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Introducton & Overview



Notation

Conventions

By graph, we mean finite, simple and undirected graph.

G contains H means G contains H as subgraph

Notations

V (G) = vertex set of G

E (G) = edge set of G

For S ⊆ V (G), G [S] = subgraph of G induced by S
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Star Colouring Application

Star colouring is a variant of graph colouring.

It is used as a model for compression of symmetric sparse
matrices (used in computing sparse derivative matrices).

Survey: What Color Is Your Jacobian? Graph Coloring for
Computing Derivatives, Gebremedhin et al., SIAM Review, (2005).
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Colouring Definition

A colouring of a graph G is a function f : V (G) → Z such that
uv is an edge in G =⇒ f (u) ̸= f (v).

(i.e., i i is NOT allowed)
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A graph with a 3-colouring

If f (v) = i , we say that
v is coloured i (by f ),
and draw v as i .

k-colouring = colouring with at
most k colours, say 0,. . . ,k-1

5



Colouring Definition

A colouring of a graph G is a function f : V (G) → Z such that
uv is an edge in G =⇒ f (u) ̸= f (v).

(i.e., i i is NOT allowed)

0

12

1

20

2

0

1

2

0

1
1

A graph with a 3-colouring

If f (v) = i , we say that
v is coloured i (by f ),
and draw v as i .

k-colouring = colouring with at
most k colours, say 0,. . . ,k-1

5



Star Colouring Definition

Star colouring = colouring without i j i j .
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J with a 3-colouring f
supergraph−−−−−−→

f is a

3-

star colouring of G .
f is NOT a
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star colouring of H.
f is NOT a

3-

star colouring of J .
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Star Colouring Literature Survey

• Characterisation in terms of graph orientations
(Albertson et al., 2004; Nešetřil and Mendez, 2003)

• Every planar graph is 20-star colourable
(Albertson et al., 2004).

• Testing 3-star colourability is NP-complete for planar bipartite
graphs and line graphs of subcubic graphs

(Albertson et al., 2004; Lei et al., 2018)

• The minimum #colours required to star colour is
polynomial-time computable for
– P4-free graphs (Lyons, 2011),
– P4-sparse graphs (Yue, 2016), and
– line graphs of trees (Omoomi et al., 2021)

7



Star Colouring d-Regular Graph G Literature Survey

• If G is a hypercube,
#colours required ≤ d + 1 (Fertin et al., 2004)

• If G is 3-regular (i.e., d = 3),
#colours required ≤ 6 (Chen et al., 2013)
#colours required ≥ 4 (Xie et al., 2014)

• #colours required ≥ ⌈(d + 3)/2⌉ (Fertin et al., 2003)

• #colours required ≥ ⌈(d + 4)/2⌉ for d ≥ 2
This bound is attained for each d ≥ 2

Characterise (regular) graphs attaining this bound.
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d-Regular ⌈(d + 4)/2⌉-Star Colourable Graphs d ≥ 3

Recognition ∈ NPC

Given d ≥ 3 and a d-regular graph G as input, it is NP-complete to test
whether G is ⌈(d + 4)/2⌉-star colourable (even when d = 4).

Properties

• (diamond,K4)-free
• K1,p+1-free =⇒ −2 and p − 2 are eigenvalues of adj. matrix

Characterisation in terms of

• Graph Orientations
• Graph Homomorphisms
• Edge Decompositions

For 3-regular graph G ,
L(G) is 4-star col. ⇐⇒ G is bipartite and distance-two 4-col.
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2p-Regular (p + 2)-Star Colourable Graphs p ≥ 2

Recognition ∈ NPC

Given p ≥ 2 and a 2p-regular graph G as input, it is NP-complete to
test whether G is (p + 2)-star colourable (even when p = 2).

Properties

• (diamond,K4)-free
• K1,p+1-free =⇒ −2 and p − 2 are eigenvalues of adj. matrix

Characterisation in terms of

• Graph Orientations
• Graph Homomorphisms
• Edge Decompositions
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2p-Regular (p + 2)-Star Colourable Graphs p ≥ 2

Recognition ∈ NPC

Given p ≥ 2 and a 2p-regular graph G as input, it is NP-complete to
test whether G is (p + 2)-star colourable (even when p = 2).

Properties

• (diamond,K4)-free
• K1,p+1-free =⇒ −2 and p − 2 are eigenvalues of adj. matrix

Characterisation in terms of

• Graph Orientations (in-orientations)
• Graph Homomorphisms (locally constrained)
• Edge Decompositions (with weaving pattern)

For 3-regular graph G ,
L(G) is 4-star col. ⇐⇒ G is bipartite and distance-two 4-col. 9



Star Colouring & Orientations



Orientation Definition

To get an orientation of a graph G ,
assign some direction on each edge of G .
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w
graph G

edge uv (or vu)
nbr of v

nbr of u

x

u

v

w
orientation G⃗

arc (u, v)
in-nbr of v

out-nbr of u

V (G⃗) = V (G)
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Orientation Definition

To get an orientation of a graph G ,
assign some direction on each edge of G .
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In-orientation Definition

An orientation G⃗ of G is a

k-

in-orientation of G
if there exists a

k-

colouring f of G⃗ such that the following hold
for each vertex v of G⃗ :

(i) no in-nbr and out-nbr of v have the same colour, and
(ii) no two out-nbrs of v have the same colour.

v...
...

NOT ci ,
0 ≤ i ≤ p

c cc

c

c1

c2

cp

c0
NOT

allowed

G admits a k-star colouring ⇐⇒ G admits a k-in-orientation
(Albertson et al., 2004; Nešetřil and Mendez, 2003)
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MINI-orientation Definition

An orientation G⃗ of G is a k-MINI-orientation of G
if there exists a k-colouring f of G⃗ such that the following hold
for each vertex v of G⃗ :

(i) no in-nbr and out-nbr of v have the same colour
(ii) no two out-nbrs of v have the same colour
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MINI-orientation Example
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2 3

A 4-MINI-orientation of L(Q3)
(with the colouring f ).

For each vertex v ,
(i) no in-nbr and out-nbr of v have the same colour,
(ii) no two out-nbrs of v have the same colour, and
(iii) all in-nbrs of v have the same colour.
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Star Colouring of Regular Graphs Results

Theorem 1
For a 2p-regular graph G with p ≥ 2,
G is (p + 2)-star colourable ⇐⇒ G has a (p + 2)-MINI-orientation.
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MINI-orientation Properties

diamond

C2q+1

. . .

. . .
CL2q+1

C5

e.g.: CL5

Theorem 2
Diamond and circular ladder graph CL2q+1 do not admit a
k-MINI-orientation for any k ∈ N.

Corollary 3
If a 2p-regular G (with p ≥ 2) contains diamond or CL2q+1,
then G is not (p + 2)-star colourable.
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Star Col. & Edge Decompositions



Plain Weaving

Plain weaving
in graph theory ≈ Alternating projection of link

in knot theory
(Akleman et al., 2015)

Plain weave pattern
(Image credit: Adanur, 2020)

Underlying graph
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Plain Weaving Definition

(Image Credits: Github page of spath3 TikZ library)

An plain weaving of an edge decomposition {R0,R1, . . . ,Rq−1} of
a graph G is a function f : V (G) → Zq such that for each i ∈ Zq

and each edge uv ∈ Ri , either f (u) = i or f (v) = i .

17
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Plain weaving, colouring & orientation
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Plain weaving & orientation

Theorem 4

Let p ≥ 2 and q ≥ 2. Let G be a 2p-regular graph, and let G⃗ be
an orientation of G. Then, G⃗ is an Eulerian q-MINI-orientationj
of G if and only if G admits an edge decomposition
S = {H0,H1, . . . ,Hq−1} that satisfies the following:
(i) each Hi is p-regular (i ∈ Zq);
(ii) orientation induced by S is G⃗; and
(iii) for distinct i , j ∈ Zq and distinct u, v ∈ V (Hi) ∩ V (Hj),

uv /∈ E (G) and NG(u) ∩ NG(v) = N+
G⃗

(u) ∩ N+
G⃗

(v).
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Plain weaving & colouring

Theorem 5

Let G be a 2p-regular graph with p ≥ 2. Then, G admits a
(p + 2)-star colouring if and only if G an edge decomposition
S = {H0,H1, . . . ,Hp+1} such that the following hold:
(i) each Hi is p-regular (i ∈ Zp+2)
(let us call orientation induced by S as G⃗); and
(ii) for distinct i , j ∈ Zp+2 and distinct u, v ∈ V (Hi) ∩ V (Hj),

uv /∈ E (G) and NG(u) ∩ NG(v) = N+
G⃗

(u) ∩ N+
G⃗

(v).
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Star Colouring & Homomorphisms



Homomorphism Definition

Let G and H be graphs.

A homomorphism from G to H is a function ψ : V (G) → V (H) s. t.
uv is an edge in G =⇒ ψ(u)ψ(v) is an edge in H.

1

2 3

1

23

0

0

G

Homomorphism
0

1

2

3

H

ψ maps triangles to triangle, circles to circle, and so on.
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Locally Bijective Homomorphism (LBH) Definition

A Locally Bijective Homomorphism (LBH) from G to H
is a function ψ : V (G) → V (H) such that for each vertex v of G ,
ψ maps neighbourhood NG(v) bijectively to NH(ψ(v)).

Notation: G LBH−−→ H (here, ψ maps triangles to triangle, . . . )

1

2
3 1

2

3
12

3

0

0

0
G

Locally bijective
homomorphism

0 1

2

3
H
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Areas Related to LBH

• Topology

• Algebra

• Combinatorics

• Geometry

Surveys:
(Fiala and Kratochvíl, 2008) Locally constrained graph
homomorphisms – structure, complexity, and applications

(Fiala et al., 2008) Locally constrained graph homomorphisms
and equitable partitions
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LBH Sample Result

Theorem 6 (see Fiala and Kratochvíl, 2008)

G LBH−−→ H =⇒ char (H; x) divides char (G ; x).

24



Star Colouring of Regular Graphs Results

Theorem 7 (Dvořák et al., 2013)

For a 3-regular graph G,
L(G) is 4-star colourable ⇐⇒ G LBH−−→ Q3

Theorem 8

For a 3-regular graph G,
L(G) is 4-star colourable ⇐⇒ G is bipartite and

distance-two 4-colourable
(distance-two 4-colouring = 4-colouring without i j i )

Corollary 9
It is NP-complete to test whether a planar 4-regular graph is
4-star colourable.
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Star Colouring of Regular Graphs Results

Theorem 7 [Dvořák et al., 2013] (Restated)
For a 3-regular graph H,
L(H) is 4-star colourable ⇐⇒ H LBH−−→ Q3

Rephrasal of Theorem 7:

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H,
L(H) is 4-star colourable ⇐⇒ L(H) LBH−−→ L(Q3)
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Star Colouring of Regular Graphs Results

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H,
L(H) is 4-star colourable ⇐⇒ L(H) LBH−−→ L(Q3)

Claim: For every K1,3-free 4-regular graph G ,
G is 4-star colourable ⇐⇒ G LBH−−→ L(Q3).

We define a sequence of graphs G4,G6,G8 . . ., where G4 ∼= L(Q3).

Theorem 11

For a K1,p+1-free 2p-regular graph G with p ≥ 2,
G is (p + 2)-star colourable ⇐⇒ G LBH−−→ G2p.
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Star Colouring & Line Graphs



Motivation

For a 3-regular graph H,
L(H) is 4-star colourable ⇐⇒ L(H) LBH−−→ L(Q3)

For every K1,3-free 4-regular graph G ,
G is 4-star colourable =⇒ G is a line graph

For a K1,p+1-free 2p-regular graph G ,
does G (p + 2)-star colourable graphs =⇒ G is a line graph?

Are G4,G6,G8 . . . line graphs?
No, except for G4.
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Motivation

G is 2p-regular
& (p + 2)-star colourable

=⇒ G is (diamond,K4)-free.
(p + 1)(p + 2) divides |V (G)|.

& in addition,
G is K1,p+1-free

=⇒

G is the line graph of a
bipartite graph, for p = 2.

G is a clique graph.

& in addition,
|V (G)| = (p + 1)(p + 2)

=⇒ G ∼= G2p

∼= L∗(Kp+2).

Clique graph of H = Interesection graph of maximal cliques in H.
G is clique graph means that G is the clique graph of some graph.

L∗(H) = underlying undirected graph of line digraph of H.
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What is a line digraph?
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Line Digraph Definition

Line graph:
in G in L(G) on top of G in L(G)

in G in L(G) on top of G in L(G)

Line digraph
of digraph: in G⃗ in L(G⃗) on top of G⃗ in L(G⃗)

in G⃗ in L(G⃗) on top of G⃗ in L(G⃗)

To get the line digraph of a graph G ,
replace each edge of G by (to get G⃗)

& then perform line digraph operation (on G⃗).
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Line Digraph Definition

For an (undirected) graph H,
the line digraph L⃗(H) of H is the oriented graph with
Vertex set = {(u, v), (v , u) : u, v ∈ V (H) and uv ∈ E (H)}
Arcs: (u, v) → (v ,w) for u, v ,w ∈ V (H), provided u ̸= w

(Bagga and Beineke, 2021).

Image credit: (Parzanchevski, 2020). 32



Star Colouring and Line Graph

Theorem 12

For every graph H, L∗(H) LBH−−→ L(H).
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Star Colouring and Line Graph

Theorem 12

For every graph H, L∗(H) LBH−−→ L(H).
In particular, char(L(H); x) divides char(L∗(H); x).

Theorem 13
For a K1,p+1-free 2p-regular graph G with p ≥ 2,
G is (p + 2)-star colourable ⇐⇒ G LBH−−→ L∗(Kp+2).

char(L(Kp+2); x) = (x − 2p)(x − p + 2)p+1(x + 2)(p−1)(p+2)/2

(Beineke and Bagga, 2021)
Corollary 14
For a K1,p+1-free 2p-regular graph G with p ≥ 2,
G LBH−−→ L(Kp+2) and thus -2 and p − 2 are eigenvalues of G.
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Future Directions



Ongoing Work

1. Determine spectra of L∗(H).
2. Characterise constrained homorphisms related to star

colouring in terms of edge decompositions.
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Future Directions

1. Charatcerise (2p + 1)-regular (p + 2)-star colourable graphs.
2. Characterise graphs that do not admit MINI-orientaton

(similar to diamond).
3. Use weaving to study 1-cover or 2-covers of matchings and

even-degree graphs.
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Thank you
Questions?
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