Consecutive Occurrences with Distance Constraints

Waseem Akram \& Sanjeev Saxena
Indian Institute of Technology, Kanpur (INDIA)

Feb 15, 2024

(1) Introduction

(2) Preliminaries
(3) Proposed Solution
(4) Conclusion

(1) Introduction

(2) Preliminaries

(3) Proposed Solution

(4) Conclusion

Definitions and Notations

- A string is a sequence of characters.
- Let $P[1: m]$ and $T[1: n]$ be two strings with $m \leq n$.
- An index i is an occurrence of P if $P[1: m]=T[i: i+m-1]$.

Definitions and Notations

- A string is a sequence of characters.
- Let $P[1: m]$ and $T[1: n]$ be two strings with $m \leq n$.
- An index i is an occurrence of P if $P[1: m]=T[i: i+m-1]$.

Example:

$$
\begin{aligned}
& \text { P : a b c }
\end{aligned}
$$

Definitions and Notations

- A string is a sequence of characters.
- Let $P[1: m]$ and $T[1: n]$ be two strings with $m \leq n$.
- An index i is an occurrence of P if $P[1: m]=T[i: i+m-1]$.

Example:

$$
\begin{aligned}
& \text { P }: a b b \\
& \mathbf{T}: \\
& \mathbf{T} \\
& \hline
\end{aligned}
$$

Definitions and Notations...

An ordered pair (i, j) is a consecutive occurrence of P if
(1) P occurs at i and j
(2) P has no occurrence between them

Definitions and Notations...

An ordered pair (i, j) is a consecutive occurrence of P if
(1) P occurs at i and j
(2) P has no occurrence between them

$$
\begin{aligned}
& \text { P }: a b b c \\
& \mathbf{T}: \\
& \mathbf{T} \\
& \hline
\end{aligned}
$$

Consecutive occurrences: $(3,9)$ and $(9,14)$.
The distance of a consecutive occurrence (i, j) is defined as $j-i$.

Problem Statement

Preprocess a given text $T[1: n]$ to support queries
(1) given P and $[\alpha, \beta]$, report consecutive occurrences (i, j) with $j-i \in[\alpha, \beta]$.
(bounded-gap query)
(2) given P and $k>0$, report k consecutive occurrences (i, j) with minimal distance. (top- k query)

Problem Statement

Preprocess a given text $T[1: n]$ to support queries
(1) given P and $[\alpha, \beta]$, report consecutive occurrences (i, j) with $j-i \in[\alpha, \beta]$.
(bounded-gap query)
(2) given P and $k>0$, report k consecutive occurrences (i, j) with minimal distance. (top- k query)

Space	Query Time	References
$O(n \log n)$	$O(m+\#$ output $)$	CPM'15 and FSTTCS'20

Existing solutions employ complex data structures (persistent van Emde Boas, perfect hashing, persistent linked lists).

Our Result

- We present present a solution using simpler data structures.

Space	top- k	bounded gap
$O(n \log n)$	$O(m+k)$	$O(m+\log \alpha+k)$

- If α is known, query time can be improved to $O(m+k)$.
- The preprocessing takes $O\left(n^{2}\right)$-time.
(2) Preliminaries

(3) Proposed Solution

(4) Conclusion
Consecutive Occurrences with Distance Constraints

Suffix Tree

- A substring of the form $T[i: n]$ is called a suffix of $T[1: n]$.
- It is a rooted tree with n leaves numbered from 1 to n.
- Every non-leaf node has at least two children.
- Each edge is labelled with a non-empty substring s.t. concatenation of edge-labels from root to leaf i gives $T[i: n]$.

Suffix Tree...

Suffix Tree...

Heavy Path

Heavy Path

Heavy Path

Heavy Path

Heavy Path

(2) Preliminaries
(3) Proposed Solution
(4) Conclusion

Preprocessing

- Let \mathcal{T} be a suffix tree for the text $T[1: n]$

Preprocessing

- Decompose \mathcal{T} using heavy path decomposition

\mathcal{T}

Preprocessing

- Create a data structure for each h.

\mathcal{T}

Data structure for heavy path h

Data structure for heavy path h

Data structure for heavy path h

Data structure for heavy path h

(i, j) is alive from node u to node w.
(i, j) is a cons. occ. of a pattern ending between u and w.

A horizontal segment $[d(u), d(w)] \times(j-i)$ is created for (i, j).

Data structure for heavy path $h . .$.

- Create a set of horizontal segments for h
- Preprocess the set for orthogonal segment intersection queries
- We employ the hive-graph data structure given by Chazelle ${ }^{1}$.

[^0]

Hive Graph

Hive Graph

Preprocessing

(1) build a suffix tree \mathcal{T} for the text $T[1: n]$.
(2) decompose the tree \mathcal{T} using heavy path decomposition.
(3) for each heavy path, create a set of horizontal segments, and
preprocess the set of segments for orthogonal segment intersection queries.

bounded-gap queries

(1) Let $P[1: m]$ and $[\alpha, \beta]$ be the query parameters
(2) find the node $v \in \mathcal{T}$ at which the search for P terminates
(3) Let h be the heavy path containing node v
(4) query the associated structure with vertical segment $d \times[\alpha, \beta]$

Hive Graph

top- k queries

(1) Let $P[1: m]$ and integer $k>0$ be the query parameters.
(2) find the node $v \in \mathcal{T}$ at which the search for P terminates
(3) Let h be the heavy path on which v lies.
(4) query the structure with vertical ray emanating from $(d,-\infty)$, and
report the first k segments intersected by the ray

Hive Graph

Improving Query Time

- query time in each case is $O(m+\log n+\#$ output $)$
- optimal for the case when m is at least $\log n$.
- improve the query time for the case $m=o(\log n)$
- store the list of consecutive occurrences at each node v with $\operatorname{str}(v)=o(\log n)$, sorted by distance.

bounded-gap query	top- k query
$O(m+\log \alpha+\#$ output $)$	$O(m+k)$

(2) Preliminaries
(3) Proposed Solution
(4) Conclusion
Consecutive Occurrences with Distance Constraints

Open Questions

(1) Improving the space bound?
(2) Answering the queries in a substring $T[i: j]$?

Thank you!

[^0]: ${ }^{1}$ Chazelle, B.: Filtering Search: A New Approach to Query-Answering, 1985

