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s1 covers p1.
s1 does not cover p2.

{s1, s2, s3} is a cover for {p1, p2, p3, p4}.
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Membership of a point set w.r.t. a Cover
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membership({p1, p2, p3, p4}) = 2.
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cardinality = 3, membership = 1.



Minimum Membership Cover vs Minimum Cardinalty Cover
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Minimum Membership Cover vs Minimum Cardinalty Cover
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A minimum cardinality cover is {s2, s3}. (dotted squares)

Membership w.r.t. this minimum cardinality cover is 2.



History of Minimum Membership Cover
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Minimum Membership Cover [SODA 2008]

Erlebach and van Leeuwen show that the problem is NP-hard.

Gave a poly-time 5-approx for unit squares, when there exists a cover
with constant membership.



Ply of a set of objects

s1

s2 s3

s4

p1 p2

p3

p4

Ply is the maximum number of overlapping objects.



Ply of a set of objects

s1

s2 s3

s4

p1 p2

p3

p4

ply({s1, s2, s3, s4}) = 3

Ply is the maximum number of overlapping objects.
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Minimum Ply Cover
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History of Minimum Ply Cover
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Minimum Ply Cover [Computational Geometry 2021]

Biedl, Biniaz and Lubiw proved that it is NP-hard.

Gave a poly-time 2-approx for unit squares and unit disks.

Assumption: there exists a cover for the instance with constant ply.



History of Minimum Ply Cover
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Minimum Ply Cover [WALCOM 2023]

Durocher, Keil and Mondal gave an 8-approx for unit squares.

The first poly-time constant approximation.

No assumptions on the minimum ply value.



Generalized Minimum Membership Cover
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Cover the black points such that membership of the red
point set is minimized.



Generalized Cover

P

P ′

membership of the red point set is 1 (wrt. the solution).



Generalized Cover → the two Special Cases

Membership and Ply as special cases

P ′ = P =⇒ Minimum Membership Cover.

P ′ ≡ R2 =⇒ Minimum Ply Cover.

ply = 3

membership = 2, ply = 3.



History of Generalized Cover

Generalized Cover [SoCG 2023]

Bandyapadhyay, Lochet, Saurabh, Xue gave an
144-approx for unit squares.

The first polynomial-time constant approximation.

Applies to both the ply and membership versions.

No assumptions on the minimum membership value.

Runs in Õ(mn). [m = no. of unit squares, n = no.
of points ]
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Runs in Õ(mn). [m = no. of unit squares, n = no.
of points ]



History of Generalized Cover

Generalized Cover [SoCG 2023]

Bandyapadhyay, Lochet, Saurabh, Xue gave an
144-approx for unit squares.

The first polynomial-time constant approximation.

Applies to both the ply and membership versions.

No assumptions on the minimum membership value.
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Our Results

Generalized Cover [This work]
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Runs in O(m2 logm +m2n). [m = no. of unit
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Improvement in Approximation Ratio:
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Our Results

Generalized Cover [This work]

We gave a 16-approx for unit squares.
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Partitioning the input into subproblems

Slab decomposition



Zooming into one Slab subproblem
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Partitioning the Slab subproblem into Line subproblems
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Partition the squares and black points only.



Slab Decomposed into Line Subproblems

1 The squares are naturally partitioned.
2 For partitioning the black points, use an LP technique.



Partioning the points: LP technique

[From Bandyapadhyay, Lochet, Saurabh, Xue (SoCG 2023)]

∀s ∈ S, take a variable xs . Take y for membership.

min y

subject to
∑

s∈S,p∈s
xs ≥ 1, for all p ∈ P∑

s∈S,p′∈s
xs ≤ y , for all p′ ∈ P ′

0 ≤ xs ≤ 1, for all s ∈ S

L2

L1

p1

p2
p3



The Line subproblem

L2

s1

s2 s3

s4

s5

s6

All squares intersect a horizontal line.

All black points lie below the horizontal line.



Running the algorithm on the Line subproblem
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Running the Algorithm ...



Step 1: Remove Redundancy
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Step 2: Identify the maximum discrete clique
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Step 3: Execute profitable swaps, if any
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Swap in s3 and swap out s4, s5.



Algorithm for a Line Subproblem

Algorithm Sketch
1 Remove redundant squares from the input.

2 Identify a maximum discrete clique, say Q.
3 While there is a profitable swap in Q do

a Reduce size of Q by performing profitable swaps.
b Remove redundant squares, if any.

4 Return the solution.



Proof Idea
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Proof Idea

L2

sj

pj

ps1

sk

The maximum membership is realized at the red point p.

Algorithm outputs a solution with membership k .

Goal: Show that k/4 is a lower bound on OPT .



Observations about the structure of our solution

Property 1

Containing pj =⇒ containing p (for each input square).

L2

sj

pj

ps1

sk

t

pj is the bottom-most exclusive point of sj .



Observations about the structure of our solution

Property 2

No input square contains pj , pj+1, pj+2 simultaneously.

L2

sj

pj

ps1

sk

t

pj+1
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Observations about the structure of our solution

At least k − 9 squares will obey both the properties 1
and 2.

Let J denote the index set of such squares.



Observations about the structure of our solution

At least k − 9 squares will obey both the properties 1
and 2.

Let J denote the index set of such squares.



Analysis of 4-approximation

L2

sj

pj

ps1

sk

OPT ≥
∑
p∈s

xs



Analysis of 4-approximation

L2

sj

pj

ps1

sk

OPT ≥
∑
p∈s

xs ≥
1

2

∑
∀j∈J

∑
pj∈s

xs

The set of squares containing pj is a subset of the set of
squares containing p.
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Analysis of 4-approximation
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OPT ≥
∑
p∈s

xs ≥
1

2

∑
∀j∈J

∑
pj∈s

xs ≥
1

2
· (k − 9) · 1

2

=⇒ k ≤ 4 · OPT + 9



Main Theorem

Theorem

GMMGSC problem admits an algorithm that runs in
O(m2 logm+m2n) time, and computes a set cover whose
membership is at most 16 · OPT + 36, where OPT
denotes the minimum membership.



Summary of the Results

Paper Generalized Ply only Running Time

Durocher et al. NA 8 O((n +m)12)

Bandyapadhyay 144 144 Õ(nm)

et al. NA 36 nO(1/ϵ2)

Our Paper 16 16 O(m2 logm +m2n)

[m = no. of unit squares, n = no. of points]
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