Generalized Minimum-Membership Geometric Set Covering

Sathish Govindarajan Siddhartha Sarkar

Indian Institute of Science Bengaluru
CALDAM 2024
IIT Bhilai, India
16 February, 2024

Part 1: Problem Definition and History

Part 1:

Problem Definition and History

Geometric Set Cover

s_{1} covers p_{1}.

Geometric Set Cover

s_{1} covers p_{1}.
s_{1} does not cover p_{2}.

Geometric Set Cover

s_{1} covers p_{1}.
s_{1} does not cover p_{2}.
$\left\{s_{1}, s_{2}, s_{3}\right\}$ is a cover for $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$.

Membership of an input point w.r.t. a Cover

$\operatorname{membership}\left(p_{1}\right)=2$.

Membership of an input point w.r.t. a Cover

membership $\left(p_{2}\right)=2$.

Membership of an input point w.r.t. a Cover

$\operatorname{membership}\left(p_{3}\right)=1$.

Membership of an input point w.r.t. a Cover

$\operatorname{membership}\left(p_{4}\right)=1$.

Membership of a point set w.r.t. a Cover

membership $\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)=2$.

Minimum Membership Cover

Cover all the points such that membership is minimized.

Minimum Membership Cover

cardinality $=3$, membership $=1$.

Minimum Membership Cover vs Minimum Cardinalty Cover

A minimum cardinality cover is $\left\{s_{2}, s_{3}\right\}$. (dotted squares)

Minimum Membership Cover vs Minimum Cardinalty Cover

A minimum cardinality cover is $\left\{s_{2}, s_{3}\right\}$. (dotted squares) Membership w.r.t. this minimum cardinality cover is 2 .

History of Minimum Membership Cover

Minimum Membership Cover

- Erlebach and van Leeuwen show that the problem is NP-hard.
- Gave a poly-time 5-approx for unit squares, when there exists a cover with constant membership.

Ply of a set of objects

Ply is the maximum number of overlapping objects.

Ply of a set of objects

Ply is the maximum number of overlapping objects.

Minimum Ply Cover

Cover all the points such that ply is minimized.

Minimum Ply Cover

History of Minimum Ply Cover

Minimum Ply Cover
 [Computational Geometry 2021]

- Biedl, Biniaz and Lubiw proved that it is NP-hard.
- Gave a poly-time 2-approx for unit squares and unit disks.
- Assumption: there exists a cover for the instance with constant ply.

History of Minimum Ply Cover

- Durocher, Keil and Mondal gave an 8-approx for unit squares.
- The first poly-time constant approximation.
- No assumptions on the minimum ply value.

Generalized Minimum Membership Cover

Cover the black points such that membership of the red point set is minimized.

Generalized Cover

membership of the red point set is 1 (wrt. the solution).

Generalized Cover \rightarrow the two Special Cases

Membership and Ply as special cases

- $P^{\prime}=P \Longrightarrow$ Minimum Membership Cover.
- $P^{\prime} \equiv \mathbb{R}^{2} \Longrightarrow$ Minimum Ply Cover.

membership $=2$, ply $=3$.

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- Runs in $\tilde{O}(m n)$. [$m=$ no. of unit squares, $n=$ no. of points]

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- Runs in $\tilde{O}(m n)$. [$m=$ no. of unit squares, $n=n o$. of points]

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions. - No assumptions on the minimum membership value. - Runs in $\tilde{O}(m n)$. $[m=$ no. of unit squares, $n=$ no. of points]

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.

- Runs in $\tilde{O}(m n)$. [$n=n o$. of unit squares, $n=n o$.

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- Runs in $\tilde{O}(m n)$. [$m=$ no. of unit squares, $n=$ no. of points]

History of Generalized Cover

Generalized Cover [SoCG 2023]

- Bandyapadhyay, Lochet, Saurabh, Xue gave an 144-approx for unit squares.
- The first polynomial-time constant approximation.
- Applies to both the ply and membership versions.
- No assumptions on the minimum membership value.
- Runs in $\tilde{O}(m n)$. [$m=$ no. of unit squares, $n=$ no. of points]

Part 2: Our Results and Proof Sketches

Part 2:
Our Results and Proof Sketches

Our Results

Generalized Cover

[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O\left(m^{2} \log m+m^{2} n\right)$. $[m=$ no. of unit squares, $n=$ no. of points]

Improvement in Approximation Ratio:
$144 \rightarrow 16$

Our Results

Generalized Cover

[This work]

- We gave a 16 -approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O\left(m^{2} \log m+m^{2} n\right)$. [$m=$ no. of unit squares, $n=$ no. of points]

Improvement in Approximation Ratio:

Our Results

Generalized Cover

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O\left(m^{2} \log m+m^{2} n\right)$. $[m=n o$. of unit squares, $n=$ no. of points]

Improvement in Approximation Ratio:

Our Results

Generalized Cover
[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O\left(m^{2} \log m+m^{2} n\right)$. [$m=$ no. of unit squares, $n=$ no. of points]

Our Results

Generalized Cover
[This work]

- We gave a 16-approx for unit squares.
- No assumptions on the minimum membership value.
- Runs in $O\left(m^{2} \log m+m^{2} n\right)$. [$m=$ no. of unit squares, $n=$ no. of points]

Improvement in Approximation Ratio:
$144 \rightarrow 16$

Partitioning the input into subproblems

Slab decomposition

Zooming into one Slab subproblem

All squares intersect the slab. All the black points are within the slab.

Partitioning the Slab subproblem into Line subproblems

Partition the squares and black points only.

Slab Decomposed into Line Subproblems

(1) The squares are naturally partitioned.
(2) For partitioning the black points, use an LP technique.

Partioning the points: LP technique

[From Bandyapadhyay, Lochet, Saurabh, Sue (SoCG 2023)]

- $\forall s \in \mathcal{S}$, take a variable x_{s}. Take y for membership.

$$
\begin{array}{ll}
\text { subject to } & \min y \\
\sum_{s \in \mathcal{S}, p \in s} x_{s} \geq 1, & \text { for all } p \in P \\
\sum_{s \in \mathcal{S}, p^{\prime} \in s} x_{s} \leq y, & \text { for all } p^{\prime} \in P^{\prime} \\
0 \leq x_{s} \leq 1, & \text { for all } s \in \mathcal{S}
\end{array}
$$

The Line subproblem

- All squares intersect a horizontal line.
- All black points lie below the horizontal line.

Running the algorithm on the Line subproblem

- Running the Algorithm ...

Step 1: Remove Redundancy

Step 2: Identify the maximum discrete clique

Step 3: Execute profitable swaps, if any

Swap in s_{3} and swap out s_{4}, s_{5}.

Algorithm for a Line Subproblem

Algorithm Sketch

- Remove redundant squares from the input.
- Identify a maximum discrete clique, say Q.
- While there is a profitable swap in Q do
- Reduce size of Q by performing profitable swaps.
- Remove redundant squares, if any.
- Return the solution.

Proof Idea

The maximum membership is realized at the red point p.
Algorithm outputs a solution with membership k.

Proof Idea

The maximum membership is realized at the red point p. Algorithm outputs a solution with membership k.
Goal: Show that $k / 4$ is a lower bound on OPT.

Observations about the structure of our solution

Property 1

Containing $p_{j} \Longrightarrow$ containing p (for each input square).

p_{j} is the bottom-most exclusive point of s_{j}.

Observations about the structure of our solution

Property 2

No input square contains p_{j}, p_{j+1}, p_{j+2} simultaneously.

Observations about the structure of our solution

- At least $k-9$ squares will obey both the properties 1 and 2.
- Let J denote the index set of such squares.

Observations about the structure of our solution

- At least $k-9$ squares will obey both the properties 1 and 2.
- Let J denote the index set of such squares.

Analysis of 4-approximation

$$
O P T \geq \sum_{p \in s} x_{s}
$$

Analysis of 4-approximation

$$
O P T \geq \sum_{p \in s} x_{s} \geq \frac{1}{2} \sum_{\forall j \in J} \sum_{p_{j} \in s} x_{s}
$$

The set of squares containing p_{j} is a subset of the set of squares containing p.

Analysis of 4-approximation

Analysis of 4-approximation

$$
\begin{gathered}
O P T \geq \sum_{p \in s} x_{s} \geq \frac{1}{2} \sum_{\forall j \in J} \sum_{p_{j} \in s} x_{s} \geq \frac{1}{2} \cdot(k-9) \cdot \frac{1}{2} \\
\Longrightarrow k \leq 4 \cdot O P T+9
\end{gathered}
$$

Main Theorem

Theorem

GMMGSC problem admits an algorithm that runs in $O\left(m^{2} \log m+m^{2} n\right)$ time, and computes a set cover whose membership is at most $16 \cdot$ OPT +36 , where OPT denotes the minimum membership.

Summary of the Results

Paper	Generalized	Ply only	Running Time
Durocher et al.	NA	8	$O\left((n+m)^{12}\right)$
Bandyapadhyay	144	144	$\tilde{O}(n m)$
et al.	NA	36	$n^{O\left(1 / \epsilon^{2}\right)}$
Our Paper	16	16	$O\left(m^{2} \log m+m^{2} n\right)$

[$m=$ no. of unit squares, $n=$ no. of points]

Thank you

