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Linear optimization problems

Linear Optimization (LO) problems are given by:

(P ) min{cTx : Ax = b, x ≥ 0},

and its dual is given by:

(D) max{bT y : AT y + s = c, s ≥ 0},

where x, c, s ∈ Rn, b ∈ Rm, y ∈ Rm and A ∈ Rm×n with m ≤ n.
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IPMs

IPMs

Feasible IPMs

Infeasible IPMs

Best worst case complexity bound, i.e., O(
√
n log n log n

ϵ ).

Assumptions:

The matrix A is full row rank, i.e., rank (A) = m ≤ n.

Both problems (P) and (D) satisfy the Interior Point Condition
(IPC), i.e., there exists x0 > 0 and (y0, s0) with s0 > 0 such that:

Ax0 = b, AT y0 + s0 = c.
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Interior point method

The KKT conditions for (P) and (D) are:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (1)

xs = 0,

where the coordinate-wise product of vectors x and s is denoted as xs.

IPM’s idea

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2)

xs = µe,

Based on the IPC condition and the full row rank property of matrix A,
the system (2) has a unique solution (x(µ), y(µ), s(µ)). The terms x(µ)
and (y(µ), s(µ)) are called the µ-centers of (P) and (D), respectively,
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Solution

To find the solution, we can consider the following problem:

ξ =

xy
s

 and F (ξ) =

 Ax− b
AT y + s− c
µe− xs

 = 0 (3)

where the operator F is defined on the Banach space B1 with values in
a Banach space B2. We can find the root of equation (3) denoted by ξ∗

where F (ξ∗) = 0.
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Newton’s method

Applying a linear approximation using the Taylor series expansion
around ξ, we have

F (ξ) + F ′(ξ)∆ξ ≃ 0

where

Jacobian F ′ =


∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

 =

A 0 0
0 AT I
S 0 X

 and ∆ξ =

∆x
∆y
∆s

 ,

where X,S are diagonal matrices constructed from x and s.

We update the current estimate ξn of the root using the following rule
for some appropriate step size α:

ξn+1 = ξn − α[F ′(ξn)]
−1F (ξn)
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Original idea

To find the root of function f(x) = 0, two-step method is given:

First step:

x̃0 = x0

x1 = x0 −
f(x0)

f ′(12 [x0 + x̃0])
= x0 −

f(x0)

f ′(x0)
,

and for k ≥ 1, we have:

Second step:

x̃k = xk −
f(xk)

f ′(12 [xk−1 + x̃k−1])

xk+1 = xk −
f(xk)

f ′(12 [xk + x̃k])
.
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Two-step method for IPM

Let F be any function. The first step involves updating an auxiliary
point ξ̃0 = ξ0.
The update rules used in the nth iteration can be concisely summarized
as:

ξ̃n+1 = ξn − α[F ′(ξ̂n)]
−1F (ξn)

ξ̂n+1 =
1

2
(ξ̃n+1 + ξn)

ξn+1 = ξn − α[F ′(ξ̂n+1)]
−1F (ξn)
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Interior point algorithm
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Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.

Set (x̃, ỹ, s̃) = (x, y, s).

Compute the average point (x̂0, ŷ0, ŝ0) = (x+x̃
2 , y+ỹ

2 , s+s̃
2 )

Find the search direction using the following system:

A∆x = 0

AT∆y +∆s = 0

Ŝ∆x+ X̂∆s = µe−XSe (4)

Note the X̂, Ŝ are diagonal matrices constructed from x̂, ŝ.

1∥x∥1 =
∑n

i=1 |xi|
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1∥x∥1 =
∑n

i=1 |xi|
11 / 22



Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.
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1∥x∥1 =
∑n

i=1 |xi|
11 / 22



Algorithm

Start with a feasible point (x, y, s).

Set µ← µ(1− θ).

Compute the proximity function by:

Ψ(x, s, µ) = ∥µe− xs∥1.1

Check the condition Ψ ≥ τ . If Ψ < τ go back to step 2.
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Algorithm

Find the maximum value for step size β to make the new point
feasible.

Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (5)
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Iterative Update:

Compute Ψ(x, s, µ) and check Step 3 in the Initialization phase
and compute Ψ(x, s, µ).

Compute the search direction by solving the following system:

A∆x̃ = 0

AT∆ỹ +∆s̃ = 0

Ŝ∆x̃+ X̂∆s̃ = µe−XSe (6)

Note that, in practice, we use the information of the previous
iteration to calculate the search direction (∆x̃,∆ỹ,∆s̃).

Find the maximum value for α such that the new auxiliary point
will remain feasible.

Update the auxiliary point by:

(x̃+, ỹ+, s̃+)← (x+ α∆x̃, y + α∆ỹ, s+ α∆s̃) (7)
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Algorithm

Compute the average.

(x̂+, ŷ+, ŝ+)←
1

2
((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0

Ŝ+∆x+ X̂+∆s = µe−XSe (9)

Find the maximum value for step size β.
Update the current point by using the following role:

(x+, y+, s+)← (x+ β∆x, y + β∆y, s+ β∆s) (10)

Check Step 1. If Ψ(x, s, µ) < τ stop the inner loop.
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((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0
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((x̃+, ỹ+, s̃+) + (x, y, s)) (8)

Solve the following system of equations to obtain the search
direction.

A∆x = 0

AT∆y +∆s = 0
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Convergence analysis

Lemma:

The total number of outer iterations to obtain nµ ≤ ϵ are

O

(
1

θ
log

n

ϵ

)
.

Theorem:

Suppose the outer loop updates the barrier parameter by factor
θ ∈ (0, 1) and k →∞. Then one has:

∥ξk − ξ∗∥ ≤ ϵ.
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Implementation

Algorithms:

We conducted a comparison with the classical algorithm in [1].

Device’s detail:

We programmed the two algorithms in Python 3.10.
We conducted the tests on the Alliance Canada cluster CEDAR
(https://alliancecanada.ca).

Stopping condition:

For both algorithms, we stopped if the number of iterations exceeded
700 or if the relative gap was less than 10−6. The relative gap is the
absolute difference between cTx and bT y divided by 1 + |cTx|+ |bT y|.
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Implementation

Test problems:

We have selected 46 test problems of varying sizes from the Netlib
collection.

Barrier parameter:

As for the barrier parameter, we have set the initial value to µ0 = 1 for
both algorithms. In each iteration of the outer loop of the algorithm,
we reduce the value of µ by µ = (1− θ)µ.

Proximity function:

For our algorithms, we rely on the proximity function specified as
follows: Ψ(x, s, µ) = ∥µe− xs∥1, where ∥x∥1 =

∑n
i=1 |xi|.
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Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22



Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22



Implementation

Threshold parameter:

We are currently working on a large-update method, τ value should be
set to O(n).

Barrier update parameter:

In all experiments, we use θ = 0.6 to update µ.

Step size:

We use the following equations:

αmax
x =

1

maxi=1,2,··· ,n{1,− xi
∆xi
}
, αmax

s =
1

maxi=1,2,··· ,n{1,− si
∆si
}
.

To ensure we don’t hit the boundary, we reduce the maximum
allowable step sizes by a fixed factor of 0 < α0 < 1. Therefore, our final
step sizes are given by αx = α0.α

max
x and αs = α0.α

max
s .

19 / 22



Results

Methods Aver. Iter. Aver. CPU

Classical Algorithm 95.29 132.46

Algorithm 2 65.77 105.43

Table 1: The average number of iterations and CPU time

The new proposed approach can significantly reduce the number of
iterations and CPU times by %30.97 and %20.46, respectively.
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Thank You For
Your Attention!

Any Questions?
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