Star Colouring of Regular Graphs Meets Weaving and Line Graphs

Shalu M. A. and **Cyriac Antony** IIT Madras, ma23r004@smail.iitm.ac.in February 15, 2024

CALDAM 2024, IIT Bhilai

- Shalu M. A. and Cyriac Antony (2022), Star colouring of bounded degree graphs and regular graphs, *Discrete Mathematics*, 345 (6), 112850, DOI: 10.1016/j.disc.2022.112850.
- Shalu M. A. and Cyriac Antony (2023), Star colouring and locally constrained graph homomorphisms. Under Review. Preprint link: https://arxiv.org/abs/2312.00086
- Shalu M. A. and Cyriac Antony (2024), Star colouring of regular graphs meets weaving and line graphs. CALDAM 2024

Table of Contents

- Introducton and Overview
- Star Colouring and Orientations
- Star Colouring and Edge decompositions
- Star Colouring and Homomorphisms
- Star Colouring and Line Graphs
- Future Directions

Introducton & Overview

Conventions

By graph, we mean finite, simple and undirected graph.

G contains H means G contains H as subgraph

Notations

V(G) = vertex set of G

E(G) = edge set of G

For $S \subseteq V(G)$, G[S] = subgraph of G induced by S

Application

Star colouring is a variant of graph colouring.

Application

Star colouring is a variant of graph colouring.

It is used as a model for compression of symmetric sparse matrices (used in computing sparse derivative matrices).

Survey: What Color Is Your Jacobian? Graph Coloring for Computing Derivatives, Gebremedhin et al., SIAM Review, (2005).

Image credit: (Gebremedhin et al., 2005)

A colouring of a graph G is a function $f: V(G) \to \mathbb{Z}$ such that uv is an edge in $G \implies f(u) \neq f(v)$. (i.e., (i) - (i) is NOT allowed)

If f(v) = i, we say that v is coloured i (by f), and draw v as i.

A graph with a 3-colouring

A colouring of a graph G is a function $f: V(G) \to \mathbb{Z}$ such that uv is an edge in $G \implies f(u) \neq f(v)$. (i.e., (i) - (i) is NOT allowed)

A graph with a 3-colouring

If f(v) = i, we say that v is coloured i (by f), and draw v as i.

k-colouring = colouring with at most k colours, say 0,...,k-1

Star colouring = colouring without (i) - (j) - (j) - (j).

Definition

Star colouring = colouring without (i) - (j) - (j) - (j).

6

Definition

Star colouring = colouring without (i) - (j) - (j) - (j).

supergraph

f is a star colouring of G.f is NOT a star colouring of H.f is NOT a star colouring of J.

Definition

Star colouring = colouring without (i) - (j) - (j) - (j).

f is a 3-star colouring of G.f is NOT a 3-star colouring of H.f is NOT a 3-star colouring of J.

- Characterisation in terms of graph orientations (Albertson et al., 2004; Nešetřil and Mendez, 2003)
- Every planar graph is 20-star colourable

(Albertson et al., 2004).

- Testing 3-star colourability is NP-complete for planar bipartite graphs and line graphs of subcubic graphs
 (Albertson et al., 2004; Lei et al., 2018)
- The minimum #colours required to star colour is polynomial-time computable for
 - P₄-free graphs (Lyons, 2011),
 - P_4 -sparse graphs (Yue, 2016), and
 - line graphs of trees (Omoomi et al., 2021)

Star Colouring *d*-Regular Graph *G*

If G is a hypercube, #colours required ≤ d + 1 (Fertin et al., 2004)

- If G is 3-regular (i.e., d = 3), #colours required ≤ 6 #colours required ≥ 4
- #colours required $\geq \lceil (d+3)/2 \rceil$

(Chen et al., 2013) (Xie et al., 2014)

Literature Survey

(Fertin et al., 2003)

• If G is a hypercube, #colours required $\leq d + 1$ (Fertin et al., 2004)

- If G is 3-regular (i.e., d = 3), #colours required ≤ 6 (Chen et al., 2013) #colours required ≥ 4 (Xie et al., 2014)
- #colours required $\geq \lceil (d+3)/2 \rceil$

(Fertin et al., 2003)

Literature Survey

• #colours required $\geq \lceil (d+4)/2 \rceil$ for $d \geq 2$

If G is a hypercube, #colours required ≤ d + 1 (Fertin et al., 2004)

- If G is 3-regular (i.e., d = 3), #colours required ≤ 6 (Chen et al., 2013) #colours required ≥ 4 (Xie et al., 2014)
- #colours required $\geq \lceil (d+3)/2 \rceil$

(Fertin et al., 2003)

Literature Survey

 #colours required ≥ [(d + 4)/2] for d ≥ 2 This bound is attained for each d ≥ 2

- If G is a hypercube, #colours required ≤ d + 1 (Fertin et al., 2004)
- If G is 3-regular (i.e., d = 3), #colours required ≤ 6 (Chen et al., 2013) #colours required ≥ 4 (Xie et al., 2014)
- #colours required $\geq \lceil (d+3)/2 \rceil$ (Fer
- (Fertin et al., 2003)
- #colours required ≥ [(d + 4)/2] for d ≥ 2 This bound is attained for each d ≥ 2
- Characterise (regular) graphs attaining this bound.

Given $d \ge 3$ and a *d*-regular graph *G* as input, it is NP-complete to test whether *G* is $\lceil (d+4)/2 \rceil$ -star colourable (even when d = 4).

d > 3

 $p \ge 2$

$\mathsf{Recognition} \in \mathsf{NPC}$

Given $p \ge 2$ and a 2*p*-regular graph *G* as input, it is NP-complete to test whether *G* is (p+2)-star colourable (even when p = 2).

Given $p \ge 2$ and a 2*p*-regular graph *G* as input, it is NP-complete to test whether *G* is (p+2)-star colourable (even when p = 2).

Properties

- (diamond, *K*₄)-free
- $K_{1,p+1}$ -free \implies -2 and p 2 are eigenvalues of adj. matrix

Given $p \ge 2$ and a 2*p*-regular graph *G* as input, it is NP-complete to test whether *G* is (p+2)-star colourable (even when p = 2).

Properties

- (diamond, *K*₄)-free
- $K_{1,p+1}$ -free \implies -2 and p 2 are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations
- Graph Homomorphisms
- Edge Decompositions

Given $p \ge 2$ and a 2*p*-regular graph *G* as input, it is NP-complete to test whether *G* is (p+2)-star colourable (even when p = 2).

Properties

- (diamond, *K*₄)-free
- $K_{1,p+1}$ -free \implies -2 and p 2 are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations
- Graph Homomorphisms
- Edge Decompositions

For 3-regular graph G,

L(G) is 4-star col. \iff G is bipartite and distance-two 4-col.

Given $p \ge 2$ and a 2*p*-regular graph *G* as input, it is NP-complete to test whether *G* is (p + 2)-star colourable (even when p = 2).

Properties

- (diamond, *K*₄)-free
- $K_{1,p+1}$ -free \implies -2 and p 2 are eigenvalues of adj. matrix

Characterisation in terms of

- Graph Orientations (in-orientations)
- Graph Homomorphisms (locally constrained)
- Edge Decompositions

(with weaving pattern)

For 3-regular graph G, L(G) is 4-star col. $\iff G$ is bipartite and distance-two 4-col.

Star Colouring & Orientations

To get an *orientation* of a graph G, assign some direction on each edge of G.

To get an *orientation* of a graph G, assign some direction on each edge of G.

To get an *orientation* of a graph G, assign some direction on each edge of G.

To get an *orientation* of a graph G, assign some direction on each edge of G.

Neighbourhood of v in G

N(v) = set of all nbrs of v (in G)

To get an *orientation* of a graph G, assign some direction on each edge of G.

 \vec{G} is an Eulerian orientation if #in-nbrs(v)=#out-nbrs(v) for every vertex v of \vec{G} .

Definition

An orientation \vec{G} of G is a **in-orientation** of Gif there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

An orientation \vec{G} of G is a **in-orientation** of Gif there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour, and

NOT allowed

An orientation \vec{G} of G is a **in-orientation** of Gif there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour, and(ii) no two out-nbrs of v have the same colour.

NOT allowed

An orientation \vec{G} of G is a **in-orientation** of Gif there exists a colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour, and(ii) no two out-nbrs of v have the same colour.

An orientation \vec{G} of G is a *k***-in-orientation** of G if there exists a *k*-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour, and(ii) no two out-nbrs of v have the same colour.

An orientation \vec{G} of G is a *k***-in-orientation** of G if there exists a *k*-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour, and(ii) no two out-nbrs of v have the same colour.

G admits a k-star colouring \iff G admits a k-in-orientation (Albertson et al., 2004; Nešetřil and Mendez, 2003)
In-orientation

An orientation \vec{G} of G is a *k***-in-orientation** of G if there exists a *k*-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour(ii) no two out-nbrs of v have the same colour

An orientation \vec{G} of G is a *k***-MINI-orientation** of G if there exists a *k*-colouring f of \vec{G} such that the following hold for each vertex v of \vec{G} :

(i) no in-nbr and out-nbr of v have the same colour
(ii) no two out-nbrs of v have the same colour
(iii) all in-nbrs of v have the same colour

(MINI-orientation = Monochromatic In-Neighbourhood In-orientation)

For each vertex v,

- (i) no in-nbr and out-nbr of v have the same colour,
- (ii) no two out-nbrs of v have the same colour, and
- (iii) all in-nbrs of v have the same colour.

For each vertex v,

- (i) no in-nbr and out-nbr of v have the same colour,
- (ii) no two out-nbrs of v have the same colour, and
- (iii) all in-nbrs of v have the same colour.

For each vertex v,

- (i) no in-nbr and out-nbr of v have the same colour,
- (ii) no two out-nbrs of v have the same colour, and
- (iii) all in-nbrs of v have the same colour.

Theorem 1

For a 2p-regular graph G with $p \ge 2$, G is (p + 2)-star colourable \iff G has a (p + 2)-MINI-orientation.

MINI-orientation

Properties

Theorem 2

Diamond and circular ladder graph CL_{2q+1} do not admit a *k*-MINI-orientation for any $k \in \mathbb{N}$.

Corollary 3

If a 2p-regular G (with $p \ge 2$) contains diamond or CL_{2q+1} , then G is not (p + 2)-star colourable.

Star Col. & Edge Decompositions

Plain Weaving

Plain weaving in graph theory

 \approx

Alternating projection of link in knot theory

(Akleman et al., 2015)

Plain weave pattern (Image credit: Adanur, 2020)

Underlying graph

(Image Credits: Github page of spath3 TikZ library)

An *plain weaving* of an edge decomposition $\{R_0, R_1, \ldots, R_{q-1}\}$ of a graph *G* is a function $f: V(G) \to \mathbb{Z}_q$ such that for each $i \in \mathbb{Z}_q$ and each edge $uv \in R_i$, either f(u) = i or f(v) = i.

Theorem 4

Let $p \ge 2$ and $q \ge 2$. Let G be a 2p-regular graph, and let \tilde{G} be an orientation of G. Then, \tilde{G} is an Eulerian q-MINI-orientationj of G if and only if G admits an edge decomposition $S = \{H_0, H_1, \ldots, H_{q-1}\}$ that satisfies the following: (i) each H_i is p-regular ($i \in \mathbb{Z}_q$); (ii) orientation induced by S is \tilde{G} ; and (iii) for distinct $i, j \in \mathbb{Z}_q$ and distinct $u, v \in V(H_i) \cap V(H_j)$, $uv \notin E(G)$ and $N_G(u) \cap N_G(v) = N_{\tilde{G}}^+(u) \cap N_{\tilde{G}}^+(v)$.

Theorem 5

Let G be a 2p-regular graph with $p \ge 2$. Then, G admits a (p+2)-star colouring if and only if G an edge decomposition $S = \{H_0, H_1, \ldots, H_{p+1}\}$ such that the following hold: (i) each H_i is p-regular ($i \in \mathbb{Z}_{p+2}$) (let us call orientation induced by S as \vec{G}); and (ii) for distinct $i, j \in \mathbb{Z}_{p+2}$ and distinct $u, v \in V(H_i) \cap V(H_j)$, $uv \notin E(G)$ and $N_G(u) \cap N_G(v) = N^+_{\vec{G}}(u) \cap N^+_{\vec{G}}(v)$.

Star Colouring & Homomorphisms

Definition

Let G and H be graphs.

A homomorphism from G to H is a function $\psi: V(G) \to V(H)$ s. t. uv is an edge in $G \implies \psi(u)\psi(v)$ is an edge in H.

 ψ maps triangles to triangle, circles to circle, and so on.

Locally Bijective Homomorphism (LBH)

A Locally Bijective Homomorphism (LBH) from G to H is a function $\psi \colon V(G) \to V(H)$ such that for each vertex v of G, ψ maps neighbourhood $N_G(v)$ bijectively to $N_H(\psi(v))$.

Areas Related to LBH

- Topology
- Algebra
- Combinatorics
- Geometry

Surveys:

(Fiala and Kratochvíl, 2008) Locally constrained graph homomorphisms – structure, complexity, and applications

(Fiala et al., 2008) Locally constrained graph homomorphisms and equitable partitions

Theorem 6 (see Fiala and Kratochvíl, 2008) $G \xrightarrow{LBH} H \implies char(H; x) \text{ divides } char(G; x).$

Results

Theorem 7 (Dvořák et al., 2013)

For a 3-regular graph G, L(G) is 4-star colourable $\iff G \xrightarrow{LBH} Q_3$

Theorem 7 (Dvořák et al., 2013)

```
For a 3-regular graph G,

L(G) is 4-star colourable \iff G \xrightarrow{LBH} Q_3
```

Theorem 8

For a 3-regular graph G, L(G) is 4-star colourable $\iff G$ is bipartite and distance-two 4-colourable (distance-two 4-colouring = 4-colouring without i) (i) (i) (i)

Results

Theorem 7 (Dvořák et al., 2013)

```
For a 3-regular graph G,

L(G) is 4-star colourable \iff G \xrightarrow{LBH} Q_3
```

Theorem 8

For a 3-regular graph G, L(G) is 4-star colourable $\iff G$ is bipartite and distance-two 4-colourable (distance-two 4-colouring = 4-colouring without (i) (j) (i)

Corollary 9

It is NP-complete to test whether a planar 4-regular graph is 4-star colourable.

Results

Theorem 7 [Dvořák et al., 2013] (Restated)

For a 3-regular graph H, L(H) is 4-star colourable $\iff H \xrightarrow{LBH} Q_3$

Theorem 7 [Dvořák et al., 2013] (Restated)

For a 3-regular graph H, L(H) is 4-star colourable $\iff H \xrightarrow{LBH} Q_3$

Rephrasal of Theorem 7:

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{LBH} L(Q_3)$ Results

Results

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{LBH} L(Q_3)$

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{LBH} L(Q_3)$

Claim: For every $K_{1,3}$ -free 4-regular graph G, G is 4-star colourable $\iff G \xrightarrow{\text{LBH}} L(Q_3)$. Results

Theorem 10 (Dvořák et al., 2013)

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{LBH} L(Q_3)$

Claim: For every $K_{1,3}$ -free 4-regular graph G, G is 4-star colourable $\iff G \xrightarrow{\text{LBH}} L(Q_3)$.

We define a sequence of graphs $G_4, G_6, G_8...$, where $G_4 \cong L(Q_3)$.

Theorem 11

For a $K_{1,p+1}$ -free 2p-regular graph G with $p \ge 2$, G is (p + 2)-star colourable $\iff G \xrightarrow{LBH} G_{2p}$. Results

Star Colouring & Line Graphs

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{\text{LBH}} L(Q_3)$

For every $K_{1,3}$ -free 4-regular graph G, G is 4-star colourable $\implies G$ is a line graph For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{\text{LBH}} L(Q_3)$

For every $K_{1,3}$ -free 4-regular graph G, G is 4-star colourable $\implies G$ is a line graph

For a $K_{1,p+1}$ -free 2*p*-regular graph *G*, does *G* (*p* + 2)-star colourable graphs \implies *G* is a line graph?

Are $G_4, G_6, G_8 \dots$ line graphs?

For a 3-regular graph H, L(H) is 4-star colourable $\iff L(H) \xrightarrow{\text{LBH}} L(Q_3)$

For every $K_{1,3}$ -free 4-regular graph G, G is 4-star colourable $\implies G$ is a line graph

For a $K_{1,p+1}$ -free 2*p*-regular graph *G*, does *G* (*p* + 2)-star colourable graphs \implies *G* is a line graph?

Are G_4 , G_6 , G_8 ... line graphs? No, except for G_4 .

Motivation

-

G is 2p-regular & $(p+2)$ -star colourable	\implies	G is (diamond, K_4)-free. (p+1)(p+2) divides $ V(G) $.
& in addition, G is $K_{1,p+1}$ -free	\implies	
& in addition, V(G) = (p+1)(p+2)	\Rightarrow	$G\cong G_{2p}$
Motivation

-

G is 2 p -regular & $(p+2)$ -star colourable	\Rightarrow	G is (diamond, K_4)-free. (p+1)(p+2) divides $ V(G) $.
& in addition, G is $K_{1,p+1}$ -free	\Rightarrow	G is the line graph of a bipartite graph, for $p = 2$.
& in addition, V(G) = (p+1)(p+2)	\implies	$G\cong G_{2p}$

Motivation

G is 2 p -regular & $(p+2)$ -star colourable	\Rightarrow	G is (diamond, K_4)-free. (p+1)(p+2) divides $ V(G) $.
& in addition, G is $K_{1,p+1}$ -free	\Rightarrow	G is the line graph of a bipartite graph, for $p = 2$. G is a clique graph .
& in addition, V(G) = (p+1)(p+2)	\Rightarrow	$G\cong G_{2p}$

Clique graph of H = Interesection graph of maximal cliques in H. G is clique graph means that G is the clique graph of some graph.

Motivation

G is 2 p -regular & $(p+2)$ -star colourable	\Rightarrow	G is (diamond, K_4)-free. (p+1)(p+2) divides $ V(G) $.
& in addition, G is $K_{1,p+1}$ -free	\Rightarrow	<i>G</i> is the line graph of a bipartite graph, for $p = 2$. <i>G</i> is a clique graph .
& in addition, V(G) = (p+1)(p+2)	\Rightarrow	$G\cong G_{2p}\cong L^*(K_{p+2}).$

Clique graph of H = Interesection graph of maximal cliques in H. G is clique graph means that G is the clique graph of some graph.

 $L^*(H)$ = underlying undirected graph of line digraph of H.

What is a line digraph?

What is a line digraph?

Developments in Mathematics

Lowell W. Beineke Jay S. Bagga

Line Graphs and Line Digraphs

Description Springer

What is a line digraph?

Developments in Mathematics

Lowell W. Beineke Jay S. Bagga

Line Graphs and Line Digraphs

Review Article

A survey of line digraphs and generalizations*

Jay S. Bagga^{1,†}, Lowell W. Beineke²

Discrete Math. Lett. 6 (2021) 68–83 DOI: 10.47443/dml.2021.s109

D Springer

Definition

Definition

Definition

Definition

To get the **line digraph of a graph** G, replace each edge of G by \bigcirc (to get \vec{G}) & then perform line digraph operation (on \vec{G}).

Definition

For an (undirected) graph H_{i} the **line digraph** $\vec{L}(H)$ of *H* is the oriented graph with Vertex set = { $(u, v), (v, u) : u, v \in V(H)$ and $uv \in E(H)$ } Arcs: $(u, v) \rightarrow (v, w)$ for $u, v, w \in V(H)$, provided $u \neq w$ (Bagga and Beineke, 2021). Image credit: (Parzanchevski, 2020).

Theorem 12

For every graph H, $L^*(H) \xrightarrow{LBH} L(H)$.

Theorem 12

For every graph H, $L^*(H) \xrightarrow{LBH} L(H)$. In particular, char(L(H); x) divides char($L^*(H); x$).

Theorem 12

For every graph H, $L^*(H) \xrightarrow{LBH} L(H)$. In particular, char(L(H); x) divides char($L^*(H); x$).

Theorem 13

For a $K_{1,p+1}$ -free 2p-regular graph G with $p \ge 2$, G is (p+2)-star colourable $\iff G \xrightarrow{LBH} L^*(K_{p+2})$.

Theorem 12

For every graph H, $L^*(H) \xrightarrow{LBH} L(H)$. In particular, char(L(H); x) divides char($L^*(H); x$).

Theorem 13

For a $K_{1,p+1}$ -free 2p-regular graph G with $p \ge 2$, G is (p+2)-star colourable $\iff G \xrightarrow{LBH} L^*(K_{p+2})$.

char(
$$L(K_{p+2})$$
; x) = $(x - 2p)(x - p + 2)^{p+1}(x + 2)^{(p-1)(p+2)/2}$
(Beineke and Bagga, 2021)

Corollary 14

For a $K_{1,p+1}$ -free 2p-regular graph G with $p \ge 2$, G $\xrightarrow{LBH} L(K_{p+2})$ and thus -2 and p - 2 are eigenvalues of G.

Future Directions

- 1. Determine spectra of $L^*(H)$.
- 2. Characterise constrained homorphisms related to star colouring in terms of edge decompositions.

- 1. Charatcerise (2p + 1)-regular (p + 2)-star colourable graphs.
- 2. Characterise graphs that do not admit MINI-orientaton (similar to diamond).
- 3. Use weaving to study 1-cover or 2-covers of matchings and even-degree graphs.

- Adanur, S. (2020). Handbook of weaving. Boca Raton: CRC press.
- Akleman, E., J. Chen, and J. L. Gross (2015). **"Extended graph rotation systems as a model for cyclic weaving on orientable surfaces".** In: *Discrete Applied Mathematics* 193, pp. 61–79.
- Albertson, M. O., G. G. Chappell, H. A. Kierstead, A. Kündgen, and R. Ramamurthi (2004). "Coloring with no 2-colored P₄'s". In: *The Electronic Journal of Combinatorics* 11.1, p. 26.
- Bagga, J. S. and L. W. Beineke (2021). "A survey of line digraphs and generalizations". In: DML. Discrete Mathematics Letters 6, pp. 68–83.
- Beineke, L. W. and J. S. Bagga (2021). *Line graphs and line digraphs.* Vol. 68. Developments in Mathematics. Cham: Springer.
- Chen, M., A. Raspaud, and W. Wang (2013). "6-star-coloring of subcubic graphs". In: Journal of Graph Theory 72.1-2, pp. 128– 145.

(cont'd)

- Dvořák, Z., B. Mohar, and R. Šámal (2013). "Star chromatic index". In: *Journal of Graph Theory* 72.3-4, pp. 313–326.
- Fertin, G., E. Godard, and A. Raspaud (2003). "Acyclic and *k*-distance coloring of the grid". In: *Information Processing Letters* 87.1, pp. 51–58.
- Fertin, G., A. Raspaud, and B. Reed (2004). "Star coloring of graphs". In: *Journal of Graph Theory* 47.3, pp. 163–182.
- Fiala, J. and J. Kratochvíl (2008). "Locally constrained graph homomorphisms structure, complexity, and applications". In: *Computer Science Review* 2.2, pp. 97–111.
- Fiala, J., D. Paulusma, and J. A. Telle (2008). "Locally constrained graph homomorphisms and equitable partitions". In: European Journal of Combinatorics 29.4, pp. 850–880. URL: dro.dur.ac.uk/ 7423/1/7423.pdf.

- Lei, H., Y. Shi, and Z.-X. Song (2018). "Star chromatic index of subcubic multigraphs". In: Journal of Graph Theory 88.4, pp. 566– 576.
- Lyons, A. (2011). "Acyclic and star colorings of cographs". In: *Discrete Applied Mathematics* 159.16, pp. 1842–1850.
- Nešetřil, J. and P. O. de Mendez (2003). "Colorings and homomorphisms of minor closed classes". In: Discrete and Computational Geometry. Springer, pp. 651–664.
- Omoomi, B., E. Roshanbin, and M. V. Dastjerdi (2021). "A polynomial time algorithm to find the star chromatic index of trees".
 In: The Electronic Journal of Combinatorics 28.1, p1.6, 16.
- Parzanchevski, O. (2020). "Ramanujan graphs and digraphs". In: Analysis and geometry on graphs and manifolds. July 31 – August 4, 2017. Cambridge: Cambridge University Press, pp. 344–367.
- Xie, D., H. Xiao, and Z. Zhao (2014). "Star coloring of cubic graphs". In: Information Processing Letters 114.12, pp. 689–691.

- Yue, J. (2016). **"Acyclic and star coloring of** *P*₄**-reducible and** *P*₄**-sparse graphs".** In: *Applied Mathematics and Computation* 273, pp. 68–73.

Thank you

Questions?