Monitoring edge-geodetic sets in graphs:

 extremal graphs, bounds, complexityF. Foucaud, P. M. Marcille, Zin Mar Myint, R. B. Sandeep, S. Sen,
S. Taruni
February 15, 2024
Ph. D. student
Department of Mathematics
Indian Institute of Technology Dharwad, India.

Motivation

Motivation

Motivation

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Monitor an edge

u and v monitor an edge e
e lies on all shortest paths between u and v.

Examples

Monitoring edge-geodetic sets in graphs (F. Foucaud, N. Krishna, Lekshmi R S, CALDAM-2023)

Geodetic set $S \subseteq V(G)$
Every vertex of G lies on some shortest path between two vertices of S.

Strong Edge-geodetic set $S \subseteq V(G)$
An assignment of a particular shortest $u-v$ path $P_{u v}$ to each pair of distinct vertices $u, v \in S$ such that every edge of G lies on $P_{u v}$ for some $u, v \in S$.

Edge-geodetic set $S \subseteq V(G)$
Every edge of G is contained in a geodesic joining some pair of vertices in S.

MEG-set $S \subseteq V(G)$
u and v monitor an edge e if e lies on all shortest paths between u and v. For every edge e of G, there is a pair of vertices (u, v) of S that monitors e. ishna, Lekshmi R S, CALDAM-2023)

Geodetic set $S \subseteq V(G)$
The geodetic number $\Longrightarrow g(G)$ is the minimum $|S|$.

Strong Edge-geodetic set $S \subseteq V(G)$ The strong edge-geodetic number $\Longrightarrow \operatorname{seg}(G)$ is the minimum $|S|$.

Edge-geodetic set $S \subseteq V(G)$
The edge-geodetic number \Longrightarrow $e g(G)$ is the minimum $|S|$.

MEG-set $S \subseteq V(G)$
The monitoring edge-geodetic number $\Longrightarrow \operatorname{meg}(G)$ is the smallest size of an MEG-set of G.

Relation between network monitoring parameters

Relation between network monitoring parameters

Theorem 1

For any positive integers $4 \leq a \leq b \leq c \leq d$ satisfying $d \neq c+1$, there exists a connected graph $G_{a, b, c, d}$ with $g(G)=a, \operatorname{eg}(G)=b, \operatorname{seg}(G)=$ c and $\operatorname{meg}(G)=d$.

Characterize the graphs G having $\operatorname{meg}(G)=|V(G)|$

Monitoring edge-geodetic sets in graphs (F. Foucaud, N. Krishna, Lekshmi R S, CALDAM-2023)
complete multipartite

Hypercube

Monitoring edge-geodetic sets in graphs (F. Foucaud, N. Krishna, Lekshmi R S, CALDAM-2023)
complete multipartite

Hypercube

Recall the Question of F. Foucaud et. al. (CALDAM 2023)

What are the graphs with $m e g=n$?

Recall the Question of F. Foucaud et. al. (CALDAM 2023)

What are the graphs with meg $=n$?
To study this question \Longrightarrow we ask what are the vertices that need to be in every MEG-set.

Recall the Question of F. Foucaud et. al. (CALDAM 2023)

What are the graphs with $m e g=n$?
To study this question \Longrightarrow we ask what are the vertices that need to be in every MEG-set.

Theorem 2
A vertex $v \in V(G)$ is in every MEG-set of G if and only if there exists $u \in N(v)$ such that any induced 2-path $u v x$ is part of a 4-cycle.

Characterize the graphs G having $\operatorname{meg}(G)=|V(G)|$

Theorem 2

Let G be a graph. A vertex $v \in V(G)$ is in every MEG-set of G if and only if there exists $u \in N(v)$ such that any induced 2-path $u v x$ is part of a 4-cycle.

Corollary 1
Let G be a $\operatorname{graph} . \operatorname{meg}(G)=n$ if and only if for every $v \in V(G)$, there exists $u \in N(v)$ such that any induced 2-path $u v x$ is part of a 4 -cycle.

Characterize the graphs G having $\operatorname{meg}(G)=|V(G)|$

Theorem 2

Let G be a graph. A vertex $v \in V(G)$ is in every MEG-set of G if and only if there exists $u \in N(v)$ such that any induced 2-path $u v x$ is part of a 4-cycle.

Corollary 1
Let G be a $\operatorname{graph} . \operatorname{meg}(G)=n$ if and only if for every $v \in V(G)$, there exists $u \in N(v)$ such that any induced 2-path $u v x$ is part of a 4 -cycle.

Corollary 2
If $G \neq K_{2}$ is a connected graph of order n and girth $g \geq 5$, then $\operatorname{meg}(G) \leq n-1$.

Upper bound of meg for higher girth

Theorem 3

Let G be a connected graph having minimum degree at least 2 . If G has n vertices and girth g, then $\operatorname{meg}(G) \leq \frac{4 n}{g+1}$.

Effects of clique-sum and subdivisions

Theorem 5

Let $G_{1} \oplus_{k} G_{2}$ be a k-clique-sum of the graphs G_{1} and G_{2} for some $k \geq 2$. Then we have,

$$
\operatorname{meg}\left(G_{1}\right)+\operatorname{meg}\left(G_{2}\right)-2 k \leq \operatorname{meg}\left(G_{1} \oplus_{k} G_{2}\right) \leq \operatorname{meg}\left(G_{1}\right)+\operatorname{meg}\left(G_{2}\right) .
$$

Theorem 5

Let $G_{1} \oplus_{k} G_{2}$ be a k-clique-sum of the graphs G_{1} and G_{2} for some $k \geq 2$. Then we have,

$$
\operatorname{meg}\left(G_{1}\right)+\operatorname{meg}\left(G_{2}\right)-2 k \leq \operatorname{meg}\left(G_{1} \oplus_{k} G_{2}\right) \leq \operatorname{meg}\left(G_{1}\right)+\operatorname{meg}\left(G_{2}\right)
$$

Theorem 6
For any graph G and for all $\ell \geq 2$, we have

$$
1 \leq \frac{\operatorname{meg}(G)}{\operatorname{meg}\left(S_{G}^{\ell}\right)} \leq 2
$$

Computational complexity

Monitoring edge-geodetic sets: Hardness and graph products

 (John Haslegrave, 2023)[^0]
Monitoring edge-geodetic sets: Hardness and graph products

 (John Haslegrave, 2023)Theorem 7
The decision problem of determining for a graph G and a natural number k whether $\operatorname{meg}(G) \leq k$ is NP-complete.

The reduction was from the Boolean satisfiability problem.

Theorem 9
 The MEG-SET problem is NP-complete even for 3-degenerate, 2-apex graphs.

Construction of \widehat{G} :

Open problems and conclusion

Open problems

- Approximation complexity
- Parameterized complexity

Open problems and conclusion

Open problems

- Approximation complexity
- Parameterized complexity

Conclusion

- Relation between network monitoring parameters
- Characterize the graph G having $\operatorname{meg}(G)=|V(G)|$
- meg for the higher girth
- Effects of clique-sum and subdivisions
- Computational complexity

Thank you

for your attention!

[^0]: Theorem 7
 The decision problem of determining for a graph G and a natural number k whether $\operatorname{meg}(G) \leq k$ is NP-complete.

