Geometric Covering Number: Covering Points with Curves

Pritam Majumder
(Joint work with Arijit Bishnu and Mathew Francis)
Indian Statistical Institute

CALDAM 2024

Covering points by curves

Covering points by curves

- Given:
(1) A point configuration (e.g. grid)

2. A type of curves (e.g. lines)

Covering points by curves

- Given:
(1) A point configuration (e.g. grid)

2 A type of curves (e.g. lines)

Covering points by curves

- Given:
(1) A point configuration (e.g. grid)

2. A type of curves (e.g. lines)

Problem:
Find the minimum number of curves needed to cover the point set.

Covering $n \times n$ grid by lines

Covering $n \times n$ grid by lines

Covering $n \times n$ grid by lines

- Any line contains at most n grid points.

Covering $n \times n$ grid by lines

- Any line contains at most n grid points.
- Need at least $n^{2} / n=n$ lines.

Covering $n \times n$ grid by lines

- Any line contains at most n grid points.
- Need at least $n^{2} / n=n$ lines.
- Also generalizes to higher dimensions (i.e. for covering $n \times \cdots \times n$ grid by lines).

Covering $n \times n$ grid by skew lines

Covering $n \times n$ grid by skew lines

A line is skew if it is not parallel to x and y axis.

Covering $n \times n$ grid by skew lines

A line is skew if it is not parallel to x and y axis.

Covering $n \times n$ grid by skew lines

A line is skew if it is not parallel to x and y axis.

- Any skew line contains at most 2 grid points from the boundary.

Covering $n \times n$ grid by skew lines

A line is skew if it is not parallel to x and y axis.

- Any skew line contains at most 2 grid points from the boundary.
- Need at least $(4 n-4) / 2=2 n-2$ skew lines.
- $n \times n$ grid can be covered by $2 n-2$ skew lines.
- $n \times n$ grid can be covered by $2 n-2$ skew lines.

- $n \times n$ grid can be covered by $2 n-2$ skew lines.

- Number of lines $=2(n-2)+2=2 n-2$.

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?
- Should P be a grid?

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?
- Should P be a grid?
- Should P contain a grid of size $\Theta\left(n^{2}\right)$?

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?
- Should P be a grid?
- Should P contain a grid of size $\Theta\left(n^{2}\right)$?
- Does there exist a subset of P of size $\Theta\left(n^{2}\right)$ which can be put inside a grid of size $\Theta\left(n^{2}\right)$?

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?
- Should P be a grid?
- Should P contain a grid of size $\Theta\left(n^{2}\right)$?
- Does there exist a subset of P of size $\Theta\left(n^{2}\right)$ which can be put inside a grid of size $\Theta\left(n^{2}\right)$?
- Does there exist a subset of P of size $\Theta\left(n^{2}\right)$ which can be put inside a grid of size $\Theta\left(n^{2}\right)$, possibly after applying a projective transformation?

Converse of the covering problem

- We have seen that $n \times n$ grid (having n^{2} points) can be covered by n lines.
- If a set P of n^{2} points in plane is covered by n lines, then can we say something about the configuration of the points?
- Should P be a grid?
- Should P contain a grid of size $\Theta\left(n^{2}\right)$?
- Does there exist a subset of P of size $\Theta\left(n^{2}\right)$ which can be put inside a grid of size $\Theta\left(n^{2}\right)$?
- Does there exist a subset of P of size $\Theta\left(n^{2}\right)$ which can be put inside a grid of size $\Theta\left(n^{2}\right)$, possibly after applying a projective transformation?
- We show that the answer is NO.

Theorem

There exists a finite set P of n^{2} points in \mathbb{R}^{2} which can be covered with n lines but no subset of P of size $\Omega\left(n^{2}\right)$ can be contained in a projective transformation of a rectangular grid of size $o\left(n^{3}\right)$.

Theorem

There exists a finite set P of n^{2} points in \mathbb{R}^{2} which can be covered with n lines but no subset of P of size $\Omega\left(n^{2}\right)$ can be contained in a projective transformation of a rectangular grid of size $o\left(n^{3}\right)$.

Theorem

There exists a finite set P of n^{2} points in \mathbb{R}^{2} which can be covered with n lines but no subset of P of size $\Omega\left(n^{2}\right)$ can be contained in a projective transformation of a rectangular grid of size $o\left(n^{3}\right)$.

- n parallel lines, each containing n points.

Theorem

There exists a finite set P of n^{2} points in \mathbb{R}^{2} which can be covered with n lines but no subset of P of size $\Omega\left(n^{2}\right)$ can be contained in a projective transformation of a rectangular grid of size $o\left(n^{3}\right)$.

- n parallel lines, each containing n points.
- No three points from three different lines are collinear.

Covering by orthoconvex curves

Covering by orthoconvex curves

A rectilinear curve is called orthoconvex if for any two points (having the same x / y coordinate) lying inside the curve, the vertical/horizontal line segment joining the two points also lies inside the curve.

Covering by orthoconvex curves

A rectilinear curve is called orthoconvex if for any two points (having the same x / y coordinate) lying inside the curve, the vertical/horizontal line segment joining the two points also lies inside the curve.

Covering by orthoconvex curves

A rectilinear curve is called orthoconvex if for any two points (having the same x / y coordinate) lying inside the curve, the vertical/horizontal line segment joining the two points also lies inside the curve.

Question: What is the minimum number of orthoconvex curves required to cover an $n \times n$ grid?

Covering $5 \times 5,6 \times 6$ and 7×7 grid

Covering $5 \times 5,6 \times 6$ and 7×7 grid

Covering $5 \times 5,6 \times 6$ and 7×7 grid

Covering $5 \times 5,6 \times 6$ and 7×7 grid

- Both 5×5 and 6×6 grid can be covered by 2 orthoconvex curves.

Covering $5 \times 5,6 \times 6$ and 7×7 grid

- Both 5×5 and 6×6 grid can be covered by 2 orthoconvex curves.
- 7×7 grid can be covered by 3 orthoconvex curves.

Covering $8 \times 8,9 \times 9$ and 10×10 grid

Covering $8 \times 8,9 \times 9$ and 10×10 grid

Covering $8 \times 8,9 \times 9$ and 10×10 grid

Covering $8 \times 8,9 \times 9$ and 10×10 grid

- Both 8×8 and 9×9 grid can be covered by 3 orthoconvex curves.

Covering $8 \times 8,9 \times 9$ and 10×10 grid

- Both 8×8 and 9×9 grid can be covered by 3 orthoconvex curves.
- 10×10 grid can be covered by 4 orthoconvex curves.

Covering $8 \times 8,9 \times 9$ and 10×10 grid

- Both 8×8 and 9×9 grid can be covered by 3 orthoconvex curves.
- 10×10 grid can be covered by 4 orthoconvex curves.
- What is the answer for $n \times n$ grid?

Covering $8 \times 8,9 \times 9$ and 10×10 grid

- Both 8×8 and 9×9 grid can be covered by 3 orthoconvex curves.
- 10×10 grid can be covered by 4 orthoconvex curves.
- What is the answer for $n \times n$ grid? (seems difficult and we currently don't have an answer)

Covering by the simplest orthoconvex curves

Covering by the simplest orthoconvex curves

Orthoconvex curves with at most 1 "inner corner" (i.e. a "non-convex vertex"):

Covering by the simplest orthoconvex curves

Orthoconvex curves with at most 1 "inner corner" (i.e. a "non-convex vertex"):

Covering by the simplest orthoconvex curves

Orthoconvex curves with at most 1 "inner corner" (i.e. a "non-convex vertex"):

Question: What is the minimum number of such curves needed to cover an $n \times n$ grid?

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):
Terminology: We say that a curve hits a (horizontal or vertical) grid line if the curve follows that grid line for some distance, rather than just crossing it.

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):
Terminology: We say that a curve hits a (horizontal or vertical) grid line if the curve follows that grid line for some distance, rather than just crossing it.

- Let C be a collection of m curves that cover the $n \times n$ grid.

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):
Terminology: We say that a curve hits a (horizontal or vertical) grid line if the curve follows that grid line for some distance, rather than just crossing it.

- Let C be a collection of m curves that cover the $n \times n$ grid.
- For two curves c and $d \in C$, we say that $c R d$ if there is a grid line that is hit by both c and d.

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):
Terminology: We say that a curve hits a (horizontal or vertical) grid line if the curve follows that grid line for some distance, rather than just crossing it.

- Let C be a collection of m curves that cover the $n \times n$ grid.
- For two curves c and $d \in C$, we say that $c R d$ if there is a grid line that is hit by both c and d.
- Let R^{*} be the transitive closure of R. Clearly, R^{*} is an equivalence relation.

Theorem

If m orthoconvex curves with at most one inner corner cover the $n \times n$ grid, then $m \geq 2 n / 5$.

Proof(sketch):
Terminology: We say that a curve hits a (horizontal or vertical) grid line if the curve follows that grid line for some distance, rather than just crossing it.

- Let C be a collection of m curves that cover the $n \times n$ grid.
- For two curves c and $d \in C$, we say that $c R d$ if there is a grid line that is hit by both c and d.
- Let R^{*} be the transitive closure of R. Clearly, R^{*} is an equivalence relation.
- Let $S_{1}, S_{2}, \ldots, S_{p}$ be the equivalence classes of R^{*}.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Otherwise, suppose that the collection C of m curves, where $m \leq 2 n / 5$, hits less than $2 n$ grid lines.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Otherwise, suppose that the collection C of m curves, where $m \leq 2 n / 5$, hits less than $2 n$ grid lines.
- Then there is some (horizontal or vertical) grid line that is not hit by any curve in C.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Otherwise, suppose that the collection C of m curves, where $m \leq 2 n / 5$, hits less than $2 n$ grid lines.
- Then there is some (horizontal or vertical) grid line that is not hit by any curve in C.
- Then every curve in C can cover at most two points on this grid line.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Otherwise, suppose that the collection C of m curves, where $m \leq 2 n / 5$, hits less than $2 n$ grid lines.
- Then there is some (horizontal or vertical) grid line that is not hit by any curve in C.
- Then every curve in C can cover at most two points on this grid line.
- So at most $2 m \leq 4 n / 5$ points on this grid line can be covered by the collection of curves C.
- Main lemma: The curves of each equivalence class S_{i} together hit at most $5\left|S_{i}\right|$ grid lines.
- Thus the total number of grid lines that are hit by C is at most $5\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{p}\right|\right)=5|C|=5 m$.
- If the the curves in C hit $2 n$ grid lines, we then have $5 m \geq 2 n$, which gives $m \geq 2 n / 5$.
- Otherwise, suppose that the collection C of m curves, where $m \leq 2 n / 5$, hits less than $2 n$ grid lines.
- Then there is some (horizontal or vertical) grid line that is not hit by any curve in C.
- Then every curve in C can cover at most two points on this grid line.
- So at most $2 m \leq 4 n / 5$ points on this grid line can be covered by the collection of curves C.
- But then some points on this grid line are not covered by any curve in C, which is a contradiction.
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ?
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)

Covering by orthoconvex curves with at most 2 inner corners:

- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)

Covering by orthoconvex curves with at most 2 inner corners:

Theorem

We need at least $2 n / 7$ orthoconvex curves with at most two inner corners to cover an $n \times n$ grid.

- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)

Covering by orthoconvex curves with at most 2 inner corners:

Theorem

We need at least $2 n / 7$ orthoconvex curves with at most two inner corners to cover an $n \times n$ grid.

- Is this bound tight?
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)

Covering by orthoconvex curves with at most 2 inner corners:

Theorem

We need at least $2 n / 7$ orthoconvex curves with at most two inner corners to cover an $n \times n$ grid.

- Is this bound tight? (we think NO)
- Note that the above bound $2 n / 5$ is tight for $n=5$.
- What about its tightness for large n ? (we don't know)

Covering by orthoconvex curves with at most 2 inner corners:

Theorem

We need at least $2 n / 7$ orthoconvex curves with at most two inner corners to cover an $n \times n$ grid.

- Is this bound tight? (we think NO)
- What happens if we have 3 or more inner corners?

Covering by monotonic curves

Covering by monotonic curves

For $n \times n$ grid, any monotonic (or, weakly increasing) curve can intersect the diagonal in at most 1 point.

Covering by monotonic curves

For $n \times n$ grid, any monotonic (or, weakly increasing) curve can intersect the diagonal in at most 1 point.

Covering by monotonic curves

For $n \times n$ grid, any monotonic (or, weakly increasing) curve can intersect the diagonal in at most 1 point.

- So minimum number of curves to cover the grid is n.

Covering by monotonic curves

For $n \times n$ grid, any monotonic (or, weakly increasing) curve can intersect the diagonal in at most 1 point.

- So minimum number of curves to cover the grid is n.
- How to generalize this to higher dimension and other point configurations?

Definition

Let $f:[0,1] \rightarrow \mathbb{R}^{d}$ be a curve and suppose $f(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$ for $t \in[0,1]$. Then f is called monotonic if it satisfies the following property:
$t_{1} \leq t_{2} \Rightarrow f_{i}\left(t_{1}\right) \leq f_{i}\left(t_{2}\right)$ for each $i=1, \ldots, d$.

Definition

Let $f:[0,1] \rightarrow \mathbb{R}^{d}$ be a curve and suppose $f(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$ for $t \in[0,1]$. Then f is called monotonic if it satisfies the following property:
$t_{1} \leq t_{2} \Rightarrow f_{i}\left(t_{1}\right) \leq f_{i}\left(t_{2}\right)$ for each $i=1, \ldots, d$.

- Given a point set $P \subseteq \mathbb{R}^{d}$, we define the poset $\mathcal{P}:=(P, \leq)$ as follows:

$$
x \leq y \quad \text { if } \quad x_{i} \leq y_{i} \text { for } i=1, \ldots, d,
$$

where $(\cdot)_{i}$ denote the i th coordinate.

Definition

Let $f:[0,1] \rightarrow \mathbb{R}^{d}$ be a curve and suppose $f(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$ for $t \in[0,1]$. Then f is called monotonic if it satisfies the following property:
$t_{1} \leq t_{2} \Rightarrow f_{i}\left(t_{1}\right) \leq f_{i}\left(t_{2}\right)$ for each $i=1, \ldots, d$.

- Given a point set $P \subseteq \mathbb{R}^{d}$, we define the poset $\mathcal{P}:=(P, \leq)$ as follows:

$$
x \leq y \quad \text { if } \quad x_{i} \leq y_{i} \text { for } i=1, \ldots, d,
$$

where $(\cdot)_{i}$ denote the i th coordinate.

- Then note that x_{1}, \ldots, x_{r} lie on the same curve iff $x_{1} \leq \cdots \leq x_{r}$ is a chain.

Definition

Let $f:[0,1] \rightarrow \mathbb{R}^{d}$ be a curve and suppose $f(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$ for $t \in[0,1]$. Then f is called monotonic if it satisfies the following property:
$t_{1} \leq t_{2} \Rightarrow f_{i}\left(t_{1}\right) \leq f_{i}\left(t_{2}\right)$ for each $i=1, \ldots, d$.

- Given a point set $P \subseteq \mathbb{R}^{d}$, we define the poset $\mathcal{P}:=(P, \leq)$ as follows:

$$
x \leq y \quad \text { if } \quad x_{i} \leq y_{i} \text { for } i=1, \ldots, d,
$$

where $(\cdot)_{i}$ denote the i th coordinate.

- Then note that x_{1}, \ldots, x_{r} lie on the same curve iff $x_{1} \leq \cdots \leq x_{r}$ is a chain.
- Therefore the problem boils down to covering \mathcal{P} with minium number of chains.
- Dilworth's Theorem: The number of chains in the minimal chain decomposition of \mathcal{P} equals the size of the largest antichain of \mathcal{P} (denoted by $w(\mathcal{P})$).
- Dilworth's Theorem: The number of chains in the minimal chain decomposition of \mathcal{P} equals the size of the largest antichain of \mathcal{P} (denoted by $w(\mathcal{P})$).
- Threfore the minumum number of monotonic curves required to cover P equals $w(\mathcal{P})$.
- Dilworth's Theorem: The number of chains in the minimal chain decomposition of \mathcal{P} equals the size of the largest antichain of \mathcal{P} (denoted by $w(\mathcal{P})$).
- Threfore the minumum number of monotonic curves required to cover P equals $w(\mathcal{P})$.
- For $P=\left[k_{1}\right] \times \cdots \times\left[k_{d}\right]$, we have

$$
w(\mathcal{P})=\max _{m} A_{m}=A_{\left\lfloor\left(k_{1}+\cdots+k_{d}+d\right) / 2\right\rfloor},
$$

where, A_{m} equals the number of solutions of the equation $x_{1}+\cdots+x_{d}=m$ such that $x_{i} \in\left[k_{i}\right]$ for each $i=1, \ldots, d$.

- Dilworth's Theorem: The number of chains in the minimal chain decomposition of \mathcal{P} equals the size of the largest antichain of \mathcal{P} (denoted by $w(\mathcal{P})$).
- Threfore the minumum number of monotonic curves required to cover P equals $w(\mathcal{P})$.
- For $P=\left[k_{1}\right] \times \cdots \times\left[k_{d}\right]$, we have

$$
w(\mathcal{P})=\max _{m} A_{m}=A_{\left\lfloor\left(k_{1}+\cdots+k_{d}+d\right) / 2\right\rfloor},
$$

where, A_{m} equals the number of solutions of the equation $x_{1}+\cdots+x_{d}=m$ such that $x_{i} \in\left[k_{i}\right]$ for each $i=1, \ldots, d$.

- A special case: For $P=\{0,1\}^{d}$ (Hypercube)

$$
w(\mathcal{P})=\max _{m} A_{m}=A_{\left\lfloor d+\frac{d}{2}\right\rfloor}=\binom{d}{\lfloor d / 2\rfloor} .
$$

Other curves

- Convex curves: Minimum number of convex curves required to cover an $m \times n$ grid is $\min \{\lceil m / 2\rceil,\lceil n / 2\rceil\}$.

Other curves

- Convex curves: Minimum number of convex curves required to cover an $m \times n$ grid is $\min \{\lceil m / 2\rceil,\lceil n / 2\rceil\}$.
- Strictly convex curves (i.e. convex curves that do not contain any line segment): Minimum number of curves required to cover an $n \times n$ grid is $\Theta\left(n^{4 / 3}\right)$ [Andrews, Har-Peled].

Other curves

- Convex curves: Minimum number of convex curves required to cover an $m \times n$ grid is $\min \{\lceil m / 2\rceil,\lceil n / 2\rceil\}$.
- Strictly convex curves (i.e. convex curves that do not contain any line segment): Minimum number of curves required to cover an $n \times n$ grid is $\Theta\left(n^{4 / 3}\right)$ [Andrews, Har-Peled].
- Algebraic curves: Minimum number of algebraic curves of degree at most k required to cover $n \times n$ grid is at least n / k (Combinatorial Nullstellensatz [Alon]).

Other curves

- Convex curves: Minimum number of convex curves required to cover an $m \times n$ grid is $\min \{\lceil m / 2\rceil,\lceil n / 2\rceil\}$.
- Strictly convex curves (i.e. convex curves that do not contain any line segment): Minimum number of curves required to cover an $n \times n$ grid is $\Theta\left(n^{4 / 3}\right)$ [Andrews, Har-Peled].
- Algebraic curves: Minimum number of algebraic curves of degree at most k required to cover $n \times n$ grid is at least n / k (Combinatorial Nullstellensatz [Alon]).
- Irreducible algebraic curves: Minimum number of irreducible algebraic curves of degree k to cover the $n \times n$ grid is at least $\Omega\left(n^{2-1 / k}\right)$ [Bombieri \& Pila].
- Circles: If M is the minimum number of circles required to cover $n \times n$ grid, then $\Omega\left(n^{2-\epsilon}\right) \leq M \leq O\left(n^{2} / \sqrt{\log n}\right)$ [Ramanujan, Landau].
- Circles: If M is the minimum number of circles required to cover $n \times n$ grid, then $\Omega\left(n^{2-\epsilon}\right) \leq M \leq O\left(n^{2} / \sqrt{\log n}\right)$ [Ramanujan, Landau].

- Circles: If M is the minimum number of circles required to cover $n \times n$ grid, then $\Omega\left(n^{2-\epsilon}\right) \leq M \leq O\left(n^{2} / \sqrt{\log n}\right)$ [Ramanujan, Landau].

- Circles of different radii: If $n \times n$ grid is covered by M such circles, then $M=? \Omega\left(n^{2} / \log ^{c}(n)\right)$ for some positive constant c (conjectural).
- Circles: If M is the minimum number of circles required to cover $n \times n$ grid, then $\Omega\left(n^{2-\epsilon}\right) \leq M \leq O\left(n^{2} / \sqrt{\log n}\right)$ [Ramanujan, Landau].

- Circles of different radii: If $n \times n$ grid is covered by M such circles, then $M=? \Omega\left(n^{2} / \log ^{c}(n)\right)$ for some positive constant c (conjectural).

Circles of radius $1, \sqrt{2}$ and 2: Minimum number of circles required to cover an $n \times n$ grid is $n^{2} / 4$.

Circles of radius $1, \sqrt{2}$ and 2: Minimum number of circles required to cover an $n \times n$ grid is $n^{2} / 4$.

Circles of radius $1, \sqrt{2}$ and 2: Minimum number of circles

 required to cover an $n \times n$ grid is $n^{2} / 4$.

Circles of radius $1, \sqrt{2}$ and 2：Minimum number of circles required to cover an $n \times n$ grid is $n^{2} / 4$ ．

4 三＞4 三• 三 つQく
Pritam Majumder

Thank you

