloring of a graph is an assignment of colors to both the vertices and edges such that no two adjacent or incident elements receive the same color.
- A total coloring using at most k colors is called a k - total coloring.
■ The least number of colors needed for the proper total coloring of G is the total chromatic number of \mathbf{G}, denoted as $\chi_{T}(G)$.

Priliminary Definitions

vertex coloring

edge coloring

total coloring

- During 1960's Behzad and Vizing independently raised the following conjecture:

Priliminary Definitions

"Every graph is total colorable using its maximum degree plus two colors." It is known as the Total Coloring Conjecture (TCC), which is one among the classic open problems in graph theory.

- Even though many well-known researchers from different parts of the world have studied TCC for over 60 years, it remains open till now.
- Let G be a graph with vertex set $V(G)=\{1,2, \ldots, k\}$ and $H_{1}, H_{2}, \ldots, H_{k}$ be the collection of graphs. The G-generalized join of $H_{1}, H_{2}, \ldots, H_{k}$, denoted by $G\left[H_{1}, H_{2}, \ldots, H_{k}\right]$, is the k graph G^{\prime} with vertex set $V\left(G^{\prime}\right)=\bigcup_{i=1} V\left(H_{i}\right)$ and edge set $E\left(G^{\prime}\right)=\left(\bigcup_{i=1}^{k} E\left(H_{i}\right)\right) \cup\left(\bigcup_{i j \in E(G)}\left\{x y \mid x \in V\left(H_{i}\right), y \in V\left(H_{j}\right)\right\}\right)$.
- If $H_{i} \cong H$ for $1 \leq i \leq k$, then $G[H, H, \ldots, H]$ is the standard lexicographic product of G and H and it is denoted as $G \circ H$. If $G=K_{2}$, then $K_{2}\left[H_{1}, H_{2}\right]$ is the well known join of graphs H_{1} and H_{2} and it is denoted by $H_{1} \vee H_{2}$.

TCC : Some known Results

- Total Coloring Conjecture (TCC) : For any graph G, $\chi_{T}(G) \leq \Delta(G)+2$.
- The graphs having a total coloring using $\Delta(G)+1$ colors are called type-1 graphs and those that having a total coloring using minimum $\Delta(G)+2$ colors are said to be type-2 graphs.
- Complete graphs on n vertices, K_{n} satisfies TCC and is type- 1 for n odd and type-2 for n even (Behzad, Chartrand and Cooper).
- Total coloring of the cartesian product of almost all graphs were discussed (Kemnitz, Marangio, Zmazek, Zerovnik).

TCC : Some known Results

- The current researchers go for some relaxed version of TCC which is known as the Weak TCC.
k-Total coloring Conjecture (k-TCC):
For any graph $G, \chi_{T}(G) \leq \Delta(G)+k$, for some fixed positive integer $k \geq 2$.
The $2-\mathrm{TCC}$ is nothing but the original TCC and 3 -TCC is known as the Weak TCC.
- Seoud et al. calculated the total chromatic number of the join of two paths. Guanggrong Li and Limin Zhang proved that the join of a complete in-equipartite graph and a path is type-1.

TCC : Some known Results

- R. Vignesh et al. proved the validity of TCC for the join of a graph satisfying TCC with itself. But we found that the existence of a proper edge coloring that is just mentioned in the proof without any proper explanation is not always mandatory. Hence in order to overcome that here we give a rigorous proof using the coloring technique explained in the Lemma which explained here.

TCC : Some known Results

- Even though we do not have a proof for the existence of TCC, we have seen that it is proved for a vast range of graphs. Here we are going to see the same for some graph operations namely the join of graphs and the lexicographic product of graphs.
- We use the following result in our proofs:

Theorem (Konig)

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Theorem

Let G and H be graphs with m and n vertices, respectively. If $\chi^{\prime}(G) \leq \chi_{T}(H)$, then $\max \{\Delta(H)+m, \Delta(G)+n\}+1 \leq \chi_{T}(G \vee H) \leq \max \{m, n\}+\chi_{T}(H)+\chi(G)$.

In general, $\max \{\Delta(H)+m, \Delta(G)+n\}+1 \leq \chi_{T}(G \vee H) \leq$ $\max \{m, n\}+\max \left\{\chi^{\prime}(G), \chi^{\prime}(H)\right\}+\chi(H)+\chi(G)$.

Proof

\bullet Let $r=\max \{m, n\}, s=\chi(G)$ and $t=\chi_{T}(H)$.

- Then, $\chi_{T}(G \vee H) \geq \Delta(G \vee H)+1=\max \{\Delta(H)+m, \Delta(G)+n\}+1$. Hence the lower bound.
-For the upper bound, define a coloring of $r+s+t$ colors as follows: $i)$ Color the edges and vertices of H using t colors.
$i i)$ Then, $t \geq \chi^{\prime}(G)$. Hence the edges of G can be colored using the same t colors.
iii) Color the vertices of G using new s colors.
$i v)$ the edges between G and H is a bipartite graph of maximum degree r, and hence can be edge colored properly using new r colors. So $G \vee H$ is $r+s+t$-total colorable. Hence the result.

edges are colored using
Can be colored using t colors same t colors in H and
vertices are colored using new 's' colors

Corollary

If G is a bipartite graph and H is a graph satisfying TCC and both having the same maximum degree, then

$$
\chi_{T}(G \vee H) \leq\left\{\begin{array}{ll}
k+4 & \text { if } H \text { is type }-2 ; \\
k+3 & \text { if } H \text { is type }-1,
\end{array} \quad \text { where } k=\Delta(G \vee H) .\right.
$$

Lemma:

The edge set of $K_{n, n}$ can be partitioned into $n+1$ matchings such that each vertex of $K_{n, n}$ is saturated by n matchings among them.

Proof

- Let the vertex partition be $X=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $Y=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- Let $M_{0}=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ and $R_{0}=K_{n, n}-M_{0}$.
- Now, successively define R_{j} 's and M_{j} 's as, for $1 \leq j \leq n-2$,
$R_{j}^{\prime}=R_{j-1}-\left\{u_{j}, v_{j}\right\}, M_{j}=A_{j} \cup B_{j}$, where
$A_{j}=\left\{u_{i} v_{i+j+1(\bmod n)}: 1 \leq i \leq j-1\right.$ or $\left.i=n\right\}$,
$B_{j}=\left\{u_{i} v_{i+j(\bmod n)}: j+1 \leq i \leq n-1\right\}$ and
$R_{j}=R_{j-1}-M_{j}$.
- Again, $R_{n-1}^{\prime}=R_{n-2}-\left\{u_{n-1}, v_{n-1}\right\}$,
$M_{n-1}=\left\{u_{i} v_{2 i+1(\bmod n)}: 1 \leq i \leq n\right.$ and $\left.i \neq n-1\right\}$,
$R_{n-1}=R_{n-2}-M_{n-1}$ and
$R_{n}^{\prime}=R_{n-1}-\left\{u_{n}, v_{n}\right\}$,
$M_{n}=\left\{u_{i} v_{2 i(\bmod n)}: 1 \leq i \leq n-1\right\}$.

Proof

- Then, M_{j} is a matching in R_{j}^{\prime}, for $1 \leq j \leq n$ and each vertex u_{j} (as well as v_{j}) in $K_{n, n}$ is M_{i}-saturated for all $i \in\{1,2, \ldots, n\} \backslash\{j\}$. - $\left|M_{0}\right|=n,\left|M_{j}\right|=n-1$ for $1 \leq j \leq n$ and $E\left(R_{n}^{\prime}\right) \backslash M_{n}=\emptyset$. Hence $\sum_{j=0}^{n}\left|M_{j}\right|=\left|E\left(K_{n, n}\right)\right|$.
- Finally, we verify that $\left\{M_{j}\right\}_{j=1}^{n}$ are disjoint. Hence the result the follows.

Theorem

If G is a graph satisfying $T C C$, then $G \vee G$ satisfies $T C C$.

Proof

- Clearly $G \vee G$ contains two copies of G, say G_{1} and G_{2}. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
-Let $\Delta(G)=k, \Delta(G \vee G)=k+n$ and c be a $k+2$-total coloring of G using $1,2, \ldots, k+2$.
- Construct a total coloring of $G \vee G$ using at most $k+n+2$ colors. $i)$ Color $V\left(G_{1}\right) \cup E\left(G_{1}\right) \cup E\left(G_{2}\right)$ using c.
$i i)$ Consider the $n+1$ partition of the in between edges as explained in the lemma and c_{i} denotes the missing color in u_{i} under c. iii)Now, the edges in M_{0} is colored using c_{i} and edges in $M_{j} \cup\left\{v_{i}\right\}$ is colored using $k+2+j$ for $1 \leq j \leq n$. Hence the result.

totally it is colored using $1,2, . . k+2$

vertices are colored using

$$
\begin{gathered}
k+3, k+4, \ldots, k+n+2 \\
\text { and } \\
\text { edges are having colors } \\
\text { from }_{\{1, . . k+2\}}
\end{gathered}
$$

Corollary

If a graph G satisfies $T C C$, then $\bigvee_{i=1}^{m} G_{i}$ satisfies $T C C$, where $G_{i} \cong G$ for $1 \leq i \leq n$ and $m=2^{t}$ for any positive integer t.

Theorem

If G and H are two graphs with m and n vertices respectively. Also, $\Delta(G) \geq \Delta(H), m \leq n$ and G satisfies TCC, then
$\chi_{T}(G \vee H) \leq \Delta(G \vee H)+3$.

Theorem

If G and H are two k-regular graphs with same odd order n, then $G \vee H$ is not type-1.

Corollary

For an odd ordered regular G graph satisfying TCC, the join $G \vee G$ is type-2.

Corollary

For an odd positive integer $m \geq 3, C_{m} \vee C_{m}$ is a type-2 graph.

Proposition

For $m, n \geq 3$, the join of two cycles $C_{m} \vee C_{n}$ satisfies TCC.

Proof

Let $G=C_{m} \vee C_{n}$ and also let $m \geq n$. Clearly, $\Delta(G)=m+2$.
Let $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$ and $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$.
For $m=n=3$, the result is obvious.
Assume that, $m>3$ and $n \geq 3$.

Proof

Case 1. m and n are even
The following is a total coloring of G using $m+4$ colors.
$c\left(v_{i}\right)=\left\{\begin{array}{ll}1 & \text { for } \\ 2 & \text { for } \\ & i \equiv 0 \bmod 2 \\ \bmod 2\end{array} \quad c\left(u_{i}\right)=\left\{\begin{array}{lll}3 & \text { for } & i \equiv 1 \bmod 2 \\ 4 & \text { for } & i \equiv 0 \bmod 2\end{array}\right.\right.$
$c\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{lll}3 & \text { for } & i \equiv 1 \bmod 2 \\ 4 & \text { for } & i \equiv 0 \bmod 2\end{array}\right.$
$c\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}1 & \text { for } & i \equiv 1 \bmod 2 \\ 2 & \text { for } i \equiv 0 \bmod 2\end{array}\right.$
Remaining uncolored edges forms a bipartite graph of maximum degree m and it can be properly colored using m new colors.

Proof continuation

Case 2. m and n are odd

$$
\begin{aligned}
& c\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq m \\
2 & \text { for } & i \equiv 0 \bmod 2 \\
3 & \text { for } & i=m
\end{array}\right. \\
& c\left(u_{i}\right)=\left\{\begin{array}{lll}
4 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq n \\
5 & \text { for } & i \equiv 0 \bmod 2 \\
6 & \text { for } & i=n
\end{array}\right. \\
& c\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{lll}
5 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq m \\
4 & \text { for } & i \equiv 0 \bmod 2 \\
2 & \text { for } & i=m, i+1=1
\end{array}\right. \\
& c\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq n \\
2 & \text { for } & i \equiv 0 \bmod 2 \\
5 & \text { for } & i=n, i+1=1
\end{array}\right.
\end{aligned}
$$

Proof continuation

Next we color some of the edges in between C_{m} and C_{n}.
$c\left(v_{i} u_{j}\right)=\left\{\begin{array}{ll}1 & \text { for } \quad i=m \text { and } j=n \\ 3 & \text { for } \quad 1 \leq i=j \leq n-1 \\ 4 & \text { for } \quad i=1 \text { and } j=n \\ 6 & \text { for } \quad i=m \text { and } j=1\end{array} \quad\right.$ Also, for $2 \leq i \leq n-1$, color
$c\left(u_{i} v_{i+1} \bmod (n-2)\right)=6$.
The remaining uncolored edges forms a bipartite graph, with maximum degree $m-2$ and hence the result follows by Konig's theorem.

Proof continuation

Case 3. m is even and n is odd
Color the vertices and edges of C_{m} and C_{n} as follows:

$$
\begin{aligned}
& c\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i \equiv 1 \bmod 2 \\
2 & \text { for } & i \equiv 0 \bmod 2
\end{array}\right. \\
& c\left(u_{i}\right)=\left\{\begin{array}{lll}
3 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq n \\
4 & \text { for } & i \equiv 0 \bmod 2 \\
5 & \text { for } & i=n
\end{array}\right. \\
& c\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{lll}
3 & \text { for } & i \equiv 1 \bmod 2 \\
4 & \text { for } & i \equiv 0 \bmod 2
\end{array}\right. \\
& c\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i \equiv 1 \bmod 2 \text { and } i \neq n \\
2 & \text { for } & i \equiv 0 \bmod 2 \\
4 & \text { for } & i=n \operatorname{and} i+1=1
\end{array}\right.
\end{aligned}
$$

Proof continuation

Now, some edges between C_{m} and C_{n} are colored as follows.
For $1 \leq i \leq n-1$, color $c\left(u_{i} v_{i}\right)=5$ and $c\left(u_{n} v_{m}\right)=1$. Then the remaining uncolored edges form a bipartite graph of maximum degree $m-1$ and it can be edge colored properly using $m-1$ new colors.

Proof continuation

Case 4．m is odd and n is even

Color the vertices and edges of both C_{m} and C_{n} using，
$c\left(v_{i}\right)=\left\{\begin{array}{ll}1 & \text { for } \quad i \equiv 1 \bmod 2 \\ 2 & \text { for } \quad i \equiv 0 \bmod 2 \\ 3 & \text { for } \quad i=m\end{array} c\left(u_{i}\right)=\left\{\begin{array}{lll}4 & \text { for } \quad i \equiv 1 \bmod 2 \\ 5 & \text { for } \quad i \equiv 0 \bmod 2\end{array}\right.\right.$
$\left\{\begin{array}{l}4 \\ \text { for } \quad i \equiv 1 \bmod 2 \text { and } i \neq m\end{array}\right.$
$c\left(v_{i} v_{i+1}\right)= \begin{cases}5 & \text { for } \quad i \equiv 0 \bmod 2 \\ 2 & \text { for } \quad i=m \text { and } i+1=1\end{cases}$
$c\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}1 & \text { for } \quad i \equiv 1 \bmod 2 \\ 2 & \text { for } i \equiv 0 \bmod 2\end{array}\right.$
Next we color the edges $\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ ．For $1 \leq i \leq n$ ，color $c\left(u_{i} v_{i}\right)=3$ ．
Remaining uncolored edges form a bipartite graph of maximum degree $m-1$ which can be edge colored properly using new $m-1$ colors．

Corollary

For any positive integers m and $n, P_{m} \vee P_{n}$ satisfies TCC.

Theorem

Let G be a graph with n vertices and $\chi^{\prime}(G)=k$, Let r be the least number in $\{1,2, \ldots, k\}$ such that every vertex of G is saturated by at least one of the matchings $M_{i_{1}}, M_{i_{2}}, \ldots, M_{i_{r}}$ and $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a set of graphs with $H_{i} \vee H_{j}$ satisfying TCC, for each $i, j \in\{1,2, \ldots, n\}$, then $\chi_{T}\left(G\left[H_{1}, H_{2}, \ldots, H_{n}\right]\right) \leq \sum_{i=1}^{r} s_{i}+\sum_{j=r+1}^{k} t_{j}$,
where $s_{j}=\max \left\{\Delta\left(H_{x} \vee H_{y}\right)+2 \mid x y \in M_{j}\right\}$ for $1 \leq j \leq r$ and $t_{j}=\max \left\{\max \left\{\left|V\left(H_{x}\right)\right|,\left|V\left(H_{y}\right)\right| \mid x y \in M_{j}\right\}\right\}$ for $r+1 \leq j \leq k$.

Corollary

If H is any graph satisfying TCC with m vertices, then
$\chi_{T}(G \circ H) \leq$
$\left\{\begin{array}{c}\Delta(G \circ H)+\Delta(H)(\Delta(G)-1)+2 \Delta(G) \\ \Delta(G \circ H)+\Delta(G) \Delta(H)+2(\Delta(G)+1)+m\end{array}\right.$ if G is class -1

Theorem

If G satisfies $T C C$ with m vertices, then $G\left[K_{n}^{c}\right]$ satisfies weak $T C C$. In particular, if G is type-1, then $G\left[K_{n}^{c}\right]$ satisfies TCC.

References I

宔
M．Behzad，F．：Graphs and their chromatic numbers．：Ph．D． Thesis．：Michigan State University（1965）．

M．Behzad，F．，G．Chartrand，S．：J．K．Cooper，T．：The color numbers of complete graphs．Journal of the Londan Mathematical Society 42，226－228（1967）．

嗇 D．Konig，F．：Graok es alkalmazasuk a determinansok Zs a halmazok elmeleere．Matematikai es Termeszettudomanyi Ertesto 34，104－119（1916）．
婁
Manu Basavaraju，F．，L．Sunil Chandran，S．，Mathew C Francis， T．，Ankur Naskar：Weakening Total Coloring Conjecture：Weak TCC and Hadwiger＇s Conjecture on Total Graphs． arXiv：2107．09994v3［math．CO］ 25 Jan 2022.

References II

嗇 Meirun Chen，F．，Xiaofeng Guo，S．，Hao Li，T．，Lianzhu Zhang： Total chromatic number of generalized Mycielski graphs．Discrete Mathematics 334，48－51（2014）．
圊
Shantharam Prajnanaswaroopa，F．，Jayabalan Geetha，S．， Kanagasabapathi Somasundaram，T．，Hung－Lin Fu，T．， Narayanan Narayanan：On Total Coloring of Some Classes of Regular Graphs．Taiwanese Journal of Mathematics 26（4）， 667－683（2002）．
遇
R．Vignesh，F．，J．Geetha，S．，K．Somasundaram，T．：Total Coloring Conjecture for certain classes of graphs．Algorithms 11（10）， 161 （2018）．

Thank You

