
An efficient interior point method for linear
optimization using modified Newton method

Sajad Fathi Hafshejani, Daya Gaur, and Robert Benkoczi

Department of Math and Computer Science, University of Lethbridge, Lethbridge,
Canada.

February 16, 2024

1 / 22

Outline

1 Introduction
LO problems
Interior point method
Solution

2 The new approach
Newton’s method
Two-step method
Algorithm
Convergence analysis

3 Numerical results
Implementation
Results

2 / 22

Linear optimization problems

Linear Optimization (LO) problems are given by:

(P) min{cTx : Ax = b, x ≥ 0},

and its dual is given by:

(D) max{bT y : AT y + s = c, s ≥ 0},

where x, c, s ∈ Rn, b ∈ Rm, y ∈ Rm and A ∈ Rm×n with m ≤ n.

3 / 22

Linear optimization problems

Linear Optimization (LO) problems are given by:

(P) min{cTx : Ax = b, x ≥ 0},

and its dual is given by:

(D) max{bT y : AT y + s = c, s ≥ 0},

where x, c, s ∈ Rn, b ∈ Rm, y ∈ Rm and A ∈ Rm×n with m ≤ n.

3 / 22

Linear optimization problems

Linear Optimization (LO) problems are given by:

(P) min{cTx : Ax = b, x ≥ 0},

and its dual is given by:

(D) max{bT y : AT y + s = c, s ≥ 0},

where x, c, s ∈ Rn, b ∈ Rm, y ∈ Rm and A ∈ Rm×n with m ≤ n.

3 / 22

IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

4 / 22

IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

4 / 22

IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

4 / 22

IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

4 / 22

IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.

4 / 22

Interior point method

The KKT conditions for (P) and (D) are:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)

xs = 0,

where the coordinate-wise product of vectors x and s is denoted as xs.

IPM’s idea

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)

xs = µe,

Based on the IPC condition and the full row rank property of matrix A,
the system (2) has a unique solution (x(µ), y(µ), s(µ)). The terms x(µ)
and (y(µ), s(µ)) are called the µ-centers of (P) and (D), respectively,

5 / 22

Interior point method

The KKT conditions for (P) and (D) are:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)

xs = 0,

where the coordinate-wise product of vectors x and s is denoted as xs.

IPM’s idea

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)

xs = µe,

Based on the IPC condition and the full row rank property of matrix A,
the system (2) has a unique solution (x(µ), y(µ), s(µ)). The terms x(µ)
and (y(µ), s(µ)) are called the µ-centers of (P) and (D), respectively,

5 / 22

Interior point method

The KKT conditions for (P) and (D) are:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)

xs = 0,

where the coordinate-wise product of vectors x and s is denoted as xs.

IPM’s idea

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)

xs = µe,

Based on the IPC condition and the full row rank property of matrix A,
the system (2) has a unique solution (x(µ), y(µ), s(µ)). The terms x(µ)
and (y(µ), s(µ)) are called the µ-centers of (P) and (D), respectively,

5 / 22

Solution

To find the solution, we can consider the following problem:

ξ =

xy
s

 and F (ξ) =

 Ax− b
AT y + s− c
µe− xs

 = 0 (3)

where the operator F is defined on the Banach space B1 with values in
a Banach space B2. We can find the root of equation (3) denoted by ξ∗

where F (ξ∗) = 0.

6 / 22

Newton’s method

Applying a linear approximation using the Taylor series expansion
around ξ, we have

F (ξ) + F ′(ξ)∆ξ ≃ 0

where

Jacobian F ′ =

∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

 =

A 0 0
0 AT I
S 0 X

 and ∆ξ =

∆x
∆y
∆s

 ,

where X,S are diagonal matrices constructed from x and s.

We update the current estimate ξn of the root using the following rule
for some appropriate step size α:

ξn+1 = ξn − α[F ′(ξn)]
−1F (ξn)

7 / 22

Newton’s method

Applying a linear approximation using the Taylor series expansion
around ξ, we have

F (ξ) + F ′(ξ)∆ξ ≃ 0

where

Jacobian F ′ =

∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

 =

A 0 0
0 AT I
S 0 X

 and ∆ξ =

∆x
∆y
∆s

 ,

where X,S are diagonal matrices constructed from x and s.
We update the current estimate ξn of the root using the following rule
for some appropriate step size α:

ξn+1 = ξn − α[F ′(ξn)]
−1F (ξn)

7 / 22

Original idea

To find the root of function f(x) = 0, two-step method is given:

First step:

x̃0 = x0

x1 = x0 −
f(x0)

f ′(12 [x0 + x̃0])
= x0 −

f(x0)

f ′(x0)
,

and for k ≥ 1, we have:

Second step:

x̃k = xk −
f(xk)

f ′(12 [xk−1 + x̃k−1])

xk+1 = xk −
f(xk)

f ′(12 [xk + x̃k])
.

8 / 22

Original idea

To find the root of function f(x) = 0, two-step method is given:

First step:

x̃0 = x0

x1 = x0 −
f(x0)

f ′(12 [x0 + x̃0])
= x0 −

f(x0)

f ′(x0)
,

and for k ≥ 1, we have:

Second step:

x̃k = xk −
f(xk)

f ′(12 [xk−1 + x̃k−1])

xk+1 = xk −
f(xk)

f ′(12 [xk + x̃k])
.

8 / 22

Original idea

To find the root of function f(x) = 0, two-step method is given:

First step:

x̃0 = x0

x1 = x0 −
f(x0)

f ′(12 [x0 + x̃0])
= x0 −

f(x0)

f ′(x0)
,

and for k ≥ 1, we have:

Second step:

x̃k = xk −
f(xk)

f ′(12 [xk−1 + x̃k−1])

xk+1 = xk −
f(xk)

f ′(12 [xk + x̃k])
.

8 / 22

Two-step method for IPM

Let F be any function. The first step involves updating an auxiliary
point ξ̃0 = ξ0.
The update rules used in the nth iteration can be concisely summarized
as:

ξ̃n+1 = ξn − α[F ′(ξ̂n)]
−1F (ξn)

ξ̂n+1 =
1

2
(ξ̃n+1 + ξn)

ξn+1 = ξn − α[F ′(ξ̂n+1)]
−1F (ξn)

9 / 22

Interior point algorithm

10 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
11 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
11 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
11 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
11 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
11 / 22

Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2)

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.
1∥x∥1 =

∑n
i=1 |xi|

11 / 22

Algorithm

Find the maximum value for step size β to make the new point
feasible.

Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (5)

12 / 22

Algorithm

Find the maximum value for step size β to make the new point
feasible.

Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (5)

12 / 22

Iterative Update:

Compute Ψ(x, s, µ) and check Step 3 in the Initialization phase
and compute Ψ(x, s, µ).

Compute the search direction by solving the following system:

A∆x̃ = 0

AT∆ỹ +∆s̃ = 0

Ŝ∆x̃+ X̂∆s̃ = µe−XSe (6)

Note that, in practice, we use the information of the previous
iteration to calculate the search direction (∆x̃,∆ỹ,∆s̃).

Find the maximum value for α such that the new auxiliary point
will remain feasible.

Update the auxiliary point by:

(x̃+, ỹ+, s̃+)← (x+ α∆x̃, y + α∆ỹ, s+ α∆s̃) (7)

13 / 22

Iterative Update:

Compute Ψ(x, s, µ) and check Step 3 in the Initialization phase
and compute Ψ(x, s, µ).

Compute the search direction by solving the following system:

A∆x̃ = 0

AT∆ỹ +∆s̃ = 0

Ŝ∆x̃+ X̂∆s̃ = µe−XSe (6)

Note that, in practice, we use the information of the previous
iteration to calculate the search direction (∆x̃,∆ỹ,∆s̃).

Find the maximum value for α such that the new auxiliary point
will remain feasible.

Update the auxiliary point by:

(x̃+, ỹ+, s̃+)← (x+ α∆x̃, y + α∆ỹ, s+ α∆s̃) (7)

13 / 22

Iterative Update:

Compute Ψ(x, s, µ) and check Step 3 in the Initialization phase
and compute Ψ(x, s, µ).

Compute the search direction by solving the following system:

A∆x̃ = 0

AT∆ỹ +∆s̃ = 0

Ŝ∆x̃+ X̂∆s̃ = µe−XSe (6)

Note that, in practice, we use the information of the previous
iteration to calculate the search direction (∆x̃,∆ỹ,∆s̃).

Find the maximum value for α such that the new auxiliary point
will remain feasible.

Update the auxiliary point by:

(x̃+, ỹ+, s̃+)← (x+ α∆x̃, y + α∆ỹ, s+ α∆s̃) (7)

13 / 22

Iterative Update:

Compute Ψ(x, s, µ) and check Step 3 in the Initialization phase
and compute Ψ(x, s, µ).

Compute the search direction by solving the following system:

A∆x̃ = 0

AT∆ỹ +∆s̃ = 0

Ŝ∆x̃+ X̂∆s̃ = µe−XSe (6)

Note that, in practice, we use the information of the previous
iteration to calculate the search direction (∆x̃,∆ỹ,∆s̃).

Find the maximum value for α such that the new auxiliary point
will remain feasible.

Update the auxiliary point by:

(x̃+, ỹ+, s̃+)← (x+ α∆x̃, y + α∆ỹ, s+ α∆s̃) (7)

13 / 22

Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.
Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.

14 / 22

Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.
Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.

14 / 22

Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.

Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.

14 / 22

Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.
Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.

14 / 22

Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.
Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.
14 / 22

Algorithm

15 / 22

Convergence analysis

Lemma:

The total number of outer iterations to obtain nµ ≤ ϵ are

O

(
1

θ
log

n

ϵ

)
.

Theorem:

Suppose the outer loop updates the barrier parameter by factor
θ ∈ (0, 1) and k →∞. Then one has:

∥ξk − ξ∗∥ ≤ ϵ.

16 / 22

Convergence analysis

Lemma:

The total number of outer iterations to obtain nµ ≤ ϵ are

O

(
1

θ
log

n

ϵ

)
.

Theorem:

Suppose the outer loop updates the barrier parameter by factor
θ ∈ (0, 1) and k →∞. Then one has:

∥ξk − ξ∗∥ ≤ ϵ.

16 / 22

Convergence analysis

Lemma:

The total number of outer iterations to obtain nµ ≤ ϵ are

O

(
1

θ
log

n

ϵ

)
.

Theorem:

Suppose the outer loop updates the barrier parameter by factor
θ ∈ (0, 1) and k →∞. Then one has:

∥ξk − ξ∗∥ ≤ ϵ.

16 / 22

Implementation

Algorithms:

We conducted a comparison with the classical algorithm in [1].

Device’s detail:

We programmed the two algorithms in Python 3.10.
We conducted the tests on the Alliance Canada cluster CEDAR
(https://alliancecanada.ca).

Stopping condition:

For both algorithms, we stopped if the number of iterations exceeded
700 or if the relative gap was less than 10−6. The relative gap is the
absolute difference between cTx and bT y divided by 1 + |cTx|+ |bT y|.

17 / 22

Implementation

Algorithms:

We conducted a comparison with the classical algorithm in [1].

Device’s detail:

We programmed the two algorithms in Python 3.10.
We conducted the tests on the Alliance Canada cluster CEDAR
(https://alliancecanada.ca).

Stopping condition:

For both algorithms, we stopped if the number of iterations exceeded
700 or if the relative gap was less than 10−6. The relative gap is the
absolute difference between cTx and bT y divided by 1 + |cTx|+ |bT y|.

17 / 22

Implementation

Algorithms:

We conducted a comparison with the classical algorithm in [1].

Device’s detail:

We programmed the two algorithms in Python 3.10.
We conducted the tests on the Alliance Canada cluster CEDAR
(https://alliancecanada.ca).

Stopping condition:

For both algorithms, we stopped if the number of iterations exceeded
700 or if the relative gap was less than 10−6. The relative gap is the
absolute difference between cTx and bT y divided by 1 + |cTx|+ |bT y|.

17 / 22

Implementation

Algorithms:

We conducted a comparison with the classical algorithm in [1].

Device’s detail:

We programmed the two algorithms in Python 3.10.
We conducted the tests on the Alliance Canada cluster CEDAR
(https://alliancecanada.ca).

Stopping condition:

For both algorithms, we stopped if the number of iterations exceeded
700 or if the relative gap was less than 10−6. The relative gap is the
absolute difference between cTx and bT y divided by 1 + |cTx|+ |bT y|.

17 / 22

Implementation

Test problems:

We have selected 46 test problems of varying sizes from the Netlib
collection.

Barrier parameter:

As for the barrier parameter, we have set the initial value to µ0 = 1 for
both algorithms. In each iteration of the outer loop of the algorithm,
we reduce the value of µ by µ = (1− θ)µ.

Proximity function:

For our algorithms, we rely on the proximity function specified as
follows: Ψ(x, s, µ) = ∥µe− xs∥1, where ∥x∥1 =

∑n
i=1 |xi|.

18 / 22

Implementation

Test problems:

We have selected 46 test problems of varying sizes from the Netlib
collection.

Barrier parameter:

As for the barrier parameter, we have set the initial value to µ0 = 1 for
both algorithms. In each iteration of the outer loop of the algorithm,
we reduce the value of µ by µ = (1− θ)µ.

Proximity function:

For our algorithms, we rely on the proximity function specified as
follows: Ψ(x, s, µ) = ∥µe− xs∥1, where ∥x∥1 =

∑n
i=1 |xi|.

18 / 22

Implementation

Test problems:

We have selected 46 test problems of varying sizes from the Netlib
collection.

Barrier parameter:

As for the barrier parameter, we have set the initial value to µ0 = 1 for
both algorithms. In each iteration of the outer loop of the algorithm,
we reduce the value of µ by µ = (1− θ)µ.

Proximity function:

For our algorithms, we rely on the proximity function specified as
follows: Ψ(x, s, µ) = ∥µe− xs∥1, where ∥x∥1 =

∑n
i=1 |xi|.

18 / 22

Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22

Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22

Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22

Results

Methods Aver. Iter. Aver. CPU

Classical Algorithm 95.29 132.46

Algorithm 2 65.77 105.43

Table 1: The average number of iterations and CPU time

The new proposed approach can significantly reduce the number of
iterations and CPU times by %30.97 and %20.46, respectively.

20 / 22

Results

Methods Aver. Iter. Aver. CPU

Classical Algorithm 95.29 132.46

Algorithm 2 65.77 105.43

Table 1: The average number of iterations and CPU time

The new proposed approach can significantly reduce the number of
iterations and CPU times by %30.97 and %20.46, respectively.

20 / 22

References

[1] Roos, C., Terlaky, T., Vial, J.P.: Theory and algorithms for
linear optimization: an interior point approach. Wiley Chichester
(1997).

[2] McDougall, T.J., Wotherspoon, S.J.: A simple modification of
Newton’s method to achieve convergence of order 1 +

√
2. Applied

Mathematics Letters 29, 20–25 (2014).

[3] Argyros, I.K., Deep, G., Regmi, S.: Extended Newton-like
midpoint method for solving equations in Banach space.
Foundations 3(1), 82–98 (2023).

21 / 22

Thank You For
Your Attention!

Any Questions?

22 / 22

	Introduction
	LO problems
	Interior point method
	Solution

	The new approach
	Newton's method
	Two-step method
	Algorithm
	Convergence analysis

	Numerical results
	Implementation
	Results

