Growth Rate of the Number of Empty Triangles in the Plane

Bhaswar B. Bhattacharya Sandip Das
Sk Samim Islam
Saumya Sen
Indian Statistical Institute, Kolkata

February 16, 2024

To begin with ...

- Counting the number of empty triangles in planar point sets is a classical problem in discrete geometry.

To begin with ...

- Counting the number of empty triangles in planar point sets is a classical problem in discrete geometry.
- Specifically, Bárány and Füredi showed that

$$
N_{\Delta}(P) \geq n^{2}-O(\log n)
$$

for any set of points P, with $|P|=n$, in general position.

To begin with ...

- Counting the number of empty triangles in planar point sets is a classical problem in discrete geometry.
- Specifically, Bárány and Füredi showed that

$$
N_{\Delta}(P) \geq n^{2}-O(\log n)
$$

for any set of points P, with $|P|=n$, in general position.

- On the other hand, a set of n points chosen uniformly and independently at random from a convex set of area 1 contains $2 n^{2}+o\left(n^{2}\right)$ empty triangles on expectation.

Notations

■ P : Set of n points in the plane in general position,

Notations

■ P : Set of n points in the plane in general position,

- $N_{\triangle}(P)$: Number of empty triangles in P,

Notations

- P : Set of n points in the plane in general position,
- $N_{\Delta}(P)$: Number of empty triangles in P,

■ $N_{\Delta}(P \backslash\{x\})$: Number of empty triangles in the set $P \backslash\{x\}$,

Notations

- P : Set of n points in the plane in general position,
- $N_{\triangle}(P)$: Number of empty triangles in P,
- $N_{\Delta}(P \backslash\{x\})$: Number of empty triangles in the set $P \backslash\{x\}$,
- $V_{P}(x)$: Number of triangles in P with x as a vertex,

Notations

- P : Set of n points in the plane in general position,
- $N_{\triangle}(P)$: Number of empty triangles in P,
- $N_{\Delta}(P \backslash\{x\})$: Number of empty triangles in the set $P \backslash\{x\}$,
- $V_{P}(x)$: Number of triangles in P with x as a vertex,
- $K_{4} \backslash\{e\}$: kite graph, that is, the complete graph K_{4} with one of its diagonals removed,

Notations

■ P : Set of n points in the plane in general position,

- $N_{\Delta}(P)$: Number of empty triangles in P,
- $N_{\Delta}(P \backslash\{x\})$: Number of empty triangles in the set $P \backslash\{x\}$,
- $V_{P}(x)$: Number of triangles in P with x as a vertex,
- $K_{4} \backslash\{e\}$: kite graph, that is, the complete graph K_{4} with one of its diagonals removed,
- $\Delta(x, P)=\left|N_{\Delta}(P)-N_{\Delta}(P \backslash\{x\})\right|$.

Example:

Figure: A set of points $P=\{x, a, b, c\}$
B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

Theorem 1

Theorem

For any set P, with $|P|=n$,

$$
\Delta(x, P) \leq V_{P}(x)+H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right),
$$

where $H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)$ is the maximum number of triangles in a $K_{4} \backslash\{e\}$-free graph on $V_{P}(x)$ vertices.

Theorem 1

Theorem

For any set P, with $|P|=n$,

$$
\Delta(x, P) \leq V_{P}(x)+H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)
$$

where $H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)$ is the maximum number of triangles in a $K_{4} \backslash\{e\}$-free graph on $V_{P}(x)$ vertices.

Moreover, there exists a set P, with $|P|=n$, and a point $x \in P$ such that $\Delta(x, P) \geq C V_{P}(x)^{\frac{3}{2}}$, for some constant $C>0$.

Proof of the Upper Bound

Observation 1

$\Delta(x, P) \leq V_{P}(x)+I_{P}(x)$, where $I_{P}(x)$ is the number of triangles in P that contain only the point x in the interior.

To prove Theorem 1 we have to show

$$
I_{P}(x) \leq H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)
$$

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices
- There should be edge between 2 vertices in $G_{P}(x)$ if the corresponding triangles, say T_{1} and T_{2}, satisfy the following conditions:

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices
- There should be edge between 2 vertices in $G_{P}(x)$ if the corresponding triangles, say T_{1} and T_{2}, satisfy the following conditions:
$11 T_{1}$ and T_{2} share an edge,

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices
- There should be edge between 2 vertices in $G_{P}(x)$ if the corresponding triangles, say T_{1} and T_{2}, satisfy the following conditions:
$11 T_{1}$ and T_{2} share an edge,
$2 T_{1}$ and T_{2} are area disjoint,

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices
- There should be edge between 2 vertices in $G_{P}(x)$ if the corresponding triangles, say T_{1} and T_{2}, satisfy the following conditions:
$11 T_{1}$ and T_{2} share an edge,
$2 T_{1}$ and T_{2} are area disjoint,
3 the sum of angles of T_{1} and T_{2} incident at x is greater than 180°.

Transformation of Geometric problem into Graph problem

Given a set P, with $|P|=n$, and a point $x \in P$, define the graph $G_{P}(x)$ as follows:

- The vertex set of $G_{P}(x)$ is $V\left(G_{P}(x)\right)$, the set of triangles in P with x as one of their vertices
- There should be edge between 2 vertices in $G_{P}(x)$ if the corresponding triangles, say T_{1} and T_{2}, satisfy the following conditions:
$1 T_{1}$ and T_{2} share an edge,
$2 T_{1}$ and T_{2} are area disjoint,
3 the sum of angles of T_{1} and T_{2} incident at x is greater than 180°.
We call the graph $G_{P}(x)$ the empty triangle graph incident at x.

Transformation of Geometric problem into Graph problem:

Figure: A set of points $P=\{x, a, b, c\}$ and the empty triangle graph incident at x.

Proof Approach

Observation 2

Suppose P be a set of points in the plane, with $|P|=n$, in general position and $x \in P$. Then

$$
I_{P}(x)=N_{K_{3}}\left(G_{P}(x)\right)
$$

where $N_{K_{3}}\left(G_{P}(x)\right)$ is the number of triangles in the graph $G_{P}(x)$.

Proof Approach

Observation 3

The graph $G_{P}(x)$ does not contain $K_{4} \backslash\{e\}$ as a subgraph, that is, $G_{P}(x)$ is kite-free.

Observation 1

$\Delta(x, P) \leq V_{P}(x)+I_{P}(x)$, where $I_{P}(x)$ is the number of triangles in P that contain only the point x in the interior.

Observation 1

$\Delta(x, P) \leq V_{P}(x)+I_{P}(x)$, where $I_{P}(x)$ is the number of triangles in P that contain only the point x in the interior.

Observation 2

Suppose P be a set of points in the plane, with $|P|=n$, in general position and $x \in P$. Then

$$
I_{P}(x)=N_{K_{3}}\left(G_{P}(x)\right),
$$

where $N_{K_{3}}\left(G_{P}(x)\right)$ is the number of triangles in the graph $G_{P}(x)$.

Observation 1

$\Delta(x, P) \leq V_{P}(x)+I_{P}(x)$, where $I_{P}(x)$ is the number of triangles in P that contain only the point x in the interior.

Observation 2

Suppose P be a set of points in the plane, with $|P|=n$, in general position and $x \in P$. Then

$$
I_{P}(x)=N_{K_{3}}\left(G_{P}(x)\right),
$$

where $N_{K_{3}}\left(G_{P}(x)\right)$ is the number of triangles in the graph $G_{P}(x)$.

Observation 3

The graph $G_{P}(x)$ does not contain $K_{4} \backslash\{e\}$ as a subgraph, that is, $G_{P}(x)$ is kite-free.

Proof of the Upper Bound

From previous observations, it follows that

$$
\Delta(x, P) \leq V_{P}(x)+I_{P}(x)=V_{P}(x)+N_{K_{3}}\left(G_{P}(x)\right)
$$

and

$$
N_{K_{3}}\left(G_{P}(x)\right) \leq H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)
$$

and thus the upper bound in Theorem 1, is proved i.e

$$
\Delta(x, P) \leq V_{P}(x)+H\left(V_{P}(x), K_{3}, K_{4} \backslash\{e\}\right)
$$

Lower Bound Construction

■ Consider the set of points P, with $|P|=n=3 L+1$.
■ P consists of three point sets A, B, and C, with $|A|=|B|=|C|=L$, arranged along 3 disjoint convex chains and a point x at the middle.

Lower Bound Construction

■ Consider the set of points P, with $|P|=n=3 L+1$.

- P consists of three point sets A, B, and C, with $|A|=|B|=|C|=L$, arranged along 3 disjoint convex chains and a point x at the middle.

$\stackrel{\bullet}{x}$

Figure: Example showing the lower bound in Theorem 1.

Lower Bound Construction

Observation 4

$$
N_{\Delta}(P \backslash\{x\})=\binom{3 L}{3} \sim \frac{9}{2} L^{3}
$$

B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

Lower Bound Construction

Observation 4

$$
N_{\Delta}(P \backslash\{x\})=\binom{3 L}{3} \sim \frac{9}{2} L^{3}
$$

Observation 5

$$
V_{P}(x)=3\binom{L}{2}+3 L^{2}=\Theta\left(L^{2}\right)
$$

Lower Bound Construction

Observation 4

$$
N_{\Delta}(P \backslash\{x\})=\binom{3 L}{3} \sim \frac{9}{2} L^{3}
$$

Observation 5

$$
V_{P}(x)=3\binom{L}{2}+3 L^{2}=\Theta\left(L^{2}\right)
$$

Observation 6

$U_{P}(x)=3\binom{L}{3}+6 L\binom{L}{2} \sim 3.5 L^{3}$
where $U_{P}(x)=$ the number of empty triangles in P such that x is not a vertex of the empty triangles.

Lower Bound Construction

Result

- $N_{\Delta}(P)=V_{P}(x)+U_{P}(x)$
- $N_{\Delta}(P) \sim 3.5 L^{3}+\Theta\left(L^{2}\right)$
- $\Delta(x, P)=\left|N_{\Delta}(P)-N_{\Delta}(P \backslash\{x\})\right|=\Theta\left(L^{3}\right)=\Theta\left(V_{P}(x)^{\frac{3}{2}}\right)$

Some Geometric Properties of the Graph $G_{P}(x)$

- Fix $r, s \geq 1$. Then there exists a set of points P and $x \in P$ such that the graph $G_{P}(x)$ contains the complete bipartite graph $K_{r, s}$.

Some Geometric Properties of the Graph $G_{P}(x)$

- Fix $r, s \geq 1$. Then there exists a set of points P and $x \in P$ such that the graph $G_{P}(x)$ contains the complete bipartite graph $K_{r, s}$.

Figure: Bipartite subgraph

Polynomial improvement of the upper bound of $\Delta(x, P)$

Kővári-Sós-Turán theorem

Let $K_{r, s}$ be a complete bipartite graph with $r \leq s$ then,

$$
e x\left(n, K_{r, s}\right)=O\left(n^{2-\frac{1}{r}}\right)
$$

where ex (n, H) is the maximum number of edges in a graph with n vertices which does not contain a copy of graph H.

- As $G_{P}(x)$ can contain complete bipartite graph as a subgraph, we cannot apply Kővári-Sós-Turán theorem to improve the upper bound on $\Delta(x, P)$.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Szemeredi's theorem

If H is an abelian group with n elements and A is a subset of H with no length three arithmetic progressions then we can construct a graph $G=(V, E)$ that has $3 n$ vertices and $|A| . n$ pairwise edge disjoint triangles and no other triangles.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Szemeredi's theorem

If H is an abelian group with n elements and A is a subset of H with no length three arithmetic progressions then we can construct a graph $G=(V, E)$ that has $3 n$ vertices and $|A| . n$ pairwise edge disjoint triangles and no other triangles.

Behrend's theorem

Behrend showed that $\mathbb{Z} / n \mathbb{Z}, n$ prime, has a subset A that contains no length three arithmatic progression and whose size is $n / e^{O(\sqrt{\log n})}$

Polynomial improvement of the upper bound of $\Delta(x, P)$

Szemeredi's theorem

If H is an abelian group with n elements and A is a subset of H with no length three arithmetic progressions then we can construct a graph $G=(V, E)$ that has $3 n$ vertices and $|A| . n$ pairwise edge disjoint triangles and no other triangles.

Behrend's theorem

Behrend showed that $\mathbb{Z} / n \mathbb{Z}, n$ prime, has a subset A that contains no length three arithmatic progression and whose size is $n / e^{O(\sqrt{\log n})}$

- Combining this two results it is possible to construct a graph with $3 n$ vertices and $n^{2} / e^{O(\sqrt{\log n})}$ edge disjoint triangles and no other triangles.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Behrend's construction:

Suppose n is an odd prime and $A \subseteq \mathbb{Z} / n \mathbb{Z}$ is a set with no 3-term arithmetic progression. The Behrend's graph $G(n, A)$ is a tripartite graph with vertices on each side of the tripartition numbered $\{0,1, \ldots, n-1\}$ and triangles of the form $(z, z+a, z+2 a)$ modulo n, for $z \in\{0,1, \ldots, n-1\}$ and $a \in A$.

- It is easy to check that the graph $G(n, A)$ has $3 n$ vertices $3|A| n$ edges and each edge belongs to a unique triangle.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Behrend's construction: Example
When $n=3$ and $A=\{1,2\}$ we get the 9 vertex Paley graph shown below

Polynomial improvement of the upper bound of $\Delta(x, P)$

Behrend's construction: Example

When $n=3$ and $A=\{1,2\}$ we get the 9 vertex Paley graph shown below

Figure: The Paley graph with 9 vertices, 18 edges, and 6 triangles.

Polynomial improvement of the upper bound of $\Delta(x, P)$

■ From Behrend's graph one can get a lower bound of $\Omega\left(n^{2} / e^{O(\sqrt{\log n})}\right)$ for the Ruzsa-Szemerédi problem(that asks maximum number of edges in a graph in which every edge belongs to a unique triangle) and hence, for $H\left(n, K_{3}, K_{4} \backslash\{e\}\right)$.

Polynomial improvement of the upper bound of $\Delta(x, P)$

■ From Behrend's graph one can get a lower bound of $\Omega\left(n^{2} / e^{O(\sqrt{\log n})}\right)$ for the Ruzsa-Szemerédi problem(that asks maximum number of edges in a graph in which every edge belongs to a unique triangle) and hence, for $H\left(n, K_{3}, K_{4} \backslash\{e\}\right)$.

- But the previous Paley graph cannot be geometrically realized, that is, it is not possible to find a set of points P and $x \in P$ such that $G_{P}(x)$ is isomorphic to the previous Paley graph.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Proposition

Paley graph with 9 vertices, 18 edges, and 6 triangles is not geometrically realizable.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Proposition

Paley graph with 9 vertices, 18 edges, and 6 triangles is not geometrically realizable.

- We proceed by contradiction. Suppose there exists a point set P and $x \in P$ such that $G_{P}(x)$ is isomorphic to Paley graph in previous Figure.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Proposition

Paley graph with 9 vertices, 18 edges, and 6 triangles is not geometrically realizable.

- We proceed by contradiction. Suppose there exists a point set P and $x \in P$ such that $G_{P}(x)$ is isomorphic to Paley graph in previous Figure.
- This implies $V_{P}(x)=9$ and $I_{P}(x)=N_{K_{3}}\left(G_{P}(x)\right)=6$.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Proposition

Paley graph with 9 vertices, 18 edges, and 6 triangles is not geometrically realizable.

■ We proceed by contradiction. Suppose there exists a point set P and $x \in P$ such that $G_{P}(x)$ is isomorphic to Paley graph in previous Figure.

- This implies $V_{P}(x)=9$ and $I_{P}(x)=N_{K_{3}}\left(G_{P}(x)\right)=6$.
- This, in particular, means that there are 6 triangles in P which only contains the point x in the interior. Denote these triangles by $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{6}\right\}$.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Claim 1

There cannot be 3 triangles in the set \mathcal{T} which share a common edge.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Claim 1

There cannot be 3 triangles in the set \mathcal{T} which share a common edge.

(a) $V_{P}(x)=10, I_{P}(x)=4$
B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

Growth Rate of the Number of Empty Triangles in the Plane, CALDAM 2024

(a) $V_{P}(x)=10, I_{P}(x)=4$

(b) Not possible
B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

(a) $V_{P}(x)=10, I_{P}(x)=4$

(c) $V_{P}(x)=9, I_{P}(x)=4$

B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

Polynomial improvement of the upper bound of $\Delta(x, P)$

Claim 2

All 3 edges of any triangle in \mathcal{T} cannot be shared by other triangles in \mathcal{T}.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Claim 2

All 3 edges of any triangle in \mathcal{T} cannot be shared by other triangles in \mathcal{T}.

Polynomial improvement of the upper bound of $\Delta(x, P)$

Claim 2

All 3 edges of any triangle in \mathcal{T} cannot be shared by other triangles in \mathcal{T}.

Figure

Polynomial improvement of the upper bound of $\Delta(x, P)$

- To get $V_{P}(x)=9$ and $I_{P}(x)=6$ each edge of of all triangles in T must be shared by more than one triangles of T
- By Claim 1 and Claim 2, Paley graph with 9 vertices, 18 edges, and 6 triangles is not geometrically realizable.

Conclusion

■ In this paper, we initiate the study of the growth rate of the number of empty triangles in the plane, by proving upper and lower bounds on the difference $\Delta(x, P)$.

Conclusion

■ In this paper, we initiate the study of the growth rate of the number of empty triangles in the plane, by proving upper and lower bounds on the difference $\Delta(x, P)$.

- We relate the upper bound to the well-known Ruzsa-Szemerédi problem and study geometric properties of the triangle incidence graph $G_{P}(x)$.

Conclusion

■ In this paper, we initiate the study of the growth rate of the number of empty triangles in the plane, by proving upper and lower bounds on the difference $\Delta(x, P)$.

- We relate the upper bound to the well-known Ruzsa-Szemerédi problem and study geometric properties of the triangle incidence graph $G_{P}(x)$.
- Our results show that $\Delta(x, P)$ can range from $O\left(V_{P}(x)^{\frac{3}{2}}\right)$ and $o\left(V_{P}(x)^{2}\right)$.

Conclusion

- In this paper, we initiate the study of the growth rate of the number of empty triangles in the plane, by proving upper and lower bounds on the difference $\Delta(x, P)$.
- We relate the upper bound to the well-known Ruzsa-Szemerédi problem and study geometric properties of the triangle incidence graph $G_{P}(x)$.
- Our results show that $\Delta(x, P)$ can range from $O\left(V_{P}(x)^{\frac{3}{2}}\right)$ and $o\left(V_{P}(x)^{2}\right)$.
■ Understanding additional properties of the graph $G_{P}(x)$ is an interesting future direction, which can be useful in improving the bounds on $\Delta(x, P)$.

Thank you

B. B. Bhattacharya, S. Das, Sk S. Islam, S.Sen

Growth Rate of the Number of Empty Triangles in the Plane, CALDAM 2024

