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Fixed Parameter Tractability FPT

Fixed Parameter Tractability

A problem is fixed parameter tractable or FPT with respect to parameter k
if it admits an algorithm with runtime f (k) · nO(1)
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Voting Rule and Introduction Overview of Set of Votes and Set of Candidates

Candidates and Votes

We have a set of votes Π and a set of candidates C . Every vote π ∈ Π is
assumed to be a linear order over C . Let |C | = m and |Π| = n.

Figure 1: Votes in Π where C = {a, b, c , d , e}

b � d � c � a � e
d � a � c � b � e
a � b � c � d � e

π1
π2
π3
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Distance Kendall-Tau

Distance between any two votes

Intuitively the Kendall-Tau distance (KT-Dist in short) is the number of
pairwise disagreements between two votes π1, π2 ∈ Π;π1 6= π2. Formally
KT-Dist(π1, π2) := | {(c , c ′) ∈ C × C | c <π1 c ′ ∧ c ′ <π2 c} |

Figure 2: Between two votes KT-Dist = # pairs colored red

b � d � c � a � e
d � a � c � b � e

b � d � c � a � e
d � a � c � b � e

b � d � c � a � e
d � a � c � b � e

b � d � c � a � e
d � a � c � b � e

π1
π2

π1
π2

π1
π2

π1
π2
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Kemeny Consensus “Closest” to all the input votes

Kemeny Consensus

Figure 3: l is the Kemeny Consensus if K-score(l) is minimum

π1 : b � d � c � a � e

π2 : d � a � c � b � e

π3 : a � b � c � d � e

·
·

� � � �l Π

K-score (l) =

|Π|∑
i=1

KT-Dist (l, πi)

≤ n

(
m

2

)

Finding optimal Kemeny ranking is NP-complete1

1 Dwork et al.[1] showed that the problem is NP-complete even when restricted to
instances with only four votes.
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Preliminaries Overview and rules

Preliminary

posπ(c) := | {c ′ ∈ C : c ′ �π c} |

range rng (c) := max
πi ,πj∈Π

{
|posπi (c)− posπj (c) |

}
+ 1 in Π.

ρ = {(a, b) : a, b ∈ C ,∀π ∈ Π prefers a � b} i.e. unanimity order
with respect to Π

K (Π) := Set of (optimal) Kemeny rankings with respect to Π

K (Π, k) := Set of Kemeny rankings with Kemeny score at most some
integer k with respect to Π

NΠ (x � y) := #linear orders in Π where x is preferred over y .
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Problem Definition Definition and description of the problems

Problem Definition

Distinct Kemeny Ranking Aggregation (Dist. KRA)

Input : Π,C , k, r

Compute : ` = min {r , |K (Π, k) |} distinct rankings such that
∀i ∈ [`] πi respects unanimity order of Π and
K-score(πi ) ≤ k for all i ∈ [`].

Arbitrary Instance : (C ,Π, k , r)
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Problem Definition Definition and description of the problems

Difference between Dist. OPT KRA and Dist.
Approx. KRA

In case of Dist. OPT KRA,

we Compute ` = min {r , |K (Π) |} distinct Kemeny rankings

and in case of Dist. Approx. KRA,

we compute ` = min {r , |K (Π, λ · kOPT (Π)) |} distinct rankings such
that ∀i ∈ [`] πi respects ρ and K-score(πi )i∈[`] 6 λ · kOPT (Π)
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Turing reduction from Dist. OPT KRA to Dist. KRA

Turing Reduction from Dist. OPT KRA to Dist.
KRA

If there exists an algorithm for Dist. KRA running in time
O(f (m, n)), then there exists an algorithm for Dist. OPT KRA
running in time O(f (m, n) log(mn))

Optimal Kemeny score ∈ {0, 1, . . . , n
(m

2

)
}

Perform binary search in the range from 0 to n
(m

2

)
to find smallest k

s.t. the algorithm for Dist. KRA returns at least one ranking.
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Summary of Results Table containing our results

Summary of Results

Param. Dist. OPT KRA Dist. KRA Dist. Approx. KRA

k O∗
(
2k
)

O∗
(
2λk
)

|C | = m O∗
(
2mrO(1)

)
O∗
(
2mrO(1)

)
d O∗

(
16d
)

O∗
(
16λd

)
rmax O∗ (32rmax)

w , r O∗
(
2O(w) · r

)
O∗
(
2O(w) · r

)
Table 9.1: Summary of Results.
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Dist. KRA parameterized by k Kemeny Score Parameter k

Dist. KRA parameterized by k

(a, b) /∈ ρ

(C,Π, k −NΠ(b � a), r, tc (ρ ∪ (a, b)))

#leaves 6 2k

(C,Π, k, r, ρ)

(b, a) /∈ ρ

(C,Π, k −NΠ(a � b), r, tc (ρ ∪ (b, a)))

...
...

· · · · · ·

depth 6 k

Runtime : O?
(
2k
)
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Dist. Approx. KRA parameterized by k and λ Kemeny Score Parameter k and λ

Dist. Approx. KRA parameterized by k and λ

If we replace k with λk in our previous algorithm, we come up with the
following :-
There is an algorithm for Distinct Approximate Kemeny Ranking
Aggregation running in time O∗

(
2λk
)

parameterized by both λ and k.
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Dist. KRA parameterized by |C | = m Number of Candidates Parameter m

Dist. KRA parameterized by |C | = m

· · ·
· · ·

T [S ]
S ⊆ C,S 6= ∅

c1 �

min{r, |S|!} Distinct rankings
with least Kemeny Score

� � · · ·�

π ∈ T [S \ {c1}]

c|S| �
···

� � · · ·�
···

···
c1 �

� � · · ·�

� � · · ·�
···

···
c|S| �

Runtime : O?
(
2mrO(1)

)
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Correctness A short proof

A short proof of correctness

Let S = {c1, c2, . . . , c`} and let c1 � c2 � · · · � c` be one of the
Kemeny rankings stored in T [S].

Then c1 � c2 � · · · � c` is a Kemeny Ranking when votes of Π are
restricted to S.

But then c2 � · · · � c` is also a Kemeny ranking when votes of Π are
restricted to S \ {c1}.

If not then K-score(c ′2 � · · · � c ′`) < K-score(c2 � · · · � c`)

Consequently
K-score(c1 � c ′2 � · · · � c ′`) < K-score(c1 � c2 � · · · � c`)

Contradicting our assumption that c1 � c2 � · · · � c` is a Kemeny
ranking
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Dist. Approx. KRA parameterized by m Number of Candidates Parameter m

Dist. Approx. KRA parameterized by m

1 Let (C ,Π, λ, r) be an instance of Dist. Approx. KRA.

2 Run the previous algorithm on instances (C ,Π, 0, 1), (C ,Π, 1, 1), . . .
of Dist. KRA.

3 Stop once we encounter a YES instance, say (C ,Π, k∗, 1) where k∗ is
the optimum Kemeny score.

4 Next, run the same algorithm on the instance (C ,Π, λ · k∗, r) of Dist.
KRA. As k∗ ≤

(m
2

)
· |Π|, the overall running time ≤ O∗

(
2mrO(1)

)
.

5 Since r ≤ m!, Dist. Approx. KRA is FPT parameterized m.
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Dist. OPT KRA parameterized by d Average KT-distance parameter d

Dist. OPT KRA parameterized by d

pavg (c) := 1
n ·
∑
π∈Π

posπ(c).

Formally for an election (Π,C ), d :=

∑
v∈Π

∑
w∈Π

KT-Dist(v ,w)

n·(n−1) .

Betzler et al. [2]2. showed that pavg (c)− d < posπ(c) < pavg (c) + d
where π is an optimal Kemeny ranking.

Pi := {c ∈ C | pavg (c)− d < i < pavg (c) + d} ∀i ∈ [m − 1]0 in an
optimal Kemeny Consensus and |Pi | 6 4d ∀i ∈ [m − 1]0; [2]

pK-score(c,A) :=
∑
c ′∈A

∑
π∈Π

dA
π (c , c ′)

[
where dA

π (c , c ′) := 0 if c >π c ′

and dA
π (c , c ′) := 1 otherwise

]
2 [2] Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A.

Rosamond. “Fixed-parameter algorithms for kemeny rankings.” Theor. Comput.
Sci., 410(45):4554-4570,2009.
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Pi Visual description

Description of Pi

pavg (c1)
+d−d

pavg (c3)
+d−d

pavg (c8)
+d−d

i
· · · · · ·

Pi = {c1, c3, c8}

Figure 4: Visual representation of Pi
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DP Description

FPT algorithm for Dist. OPT KRA parameterized by d

· · · · · ·

min{r, |Pi|} no. of partial K-scores of OPT Kemeny
rankings restricted to L ∪ {c}

i

min
all possible orderings over L

{K-score of the partial ranking over L

when Π is restricted to L}
+

pK-score(c, C \ (L ∪ {c}))

s.t. c takes pos. i, all of L have positions 0 to i− 1
and all other candidates have positions i + 1 to m− 1

L
c

C \ (L ∪ {c})

T (i, c, P ′
i ) =

∀i ∈ [m− 1],∀c ∈ Pi and ∀P ′
i ⊆ Pi \ {c}

Figure 5: DP Algorithm

Runtime: O∗
(
16d
)
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Dist. Approx. KRA parameterized by both d and λ Parameter λ and d

Dist. Approx. KRA parameterized by both d and λ

Lemma

pavg (c)− λ · d ≤ posπ(c) ≤ pavg (c) + λ · d

Based on the proof we can argue that |Pi | ≤ 4λd and hence we can derive
the runtime bound of the FPT algorithm O∗

(
16λd

)
.
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