Star Colouring of Regular Graphs Meets Weaving and Line Graphs

Shalu M. A. and Cyriac Antony
IIT Madras, ma23r004@smail.iitm.ac.in
February 15, 2024
CALDAM 2024, IIT Bhilai

- Shalu M. A. and Cyriac Antony (2022), Star colouring of bounded degree graphs and regular graphs, Discrete Mathematics, 345 (6), 112850, DOI: 10.1016/j.disc.2022.112850.
- Shalu M. A. and Cyriac Antony (2023), Star colouring and locally constrained graph homomorphisms. Under Review. Preprint link: https://arxiv.org/abs/2312.00086
- Shalu M. A. and Cyriac Antony (2024), Star colouring of regular graphs meets weaving and line graphs.
CALDAM 2024

Table of Contents

- Introducton and Overview
- Star Colouring and Orientations
- Star Colouring and Edge decompositions
- Star Colouring and Homomorphisms
- Star Colouring and Line Graphs
- Future Directions

Introducton \& Overview

Notation

Conventions

By graph, we mean finite, simple and undirected graph.
G contains H means G contains H as subgraph

Notations

$V(G)=$ vertex set of G
$E(G)=$ edge set of G
For $S \subseteq V(G), \quad G[S]=$ subgraph of G induced by S

Star Colouring

Star colouring is a variant of graph colouring.

Star Colouring

Application

Star colouring is a variant of graph colouring.
It is used as a model for compression of symmetric sparse matrices (used in computing sparse derivative matrices).

Survey: What Color Is Your Jacobian? Graph Coloring for
Computing Derivatives, Gebremedhin et al., SIAM Review, (2005).

Image credit: (Gebremedhin et al., 2005)

A colouring of a graph G is a function $f: V(G) \rightarrow \mathbb{Z}$ such that $u v$ is an edge in $G \Longrightarrow f(u) \neq f(v)$.
(i.e., (i)-(i) is NOT allowed)

If $f(v)=i$, we say that
v is coloured $i($ by $f)$,
and draw v as (i).

A graph with a 3-colouring

A colouring of a graph G is a function $f: V(G) \rightarrow \mathbb{Z}$ such that $u v$ is an edge in $G \Longrightarrow f(u) \neq f(v)$. (i.e., (i)-(i) is NOT allowed)

If $f(v)=i$, we say that
v is coloured $i($ by $f)$,
and draw v as (i).
k-colouring $=$ colouring with at most k colours, say $0, \ldots, k-1$

A graph with a 3-colouring

Star Colouring

Star colouring $=$ colouring without (i)-(i)-(i)-(i).

Star Colouring

Star colouring $=$ colouring without (i)-(i)-(i)-(i).

G with a 3-colouring $f \quad H$ with a 3-colouring $f \quad J$ with a 3-colouring f

$$
\xrightarrow{\text { supergraph }}
$$

Star Colouring

Star colouring = colouring without (i)-(i)-(i)-(i).

G with a 3-colouring $f \quad H$ with a 3 -colouring $f \quad J$ with a 3-colouring f

$$
\xrightarrow{\text { supergraph }}
$$

f is a star colouring of G.
f is NOT a star colouring of H.
f is NOT a star colouring of J.

Star Colouring

Star colouring = colouring without (i)-(i)-(i)-(i).

G with a 3-colouring $f \quad H$ with a 3 -colouring $f \quad J$ with a 3-colouring f

$$
\xrightarrow{\text { supergraph }}
$$

f is a 3-star colouring of G.
f is NOT a 3-star colouring of H.
f is NOT a 3-star colouring of J.

Star Colouring

- Characterisation in terms of graph orientations
(Albertson et al., 2004; Nešetřil and Mendez, 2003)
- Every planar graph is 20-star colourable (Albertson et al., 2004).
- Testing 3-star colourability is NP-complete for planar bipartite graphs and line graphs of subcubic graphs
(Albertson et al., 2004; Lei et al., 2018)
- The minimum \#colours required to star colour is polynomial-time computable for
- P_{4}-free graphs (Lyons, 2011),
- P_{4}-sparse graphs (Yue, 2016), and
- line graphs of trees (Omoomi et al., 2021)
- If G is a hypercube, \#colours required $\leq d+1$
(Fertin et al., 2004)
- If G is 3-regular (i.e., $d=3$),
\#colours required ≤ 6
\#colours required ≥ 4
(Chen et al., 2013)
(Xie et al., 2014)
- \#colours required $\geq\lceil(d+3) / 2\rceil$
(Fertin et al., 2003)
- If G is a hypercube, \#colours required $\leq d+1$
(Fertin et al., 2004)
- If G is 3-regular (i.e., $d=3$),
\#colours required ≤ 6
(Chen et al., 2013)
\#colours required ≥ 4
(Xie et al., 2014)
- \#colours required $\geq\lceil(d+3) / 2\rceil$
(Fertin et al., 2003)
- \#colours required $\geq\lceil(d+4) / 2\rceil$ for $d \geq 2$

Star Colouring d-Regular Graph \boldsymbol{G}

- If G is a hypercube, $\#$ colours required $\leq d+1$
(Fertin et al., 2004)
- If G is 3-regular (i.e., $d=3$),
\#colours required ≤ 6
\#colours required ≥ 4
(Chen et al., 2013)
(Xie et al., 2014)
- \#colours required $\geq\lceil(d+3) / 2\rceil$
(Fertin et al., 2003)
- \#colours required $\geq\lceil(d+4) / 2\rceil$ for $d \geq 2$

This bound is attained for each $d \geq 2$

Star Colouring d-Regular Graph \boldsymbol{G}

- If G is a hypercube, $\#$ colours required $\leq d+1$ (Fertin et al., 2004)
- If G is 3-regular (i.e., $d=3$),
\#colours required ≤ 6
(Chen et al., 2013)
\#colours required ≥ 4
(Xie et al., 2014)
- \#colours required $\geq\lceil(d+3) / 2\rceil$
(Fertin et al., 2003)
- \#colours required $\geq\lceil(d+4) / 2\rceil$ for $d \geq 2$

This bound is attained for each $d \geq 2$
@ Characterise (regular) graphs attaining this bound.

d-Regular $\lceil(d+4) / 2\rceil$-Star Colourable Graphs

Recognition \in NPC

Given $d \geq 3$ and a d-regular graph G as input, it is NP-complete to test whether G is $\lceil(d+4) / 2\rceil$-star colourable (even when $d=4$).

Recognition \in NPC

Given $p \geq 2$ and a $2 p$-regular graph G as input, it is NP-complete to test whether G is $(p+2)$-star colourable (even when $p=2$).

Recognition \in NPC

Given $p \geq 2$ and a $2 p$-regular graph G as input, it is NP-complete to test whether G is $(p+2)$-star colourable (even when $p=2$).

Properties

- (diamond, K_{4})-free
- $K_{1, p+1}$-free $\Longrightarrow-2$ and $p-2$ are eigenvalues of adj. matrix

Recognition \in NPC

Given $p \geq 2$ and a $2 p$-regular graph G as input, it is NP-complete to test whether G is $(p+2)$-star colourable (even when $p=2)$.

Properties

- (diamond, K_{4})-free
- $K_{1, p+1}$-free $\Longrightarrow-2$ and $p-2$ are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations
- Graph Homomorphisms
- Edge Decompositions

Recognition \in NPC

Given $p \geq 2$ and a $2 p$-regular graph G as input, it is NP-complete to test whether G is $(p+2)$-star colourable (even when $p=2$).

Properties

- (diamond, K_{4})-free
- $K_{1, p+1}$-free $\Longrightarrow-2$ and $p-2$ are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations
- Graph Homomorphisms
- Edge Decompositions

For 3-regular graph G,
$L(G)$ is 4-star col. $\Longleftrightarrow G$ is bipartite and distance-two 4-col.

Recognition \in NPC

Given $p \geq 2$ and a $2 p$-regular graph G as input, it is NP-complete to test whether G is $(p+2)$-star colourable (even when $p=2$).

Properties

- (diamond, K_{4})-free
- $K_{1, p+1}$-free $\Longrightarrow-2$ and $p-2$ are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations (in-orientations)
- Graph Homomorphisms (locally constrained)
- Edge Decompositions (with weaving pattern)

For 3-regular graph G,
$L(G)$ is 4-star col. $\Longleftrightarrow G$ is bipartite and distance-two 4-col.

Star Colouring \& Orientations

Orientation

To get an orientation of a graph G, assign some direction on each edge of G.

orientation \vec{G}

$$
V(\vec{G})=V(G)
$$

Orientation

Definition

To get an orientation of a graph G, assign some direction on each edge of G.

Orientation

Definition

To get an orientation of a graph G, assign some direction on each edge of G.

To get an orientation of a graph G, assign some direction on each edge of G.

Neighbourhood of v in G $N(v)=$ set of all nbrs of $v($ in $G)$

Out-neighbourhood of v in \vec{G} $N^{+}(v)=$ set of all out-nbrs of v

To get an orientation of a graph G, assign some direction on each edge of G.

graph G

\vec{G} is an Eulerian orientation if \#in-nbrs(v)=\#out-nbrs(v) for every vertex v of \vec{G}.

An orientation \vec{G} of G is a in-orientation of G if there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

An orientation \vec{G} of G is a in-orientation of G if there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour, and

NOT
allowed

An orientation \vec{G} of G is a in-orientation of G if there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour, and
(ii) no two out-nbrs of v have the same colour.

NOT
allowed

An orientation \vec{G} of G is a in-orientation of G if there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour, and
(ii) no two out-nbrs of v have the same colour.

An orientation \vec{G} of G is a \boldsymbol{k}-in-orientation of G if there exists a k-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour, and
(ii) no two out-nbrs of v have the same colour.

An orientation \vec{G} of G is a \boldsymbol{k}-in-orientation of G
if there exists a k-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour, and
(ii) no two out-nbrs of v have the same colour.

G admits a k-star colouring $\Longleftrightarrow G$ admits a k-in-orientation (Albertson et al., 2004; Nešetřil and Mendez, 2003)

An orientation \vec{G} of G is a \boldsymbol{k}-in-orientation of G if there exists a k-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour
(ii) no two out-nbrs of v have the same colour

An orientation \vec{G} of G is a \boldsymbol{k}-MINI-orientation of G if there exists a k-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :
(i) no in-nbr and out-nbr of v have the same colour
(ii) no two out-nbrs of v have the same colour
(iii) all in-nbrs of v have the same colour

(MINI-orientation $=$ Monochromatic In-Neighbourhood In-orientation)

For each vertex v,
(i) no in-nbr and out-nbr of v have the same colour,
(ii) no two out-nbrs of v have the same colour, and
(iii) all in-nbrs of v have the same colour.

For each vertex v,
(i) no in-nbr and out-nbr of v have the same colour,
(ii) no two out-nbrs of v have the same colour, and
(iii) all in-nbrs of v have the same colour.

A 4-MINI-orientation of $L\left(Q_{3}\right)$
(with the colouring f).
For each vertex v,
(i) no in-nbr and out-nbr of v have the same colour,
(ii) no two out-nbrs of v have the same colour, and
(iii) all in-nbrs of v have the same colour.

Star Colouring of Regular Graphs

Results

Theorem 1

For a $2 p$-regular graph G with $p \geq 2$, G is $(p+2)$-star colourable $\Longleftrightarrow G$ has a $(p+2)$-MINI-orientation.

diamond

$C L_{2 q+1}$

e.g.: $C L_{5}$

Theorem 2

Diamond and circular ladder graph $C L_{2 q+1}$ do not admit a $k-$ MINI-orientation for any $k \in \mathbb{N}$.

Corollary 3

If a $2 p$-regular G (with $p \geq 2$) contains diamond or $C L_{2 q+1}$, then G is not $(p+2)$-star colourable.

Star Col. \& Edge Decompositions

Plain Weaving

Plain weaving in graph theory

Alternating projection of link in knot theory
(Akleman et al., 2015)

Plain weave pattern (Image credit: Adanur, 2020)

Underlying graph

200

(Image Credits: Github page of spath3 TikZ library)
An plain weaving of an edge decomposition $\left\{R_{0}, R_{1}, \ldots, R_{q-1}\right\}$ of a graph G is a function $f: V(G) \rightarrow \mathbb{Z}_{q}$ such that for each $i \in \mathbb{Z}_{q}$ and each edge $u v \in R_{i}$, either $f(u)=i$ or $f(v)=i$.

Plain weaving, colouring \& orientation

Plain weaving \& orientation

Theorem 4

Let $p \geq 2$ and $q \geq 2$. Let G be a $2 p$-regular graph, and let \vec{G} be an orientation of G. Then, \vec{G} is an Eulerian q-MINI-orientationj of G if and only if G admits an edge decomposition $S=\left\{H_{0}, H_{1}, \ldots, H_{q-1}\right\}$ that satisfies the following:
(i) each H_{i} is p-regular $\left(i \in \mathbb{Z}_{q}\right)$;
(ii) orientation induced by S is \vec{G}; and
(iii) for distinct $i, j \in \mathbb{Z}_{q}$ and distinct $u, v \in V\left(H_{i}\right) \cap V\left(H_{j}\right)$, $u v \notin E(G)$ and $N_{G}(u) \cap N_{G}(v)=N_{\vec{G}}^{+}(u) \cap N_{\vec{G}}^{+}(v)$.

Plain weaving \& colouring

Theorem 5

Let G be a $2 p$-regular graph with $p \geq 2$. Then, G admits a
$(p+2)$-star colouring if and only if G an edge decomposition
$S=\left\{H_{0}, H_{1}, \ldots, H_{p+1}\right\}$ such that the following hold:
(i) each H_{i} is p-regular $\left(i \in \mathbb{Z}_{p+2}\right)$
(let us call orientation induced by S as \vec{G}); and
(ii) for distinct $i, j \in \mathbb{Z}_{p+2}$ and distinct $u, v \in V\left(H_{i}\right) \cap V\left(H_{j}\right)$,

$$
u v \notin E(G) \text { and } N_{G}(u) \cap N_{G}(v)=N_{\vec{G}}^{+}(u) \cap N_{\vec{G}}^{+}(v) .
$$

Star Colouring \& Homomorphisms

Let G and H be graphs.
A homomorphism from G to H is a function $\psi: V(G) \rightarrow V(H)$ s. t. $u v$ is an edge in $G \Longrightarrow \psi(u) \psi(v)$ is an edge in H.

ψ maps triangles to triangle, circles to circle, and so on.

A Locally Bijective Homomorphism (LBH) from G to H is a function $\psi: V(G) \rightarrow V(H)$ such that for each vertex v of G, ψ maps neighbourhood $N_{G}(v)$ bijectively to $N_{H}(\psi(v))$.

Notation: $G \xrightarrow{\text { LBH }} H \quad$ (here, ψ maps triangles to triangle, \ldots)

Areas Related to LBH

- Topology
- Algebra
- Combinatorics
- Geometry

Surveys:

(Fiala and Kratochvíl, 2008) Locally constrained graph homomorphisms - structure, complexity, and applications
(Fiala et al., 2008) Locally constrained graph homomorphisms and equitable partitions

Theorem 6 (see Fiala and Kratochvil, 2008)
$G \xrightarrow{L B H} H \Longrightarrow \quad \operatorname{char}(H ; x)$ divides $\operatorname{char}(G ; x)$.

Star Colouring of Regular Graphs

Results

Theorem 7 (Dvořák et al., 2013)

For a 3-regular graph G, $L(G)$ is 4-star colourable $\Longleftrightarrow G \xrightarrow{L B H} Q_{3}$

Star Colouring of Regular Graphs

Theorem 7 (Dvořák et al., 2013)

For a 3-regular graph G,
$L(G)$ is 4-star colourable $\Longleftrightarrow G \xrightarrow{L B H} Q_{3}$

Theorem 8

For a 3-regular graph G, $L(G)$ is 4-star colourable $\Longleftrightarrow \quad \begin{gathered}G \text { is bipartite and } \\ \text { distance-two 4-colourable }\end{gathered}$ (distance-two 4-colouring $=4$-colouring without (i) - (i)

Star Colouring of Regular Graphs

Theorem 7 (Dvořák et al., 2013)

For a 3-regular graph G,
$L(G)$ is 4-star colourable $\Longleftrightarrow G \xrightarrow{L B H} Q_{3}$

Theorem 8

For a 3-regular graph G,
$L(G)$ is 4-star colourable $\Longleftrightarrow \quad \begin{gathered}G \text { is bipartite and } \\ \text { distance-two 4-colourable }\end{gathered}$
(distance-two 4-colouring $=4$-colouring without (i)

Corollary 9

It is NP-complete to test whether a planar 4-regular graph is 4-star colourable.

Theorem 7 [Dvořák et al., 2013] (Restated)

For a 3-regular graph H, $L(H)$ is 4-star colourable $\Longleftrightarrow H \xrightarrow{\text { LBH }} Q_{3}$

Star Colouring of Regular Graphs

Theorem 7 [Dvořák et al., 2013] (Restated)

For a 3-regular graph H,
$L(H)$ is 4-star colourable $\Longleftrightarrow H \xrightarrow{L B H} Q_{3}$

Rephrasal of Theorem 7:
Theorem 10 (Dvořák et al., 2013)
For a 3-regular graph H,
$L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{L B H} L\left(Q_{3}\right)$

Star Colouring of Regular Graphs

Results

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, $L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{L B H} L\left(Q_{3}\right)$

Star Colouring of Regular Graphs

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, $L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{L B H} L\left(Q_{3}\right)$

Claim: For every $K_{1,3}$-free 4-regular graph G, G is 4-star colourable $\Longleftrightarrow G \xrightarrow{\mathrm{LBH}} L\left(Q_{3}\right)$.

Star Colouring of Regular Graphs

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, $L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{L B H} L\left(Q_{3}\right)$

Claim: For every $K_{1,3}$-free 4-regular graph G, G is 4-star colourable $\Longleftrightarrow G \xrightarrow{\text { LBH }} L\left(Q_{3}\right)$.

We define a sequence of graphs $G_{4}, G_{6}, G_{8} \ldots$, where $G_{4} \cong L\left(Q_{3}\right)$.

Theorem 11

For a $K_{1, p+1}$-free $2 p$-regular graph G with $p \geq 2$,
G is $(p+2)$-star colourable $\Longleftrightarrow G \xrightarrow{L B H} G_{2 p}$.

Star Colouring \& Line Graphs

Motivation

For a 3-regular graph H,
$L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{\text { LBH }} L\left(Q_{3}\right)$

For every $K_{1,3}$-free 4-regular graph G,
G is 4 -star colourable $\Longrightarrow G$ is a line graph

Motivation

For a 3-regular graph H,
$L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{\mathrm{LBH}} L\left(Q_{3}\right)$

For every $K_{1,3}$-free 4-regular graph G,
G is 4-star colourable $\Longrightarrow G$ is a line graph

For a $K_{1, p+1}$-free $2 p$-regular graph G, does $G(p+2)$-star colourable graphs $\Longrightarrow G$ is a line graph?

Are $G_{4}, G_{6}, G_{8} \ldots$ line graphs?

Motivation

For a 3-regular graph H,
$L(H)$ is 4-star colourable $\Longleftrightarrow L(H) \xrightarrow{\mathrm{LBH}} L\left(Q_{3}\right)$

For every $K_{1,3}$-free 4-regular graph G,
G is 4-star colourable $\Longrightarrow G$ is a line graph

For a $K_{1, p+1}$-free $2 p$-regular graph G, does $G(p+2)$-star colourable graphs $\Longrightarrow G$ is a line graph?

Are $G_{4}, G_{6}, G_{8} \ldots$ line graphs?
No, except for G_{4}.

Motivation

$$
\begin{gathered}
G \text { is } 2 p \text {-regular } \\
\&(p+2) \text {-star colourable }
\end{gathered} \Longrightarrow \quad \Longrightarrow \quad \begin{gathered}
\left.G \text { is (diamond, } K_{4}\right) \text {-free. } \\
(p+1)(p+2) \text { divides }|V(G)| .
\end{gathered}
$$

\& in addition,
G is $K_{1, p+1}$-free
\& in addition,

$$
|V(G)|=(p+1)(p+2)
$$

$$
\Longrightarrow \quad G \cong G_{2 p}
$$

Motivation

$$
\begin{gathered}
G \text { is } 2 p \text {-regular } \\
\&(p+2) \text {-star colourable }
\end{gathered} \Longrightarrow \quad \Longrightarrow \quad \begin{gathered}
\left.G \text { is (diamond, } K_{4}\right) \text {-free. } \\
(p+1)(p+2) \text { divides }|V(G)| .
\end{gathered}
$$

\& in addition,
G is $K_{1, p+1}$-free
G is the line graph of a bipartite graph, for $p=2$.
\& in addition,

$$
|V(G)|=(p+1)(p+2)
$$

$$
\Longrightarrow \quad G \cong G_{2 p}
$$

Motivation

G is $2 p$-regular
$\&(p+2)$-star colourable $\Longrightarrow \quad \begin{gathered}\left.G \text { is (diamond, } K_{4}\right) \text {-free. } \\ (p+1)(p+2) \text { divides }|V(G)| .\end{gathered}$
G is the line graph of a bipartite graph, for $p=2$. G is a clique graph.
\& in addition,

$$
|V(G)|=(p+1)(p+2)
$$

$$
\Longrightarrow \quad G \cong G_{2 p}
$$

Clique graph of $H=$ Interesection graph of maximal cliques in H. G is clique graph means that G is the clique graph of some graph.

Motivation

G is $2 p$-regular
\& $(p+2)$-star colourable
\& in addition, G is $K_{1, p+1}$-free
G is (diamond, K_{4})-free.

$$
(p+1)(p+2) \text { divides }|V(G)| .
$$

G is the line graph of a bipartite graph, for $p=2$. G is a clique graph.
\& in addition,

$$
|V(G)|=(p+1)(p+2)
$$

$$
\Longrightarrow \quad G \cong G_{2 p} \cong L^{*}\left(K_{p+2}\right) .
$$

Clique graph of $H=$ Interesection graph of maximal cliques in H. G is clique graph means that G is the clique graph of some graph.
$L^{*}(H)=$ underlying undirected graph of line digraph of H.

What is a line digraph?

What is a line digraph?

Developments in Mathematics

Lowell W. Beineke Jay S. Bagga

Line Graphs and Line Digraphs

Springer

What is a line digraph?

Developments in Mathematics
 Lowell W. Beineke Jay S. Bagga
 Line Graphs and Line Digraphs

D_{11} Discrete Mathematics Letters
 www. dmlett. com

Review Article
A survey of line digraphs and generalizations*
Jay S. Bagga ${ }^{1, \dagger}$, Lowell W. Beineke ${ }^{2}$

Discrete Math. Lett. 6 (2021) 68-83
DOI: 10.47443/dml.2021.s109

Line graph:

in $L(G)$ on top of $G \quad$ in $L(G)$

Line Digraph

Definition

Line graph:

in $L(G)$ on top of $G \quad$ in $L(G)$

Line Digraph

Line graph:

Line digraph ${ }^{\mathrm{O}}$ of digraph:

in $L(G)$ on top of $G \quad$ in $L(G)$
 in $L(G)$ on top of G
 in $L(\vec{G})$ on top of $\vec{G} \quad$ in $L(\vec{G})$
 in $L(\vec{G})$ on top of \vec{G}

○
\circ in $L(G)$

○
in $L(\vec{G})$

Line Digraph

Line graph:

in $L(G)$ on top of $G \quad$ in $L(G)$

$$
\text { in } L(G)
$$

Line digraph

of digraph:
in \vec{G}
in $L(\vec{G})$ on top of \vec{G}
in $L(\vec{G})$

$\operatorname{in} L(G)$

$$
\text { in } L(G) \text { on top of } G
$$

 in $L(\vec{G})$ on top of \vec{G}

To get the line digraph of a graph G, replace each edge of G by (to get \vec{G}) \& then perform line digraph operation (on \vec{G}).

Line Digraph

Definition

For an (undirected) graph H, the line digraph $\vec{L}(H)$ of H is the oriented graph with
Vertex set $=\{(u, v),(v, u): u, v \in V(H)$ and $u v \in E(H)\}$ Arcs: $(u, v) \rightarrow(v, w)$ for $u, v, w \in V(H)$, provided $u \neq w$
(Bagga and Beineke, 2021).

Image credit: (Parzanchevski, 2020).

Star Colouring and Line Graph

Theorem 12

For every graph $H, \quad L^{*}(H) \xrightarrow{L B H} L(H)$.

Star Colouring and Line Graph

Theorem 12

For every graph $H, \quad L^{*}(H) \xrightarrow{L B H} L(H)$. In particular, char $(L(H) ; x)$ divides char $\left(L^{*}(H) ; x\right)$.

Star Colouring and Line Graph

Theorem 12

For every graph $H, \quad L^{*}(H) \xrightarrow{L B H} L(H)$.
In particular, char $(L(H) ; x)$ divides char $\left(L^{*}(H) ; x\right)$.

Theorem 13

For a $K_{1, p+1}$-free $2 p$-regular graph G with $p \geq 2$, G is $(p+2)$-star colourable $\Longleftrightarrow G \xrightarrow{L B H} L^{*}\left(K_{p+2}\right)$.

Star Colouring and Line Graph

Theorem 12

For every graph $H, \quad L^{*}(H) \xrightarrow{L B H} L(H)$.
In particular, char $(L(H) ; x)$ divides char $\left(L^{*}(H) ; x\right)$.

Theorem 13

For a $K_{1, p+1}$-free $2 p$-regular graph G with $p \geq 2$, G is $(p+2)$-star colourable $\Longleftrightarrow G \xrightarrow{L B H} L^{*}\left(K_{p+2}\right)$.
$\operatorname{char}\left(L\left(K_{p+2}\right) ; x\right)=(x-2 p)(x-p+2)^{p+1}(x+2)^{(p-1)(p+2) / 2}$
(Beineke and Bagga, 2021)

Corollary 14

For a $K_{1, p+1}$-free $2 p$-regular graph G with $p \geq 2$,
$G \xrightarrow{L B H} L\left(K_{p+2}\right)$ and thus -2 and $p-2$ are eigenvalues of G.

Future Directions

Ongoing Work

1. Determine spectra of $L^{*}(H)$.
2. Characterise constrained homorphisms related to star colouring in terms of edge decompositions.

Future Directions

1. Charatcerise $(2 p+1)$-regular $(p+2)$-star colourable graphs.
2. Characterise graphs that do not admit MINI-orientaton (similar to diamond).
3. Use weaving to study 1 -cover or 2 -covers of matchings and even-degree graphs.

References

Adanur，S．（2020）．Handbook of weaving．Boca Raton：CRC press．
回 Akleman，E．，J．Chen，and J．L．Gross（2015）．＂Extended graph rotation systems as a model for cyclic weaving on orientable surfaces＂．In：Discrete Applied Mathematics 193，pp．61－79．
图 Albertson，M．O．，G．G．Chappell，H．A．Kierstead，A．Kündgen，and R．Ramamurthi（2004）．＂Coloring with no 2－colored P_{4}＇s＂．In： The Electronic Journal of Combinatorics 11．1，p． 26.
目 Bagga，J．S．and L．W．Beineke（2021）．＂A survey of line digraphs and generalizations＂．In：DML．Discrete Mathematics Letters 6， pp．68－83．
風 Beineke，L．W．and J．S．Bagga（2021）．Line graphs and line di－ graphs．Vol．68．Developments in Mathematics．Cham：Springer．
－Chen，M．，A．Raspaud，and W．Wang（2013）．＂ 6 －star－coloring of subcubic graphs＂．In：Journal of Graph Theory 72．1－2，pp．128－ 145.

國 Dvořák，Z．，B．Mohar，and R．Šámal（2013）．＂Star chromatic in－ dex＂．In：Journal of Graph Theory 72．3－4，pp．313－326．
固 Fertin，G．，E．Godard，and A．Raspaud（2003）．＂Acyclic and k－ distance coloring of the grid＂．In：Information Processing Letters 87．1，pp．51－58．
圊 Fertin，G．，A．Raspaud，and B．Reed（2004）．＂Star coloring of graphs＂．In：Journal of Graph Theory 47．3，pp．163－182．
围 Fiala，J．and J．Kratochvíl（2008）．＂Locally constrained graph homomorphisms－structure，complexity，and applications＂．In： Computer Science Review 2．2，pp．97－111．
Fiala，J．，D．Paulusma，and J．A．Telle（2008）．＂Locally constrained graph homomorphisms and equitable partitions＂．In：European Journal of Combinatorics 29．4，pp．850－880．URL：dro．dur ．ac．uk／ 7423／1／7423．pdf．

E－Lei，H．，Y．Shi，and Z．－X．Song（2018）．＂Star chromatic index of subcubic multigraphs＂．In：Journal of Graph Theory 88．4，pp．566－ 576.

冨 Lyons，A．（2011）．＂Acyclic and star colorings of cographs＂．In： Discrete Applied Mathematics 159．16，pp．1842－1850．
图 Nešetřil，J．and P．O．de Mendez（2003）．＂Colorings and homo－ morphisms of minor closed classes＂．In：Discrete and Computa－ tional Geometry．Springer，pp．651－664．
（ Omoomi，B．，E．Roshanbin，and M．V．Dastjerdi（2021）．＂A polyno－ mial time algorithm to find the star chromatic index of trees＂． In：The Electronic Journal of Combinatorics 28．1，p1．6， 16.
國 Parzanchevski，O．（2020）．＂Ramanujan graphs and digraphs＂．In： Analysis and geometry on graphs and manifolds．July 31 －August 4， 2017．Cambridge：Cambridge University Press，pp．344－367．
國 Xie，D．，H．Xiao，and Z．Zhao（2014）．＂Star coloring of cubic graphs＂．In：Information Processing Letters 114．12，pp．689－691．

References

(cont'd)

風 Yue, J. (2016). "Acyclic and star coloring of P_{4}-reducible and P_{4}-sparse graphs". In: Applied Mathematics and Computation 273, pp. 68-73.

Thank you

Questions?

