Generalized Minimum-Membership Geometric Set Covering

Sathish Govindarajan

Siddhartha Sarkar

Indian Institute of Science Bengaluru

CALDAM 2024 IIT Bhilai, India

16 February, 2024

Part 1: Problem Definition and History

Part 1:

Problem Definition and History

Geometric Set Cover

 s_1 covers p_1 . s_1 does not cover p_2 .

Geometric Set Cover

 s_1 covers p_1 . s_1 does not cover p_2 .

Geometric Set Cover

Membership of a point set w.r.t. a Cover

Minimum Membership Cover

Cover all the points such that membership is minimized.

Minimum Membership Cover

cardinality = 3, membership = 1.

Minimum Membership Cover vs Minimum Cardinalty Cover

A minimum cardinality cover is $\{s_2, s_3\}$. (dotted squares)

Minimum Membership Cover vs Minimum Cardinalty Cover

A minimum cardinality cover is $\{s_2, s_3\}$. (dotted squares) Membership w.r.t. this minimum cardinality cover is 2.

History of Minimum Membership Cover

Minimum Membership Cover

[SODA 2008]

- Erlebach and van Leeuwen show that the problem is NP-hard.
- Gave a poly-time 5-approx for unit squares, when there exists a cover with constant membership.

Ply of a set of objects

Ply is the maximum number of overlapping objects.

Ply of a set of objects

$$ply({s_1, s_2, s_3, s_4}) = 3$$

Ply is the maximum number of overlapping objects.

Minimum Ply Cover

Cover all the points such that ply is minimized.

Minimum Ply Cover

ply = 2.

History of Minimum Ply Cover

Minimum Ply Cover

[Computational Geometry 2021]

- Biedl, Biniaz and Lubiw proved that it is NP-hard.
- Gave a poly-time 2-approx for unit squares and unit disks.
- Assumption: there exists a cover for the instance with constant ply.

History of Minimum Ply Cover

Minimum Ply Cover

[WALCOM 2023]

- Durocher, Keil and Mondal gave an 8-approx for unit squares.
- The first poly-time constant approximation.
- No assumptions on the minimum ply value.

Generalized Minimum Membership Cover

Cover the **black points** such that membership of the red point set is **minimized**.

membership of the red point set is 1 (wrt. the solution).

Generalized Cover \rightarrow the two Special Cases

Membership and Ply as special cases

•
$$P' = P \implies$$
 Minimum Membership Cover

•
$$P' \equiv \mathbb{R}^2 \implies$$
 Minimum Ply Cover.

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- **Runs in** $\tilde{O}(mn)$. [m = no. of unit squares, <math>n = no. of points]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- **Runs in** $\tilde{O}(mn)$. [m = no. of unit squares, <math>n = no. of points]

[SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
 Runs in Õ(mn). [m = no. of unit squares, n = no.

of points

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
 Runs in Õ(mn). [m = no. of unit squares, n = no. of points]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
 Runs in Õ(mn). [m = no. of unit squares, n = no. of points]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- **Runs in** $\tilde{O}(mn)$. [m = no. of unit squares, <math>n = no. of points]

Part 2: Our Results and Proof Sketches

Part 2:

Our Results and Proof Sketches

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- **Runs in** $O(m^2 \log m + m^2 n)$. [m = no. of unit squares, n = no. of points]

Improvement in Approximation Ratio:

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
 Runs in O(m² log m + m²n). [m = no. of unit squares, n = no. of points]

Improvement in Approximation Ratio:

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O(m^2 \log m + m^2 n)$. [m = no. of unit squares, n = no. of points]

Improvement in Approximation Ratio:

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O(m^2 \log m + m^2 n)$. [m = no. of unit squares, n = no. of points]

Improvement in Approximation Ratio:

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O(m^2 \log m + m^2 n)$. [m = no. of unit squares, n = no. of points]

Improvement in Approximation Ratio:

Partitioning the input into subproblems

------Slab decomposition

Zooming into one Slab subproblem

All squares intersect the slab. All the **black points** are within the slab.

Partitioning the Slab subproblem into Line subproblems

Partition the squares and black points only.

Slab Decomposed into Line Subproblems

Is For partitioning the black points, use an LP technique.

Partioning the points: LP technique

[From Bandyapadhyay, Lochet, Saurabh, Xue (SoCG 2023)]
∀s ∈ S, take a variable x_s. Take y for membership.

The Line subproblem

All squares intersect a horizontal line.All black points lie below the horizontal line.

Running the algorithm on the Line subproblem

• Running the Algorithm ...

Step 1: Remove Redundancy

Step 2: Identify the maximum discrete clique

Step 3: Execute profitable swaps, if any

Swap in s_3 and swap out s_4, s_5 .

Algorithm Sketch

- Remove redundant squares from the input.
- Identify a maximum discrete clique, say Q.
- While there is a profitable swap in Q do
 - Reduce size of Q by performing profitable swaps.
 - Remove redundant squares, if any.
- Return the solution.

Proof Idea

The maximum membership is realized at the red point p. Algorithm outputs a solution with membership k.

Proof Idea

The maximum membership is realized at the red point p. Algorithm outputs a solution with membership k. Goal: Show that k/4 is a lower bound on OPT.

Property 1

Containing $p_j \implies$ containing p (for each input square).

 p_j is the **bottom-most exclusive** point of s_j .

Property 2

No input square contains p_j , p_{j+1} , p_{j+2} simultaneously.

At least k - 9 squares will obey both the properties 1 and 2. Let J denote the index set of such squares.

- At least k 9 squares will obey both the properties 1 and 2.
- Let J denote the index set of such squares.

$$OPT \ge \sum_{p \in s} X_s$$

The set of squares containing p_j is a subset of the set of squares containing p.

$$OPT \ge \sum_{p \in s} x_s \ge \frac{1}{2} \sum_{\forall j \in J} \sum_{p_j \in s} x_s \ge \frac{1}{2} \cdot (k-9) \cdot \frac{1}{2}$$
$$\implies k \le 4 \cdot OPT + 9$$

Theorem

GMMGSC problem admits an algorithm that runs in $O(m^2 \log m + m^2 n)$ time, and computes a set cover whose membership is at most $16 \cdot OPT + 36$, where OPT denotes the minimum membership.

Paper	Generalized	Ply only	Running Time
Durocher et al.	NA	8	$O((n+m)^{12})$
Bandyapadhyay	144	144	$\tilde{O}(nm)$
et al.	NA	36	$n^{O(1/\epsilon^2)}$
Our Paper	16	16	$O(m^2\log m + m^2 n)$

[m = no. of unit squares, n = no. of points]

Thank you